首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Methyl iso-butyl ketone (MIBK) is a widely used volatile organic compound (VOC) which is highly toxic in nature and has significant adverse effects on human beings. The present study deals with the removal of MIBK using biodegradation by an acclimated mixed culture developed from activated sludge. The biodegradation of MIBK is studied for an initial MIBK concentration ranging from 200–700 mg l−1 in a batch mode of operation. The maximum specific growth rate achieved is 0.128 h−1 at 600 mg l−1of initial MIBK concentration. The kinetic parameters are estimated using five growth kinetic models for biodegradation of organic compounds available in the literature. The experimental data found to fit well with the Luong model (R 2 = 0.904) as compared to Haldane model (R 2 = 0.702) and Edward model (R 2 = 0.786). The coefficient of determination (R 2) obtained for the other two models, Monod and Powell models are 0.497 and 0.533, respectively. The biodegradation rate found to follow the three-half-order kinetics and the resulting kinetic parameters are reported.  相似文献   

2.
Beauvericin (BEA) is a cyclic hexadepsipeptide mycotoxin with notable phytotoxic and insecticidal activities. Fusarium redolens Dzf2 is a highly BEA-producing fungus isolated from a medicinal plant. The aim of the current study was to develop a simple and valid kinetic model for F. redolens Dzf2 mycelial growth and the optimal fed-batch operation for efficient BEA production. A modified Monod model with substrate (glucose) and product (BEA) inhibition was constructed based on the culture characteristics of F. redolens Dzf2 mycelia in a liquid medium. Model parameters were derived by simulation of the experimental data from batch culture. The model fitted closely with the experimental data over 20–50 g l−1 glucose concentration range in batch fermentation. The kinetic model together with the stoichiometric relationships for biomass, substrate and product was applied to predict the optimal feeding scheme for fed-batch fermentation, leading to 54% higher BEA yield (299 mg l−1) than in the batch culture (194 mg l−1). The modified Monod model incorporating substrate and product inhibition was proven adequate for describing the growth kinetics of F. redolens Dzf2 mycelial culture at suitable but not excessive initial glucose levels in batch and fed-batch cultures.  相似文献   

3.
Extensive applications of persistent organochlorine pesticides like endosulfan on cotton have led to the contamination of soil and water environments at several sites in Pakistan. Microbial degradation offers an effective approach to remove such toxicants from the environment. This study reports the isolation of highly efficient endosulfan degrading bacterial strains from soil. A total of 29 bacterial strains were isolated through enrichment technique from 15 specific sites using endosulfan as sole sulfur source. The strains differed substantially in their potential to degrade endosulfan in vitro ranging from 40 to 93% of the spiked amount (100 mg l−1). During the initial 3 days of incubation, there was very little degradation but it got accelerated as the incubation period proceeded. Biodegradation of endosulfan by these bacteria also resulted in substantial decrease in pH of the broth from 8.2 to 3.7 within 14 days of incubation. The utilization of endosulfan was accompanied by increased optical densities (OD595) of the broth ranging from 0.511 to 0.890. High performance liquid chromatography analyses revealed that endosulfan diol and endosulfan ether were among the products of endosulfan metabolism by these bacterial strains while endosulfan sulfate, a persistent and toxic metabolite of endosulfan, was not detected in any case. The presence of endosulfan diol and endosulfan ether in the bacterial metabolites was further confirmed by GC-MS. Abiotic degradation contributed up to 21% of the spiked amount. The three bacterial strains, Pseudomonas spinosa, P. aeruginosa, and Burkholderia cepacia, were the most efficient degraders of both α- and β-endosulfan as they consumed more than 90% of the spiked amount (100 mg l−1) in the broth within 14 days of incubation. Maximum biodegradation by these three selected efficient bacterial strains was observed at an initial pH of 8.0 and at an incubation temperature of 30°C. The results of this study may imply that these bacterial strains could be employed for bioremediation of endosulfan polluted soil and water environments.  相似文献   

4.
Jiang Y  Wen J  Lan L  Hu Z 《Biodegradation》2007,18(6):719-729
Biodegradation of phenol and 4-chlorophenol (4-cp) using a pure culture of Candida tropicalis was studied. The results showed that C. tropicalis could degrade 2,000 mg l−1 phenol alone and 350 mg l−1 4-cp alone within 66 and 55 h, respectively. The capacity of the strain to degrade phenol was obviously higher than that to degrade 4-cp. In the dual-substrate system, 4-cp intensely inhibited phenol biodegradation. Phenol beyond 800 mg l−1 could not be degraded in the presence of 350 mg l−1 4-cp. Comparatively, low-concentration phenol from 100 to 600 mg l−1 supplied a sole carbon and energy source for C. tropicalis in the initial phase of biodegradation and accelerated the assimilation of 4-cp, which resulted in the fact that 4-cp biodegradation velocity was higher than that without phenol. And the capacity of C. tropicalis to degrade 4-cp was increased up to 420 mg l−1 with the presence of 100–160 mg l−1 phenol. In addition, the intrinsic kinetics of cell growth and substrate degradation were investigated with phenol and 4-cp as single and mixed substrates in batch cultures. The results illustrated that the models proposed adequately described the dynamic behaviors of biodegradation by C. tropicalis.  相似文献   

5.
The performance of an Arthrobacter viscosus culture to remove diethylketone from aqueous solutions was evaluated. The effect of initial concentration of diethylketone on the growth of the bacteria was evaluated for the range of concentration between 0 and 4.8 g/l, aiming to evaluate a possible toxicological effect. The maximum specific growth rate achieved is 0.221 h−1 at 1.6 g/l of initial diethylketone concentration, suggesting that for higher concentrations an inhibitory effect on the growth occurs. The removal percentages obtained were approximately 88%, for all the initial concentrations tested. The kinetic parameters were estimated using four growth kinetic models for biodegradation of organic compounds available in the literature. The experimental data found is well fitted by the Haldane model (R 2 = 1) as compared to Monod model (R 2 = 0.99), Powell (R 2 = 0.82) and Loung model (R 2 = 0.95). The biodegradation of diethylketone using concentrated biomass was studied for an initial diethylketone concentration ranging from 0.8–3.9 g/l in a batch with recirculation mode of operation. The biodegradation rate found followed the pseudo-second order kinetics and the resulting kinetic parameters are reported. The removal percentages obtained were approximately 100%, for all the initial concentrations tested, suggesting that the increment on the biomass concentration allows better results in terms of removal of diethylketone. This study showed that these bacteria are very effective for the removal of diethylketone from aqueous solutions.  相似文献   

6.
Biodegradation and hydrophobicity of Pseudomonas spp. and Bacillus spp. strains were tested at different concentrations of the biosurfactant Quillaya saponin. A model mixture of hydrocarbon (dodecane and hexadecane) was used for estimating the influence of surfactants on biodegradation. The bacterial adhesion to hydrocarbon method for determination of bacterial cell surface hydrophobicity was exploited. Among the tested bacterial strains the higher hydrophobicity was noticed for Pseudomonas aeruginosa TK. The hydrophobicity of this strain was 84%. The highest hydrocarbon biodegradation was observed for P. aeruginosa TK (49%) and Bacillus subtilis (35%) strains after 7 days of experiments. Generally the addition of Quillaya saponin increased hydrocarbon biodegradation remarkably. The optimal concentration proved to be 80 mg l−1. The degree of hydrocarbon biodegradation was 75% for P. aeruginosa TK after the addition of saponin. However the most significant increase in biodegradation after addition of Quillaya saponin was in the case of P. aeruginosa 25 and Pseudomonas putida (the increase of biodegradation from 21 to 52% and from 31 to 66%, respectively). It is worth mentioning that decrease of hydrophobicity is correlated with the best biodegradation by P. aeruginosa strain. For the remaining strains, no significant hydrophobicity changes in relation to the system without surfactant were noticed.  相似文献   

7.
Intensive use of endosulfan has resulted in contamination of soil and water environments at various sites in Pakistan. This study was conducted to isolate efficient endosulfan-degrading fungal strains from contaminated soils. Sixteen fungal strains were isolated from fifteen specific sites by employing enrichment techniques while using endosulfan as a sole sulfur source, and tested for their potential to degrade endosulfan. Among these fungal strains, Chaetosartorya stromatoides, Aspergillus terricola, and Aspergillus terreus degraded both α- and β-endosulfan upto 75% in addition to 20% abiotic degradation of the spiked amount (100 mg l−1) in the broth within 12 days of incubation. Biodegradation of endosulfan by soil fungi was accompanied by a substantial decrease in pH of the broth from 7.0 to 3.2. The major metabolic product was endosulfan diol along with very low concentrations of endosulfan ether. Maximum biodegradation of endosulfan by these selected fungal strains was found at an initial broth pH of 6, incubation temperature of 30°C and under agitation conditions. This study indicates that the isolated strains carried efficient enzyme systems required for bioremediation of endosulfan-contaminated soil and water environments.  相似文献   

8.
Phytoplankton supports fisheries and aquaculture production. Its vital role as food for aquatic animals, like mollusks, shrimp, and fish cannot be overemphasized. Because of its contribution as a food source for fish, the growth kinetics of Microcystis aeruginosa, a dominant cyanobacterium in the lake, was studied. The regular occurrence of M. aeruginosa is experienced during the months of May to July or from September to November in Laguna de Bay, the largest freshwater lake in the Philippines. M. aeruginosa was collected from Laguna de Bay, isolated, and established in axenic conditions. Data on the growth kinetic parameters for nitrate-nitrogen and phosphate-phosphorus utilization by M. aeruginosa gave the following values: half-saturation constant (K s ), 0.530 mg N. L−1 and 0.024 mg P. L−1 respectively; maximum growth rate (μ max ), 0.671. d−1 and 0.668. d−1 respectively; maximum cell yield, 6.5 and 6.54 log, cells. ml−1 respectively; nutrient level for saturated growth yield, 8.71 mg N. L−1 and 0.22 mg P. L−1 respectively; and minimum cell quota (Q 0 ), 2.82 pg N. cell−1 and 0.064 pg P. cell−1 respectively. The low K s value and high maximum growth rate (μ max ) for phosphorus by M. aeruginosa would suggest a high efficiency of phosphorus utilization. On the other hand, the high K s value for nitrogen indicated a low rate of uptake for this nutrient.  相似文献   

9.
Maltose and yeast extract were the most favourable carbon and nitrogen sources for exopolysaccharide production by submerged culture of Shiraia bambusicola WZ-003, and initial maltose and yeast extract concentrations were at 30 and 3 g l−1, respectively. Plant oils could increase the mycelial growth and exopolysaccharide production in tested concentration. K+ and Mg2+ could enhance the mycelial growth and exopolysaccharide biosynthesis. The optimal cultivation temperature and initial pH were found to be 26°C and 6.0, respectively. Exopolysaccharide concentration reached 0.53 g l−1 in 15-l fermenter under optimal nutritional conditions.  相似文献   

10.
Kumar P  Nemati M  Hill GA 《Biodegradation》2011,22(6):1087-1093
Combining chemical and biological treatments is a potentially economic approach to remove high concentration of recalcitrant compounds from wastewaters. In the present study, the biodegradation of 1,4-benzoquinone, an intermediate compound formed during phenol oxidation by chlorine dioxide, was investigated using Pseudomonas putida (ATCC 17484) in batch and continuous bioreactors. Batch experiments were conducted to determine the effects of 1,4-benzoquinone concentration and temperature on the microbial activity and biodegradation kinetics. Using the generated data, the maximum specific growth rate and biodegradation rate were determined as 0.94 h−1 and 6.71 mg of 1,4-benzoquinone l−1 h−1. Biodegradation in a continuous bioreactor indicated a linear relationship between substrate loading and biodegradation rates prior to wash out of the cells, with a maximum biodegradation rate of 246 mg l−1 h−1 observed at a loading rate of 275 mg l−1 h−1 (residence time: 1.82 h). Biokinetic parameters were also determined using the steady state substrate and biomass concentrations at various dilution rates and compared to those obtained in batch cultures.  相似文献   

11.
Summary A fungus Cladosporium cladosporioides isolated from coal sample as a decolorizing microorganism. It decolorized five different azo and triphenylmethane dyes like acid blue 193, acid black 210, crystal violet, reactive black B(S) and reactive black BL/LPR both on solid and in liquid broth medium. Culture broth of this fungus decolorized completely 100 mg of acid blue 193 l−1 in 8 days. The extracellular enzyme of Cladosporium cladosporioides decolorized acid blue 193 on repeated addition to a total (out of 700 mg l−1) concentration of 564 mg l−1 within 168 h without significant decline in the activity, showing the resistant property of Cladosporium cladosporioides to a high concentration of the dye. The optimal temperature 40 °C, pH 5.6 and sugar concentration of 4% required for decolorization of acid blue 193. Cladosporium cladosporioides showed manganese peroxidase activity with 41 U l−1, laccase activity with 1413 U l−1 and lignin peroxidase activity was negligible after day 8 of incubation.  相似文献   

12.
Efficient plant regeneration through somatic embryogenesis was achieved in Polyscias filicifolia. Embryogenic calluses were induced on Murashige and Skoog (MS) basal medium supplemented with 0.5 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D) and 1.0 mg l−1 benzylaminopurine (BAP; type I callus) and on MS medium with 2.0 mg l−1 2,4-D and 0.01 mg l−1 kinetin (type II callus) from leaf explants of a 2-yr-old plant. Primary somatic embryos (PSEs) developed after four passages of suspension culture established from embryogenic callus when cultured in liquid half-strength MS medium (1/2 MS) without growth regulators. PSEs in the cotyledonary stage were multiplied by adventitious embryogenesis. Single secondary somatic embryos (SSEs) or their clusters developed at the base of PSE hypocotyls and regenerated into plantlets in a one-step process on plant growth regulator-free 1/2 MS medium. Low sucrose concentration of 15 g l−1 promoted development of normal SSEs. All SSEs regenerated into single, well-rooted plantlets on a Nitsch and Nitsch medium supplemented with 0.5 mg l−1 kinetin, 0.1 mg l−1 indole-3-butyric acid, and 10 mg l−1 adenine sulfate. Subsequent two subculture cycles on the same medium were necessary to obtain plantlets sufficiency developed to allow successful transfer to the soil. Rooted plantlets were established in a peat mixture with 90% survival, with the plants showing normal morphological characteristics.  相似文献   

13.
Dynamic Saccharomyces cerevisiae responses to increasing ethanol stresses were investigated to monitor yeast viability and to optimize bioprocess performance when gradients occurred due to the specific configuration of multi-stage bioreactors with cell recycling or of large volume industrial bioreactors inducing chemical heterogeneities. Twelve fed-batch cultures were carried out with initial ethanol concentrations (P in) ranging from 5 g l−1 to 110 g l−1 with three different inoculums in different physiological states in terms of viability and quantity of ethanol produced (P o). For a given initial cell viability of 50%, the time to reach the maximum growth rate and maximum ethanol production rate was dependent on the difference P in − P o. Whatever the initial physiological state, when the initial ethanol concentration P in reached 100 g l−1, the yeasts died. Experimental results showed that the initial physiological state of the yeast was the major parameter to determine, the microorganisms’ capacities to adapt and resist environmental changes.  相似文献   

14.
Plant cell culture provides an alternative means for producing secondary metabolites. In this study, experiments were carried out to study the impact of several parameters, independently and in combination, on the stimulation of menthol production in the cell suspension culture of Mentha piperita. Callus was obtained from leaf segments of in vitro grown plantlets on Murashige and Skoog (MS) medium supplemented with 0.2 mg l−1of 2,4-dichlorophenoxy acetic acid to initiate cell suspension culture. This culture was maintained in half-strength MS medium supplemented with 0.2 mg l−1of 2,4-dichlorophenoxy acetic acid at 15 d interval and used for further studies. Precursor feeding alone, i.e., menthone, at 35 μM concentration showed slightly improved productivity. γ-Cyclodextrin alone at 60 μM concentration and in combination with menthone feeding at 35 μM increased menthol yield up to 92 and 110 mg l−1 in comparison to 77 mg l−1 of control culture. Synergistic potentiation effect of menthone feeding at 35 μM and γ-cyclodextrin at 60 μM treatment followed by in situ adsorption with RP-8 also showed potential stimulation of menthol production in M. piperita cell culture. Fungal elicitor treatment showed enhanced production level up to 140.8 mg l−1 in comparison to that of control. Further studies were carried out with the establishment of Agrobacterium tumefaciens (Ach5) gall-mediated calli, and consequently, cell suspension culture and results showed the significant enhancement of menthol yield up to 278 mg l−1. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
Lee S  Kim J  Shin SG  Hwang S 《Biotechnology letters》2008,30(6):1011-1016
The biokinetics of glucose metabolism were evaluated in Aeromonas hydrophila during growth in an anaerobic biosystem. After approx 34 h growth, A. hydrophila metabolized 5,000 mg glucose l−1 into the end-products ethanol, acetate, succinate and formate. The maximum growth rate, μ m, half saturation coefficients, K s, microbial yield coefficient, Y, cell mass decay rate coefficient, k d, and substrate inhibition coefficient, K si were 0.25 ± 0.03 h−1, 118 ± 31 mg glucose l−1, 0.12 μg DNA mg glucose−1, 0.01 h−1, and 3,108 ± 1,152 mg glucose l−1, respectively. These data were used to predict the performance of a continuous growth system with an influent glucose concentration of 5,000 mg l−1. Results of the analysis suggest that A. hydrophila will metabolize glucose at greater than 95% efficiency when hydraulic retention times (HRTs) exceed 7 h, whereas the culture is at risk of washing out at an HRT of 6.7 h.  相似文献   

16.
An indigenous strain of Pseudomonas putida capable of degrading 3-chlorobenzoic acid as the sole carbon source was isolated from the Riachuelo, a polluted river in Buenos Aires. Aerobic biodegradation assays were performed using a 2-l microfermentor. Biodegradation was evaluated by spectrophotometry, chloride release, gas chromatography and microbial growth. Detoxification was evaluated by using Vibrio fischeri, Pseudokirchneriella subcapitata and Lactuca sativa as test organisms. The indigenous bacterial strain degrades 100 mg l−1 3-chlorobenzoic acid in 14 h with a removal efficiency of 92.0 and 86.1% expressed as compound and chemical oxygen demand removal, respectively. The strain was capable of degrading up to 1,000 mg of the compound l−1. Toxicity was not detected at the end of the biodegradation process. Besides initial concentration, the effect of different factors, such as initial pH, initial inoculum, adaptation to the compound and presence of other substrates and toxic related compounds, was studied.  相似文献   

17.
Production of lactic acid from glucose by immobilized cells of Lactococcus lactis IO-1 was investigated using cells that had been immobilized by either entrapment in beads of alginate or encapsulation in microcapsules of alginate membrane. The fermentation process was optimized in shake flasks using the Taguchi method and then further assessed in a production bioreactor. The bioreactor consisted of a packed bed of immobilized cells and its operation involved recycling of the broth through the bed. Both batch and continuous modes of operation of the reactor were investigated. Microencapsulation proved to be the better method of immobilization. For microencapsulated cells at immobilized cell concentration of 5.3 g l−1, the optimal production medium had the following initial concentrations of nutrients (g l−1): glucose 45, yeast extract 10, beef extract 10, peptone 7.5 and calcium chloride 10 at an initial pH of 6.85. Under these conditions, at 37 °C, the volumetric productivity of lactic acid in shake flasks was 1.8 g l−1 h−1. Use of a packed bed of encapsulated cells with recycle of the broth through the bed, increased the volumetric productivity to 4.5 g l−1 h−1. The packed bed could be used in repeated batch runs to produce lactic acid.  相似文献   

18.
A membrane bioreactor for production of nisin Z was constructed using Lactococcus lactis IO-1 in continuous culture using hydrolyzed sago starch as carbon source. A strategy used to enhance the productivity of nisin Z was to maintain the cells in a continuous growth at high cell concentration. This resulted in a volumetric productivity of nisin Z, as 50,000 IU l−1 h−1 using a cell concentration of 15 g l−1, 30°C, pH 5.5 and a dilution rate of 1.24 h−1. Adding 10 g l−1 YE and 2 g l−1 polypeptone, other inducers were unnecessary to maintain production of nisin. The operating conditions of the reactor removed nisin and lactate, thus minimizing their effects which allowed the maintenance of cells in continuous exponential growth phase mode with high metabolic activity.  相似文献   

19.
Sweet sorghum juice supplemented with 0.5% ammonium sulphate was used as a substrate for ethanol production by Saccharomyces cerevisiae TISTR 5048. In batch fermentation, kinetic parameters for ethanol production depended on initial cell and sugar concentrations. The optimum initial cell and sugar concentrations in the batch fermentation were 1 × 108 cells ml−1 and 24 °Bx respectively. At these conditions, ethanol concentration produced (P), yield (Y ps) and productivity (Q p ) were 100 g l−1, 0.42 g g−1 and 1.67 g l−1 h−1 respectively. In fed-batch fermentation, the optimum substrate feeding strategy for ethanol production at the initial sugar concentration of 24 °Bx was one-time substrate feeding, where P, Y ps and Q p were 120 g l−1, 0.48 g g−1 and 1.11 g l−1 h−1 respectively. These findings suggest that fed-batch fermentation improves the efficiency of ethanol production in terms of ethanol concentration and product yield.  相似文献   

20.
This paper provided information on the use of linear sweep anodic stripping voltammetry for evaluating the process of copper biosorption onto Pseudomonas aeruginosa. This technique was suited to determine the concentration of free copper ion on site on the mercaptoethane sulfonate modified gold electrode surface without any pretreatment. It was in favor of the study of kinetic process as the fast changing kinetic data characteristic just after the beginning of biosorption could be accurately depicted. Based on the electrochemical results, the kinetics and equilibrium of biosorption were systematically examined. The pseudo-second-order kinetic model was used to correlate the kinetic experimental data and the kinetic parameters were evaluated. The Langmuir and Freundlich models were applied to describe the biosorption equilibrium. It was found that the Langmuir isotherm fitted the experimental data better than the Freundlich isotherm. Maximum adsorption capacity of copper ion onto Pseudomonas aeruginosa was 0.9355 μmol mg−1 (about 59.4417 mg g−1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号