首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Aspartokinase of Lemna paucicostata Hegelm. 6746   总被引:2,自引:2,他引:0       下载免费PDF全文
A sensitive and specific method was developed for assay of aspartokinase (EC 2.7.2.4) in crude extracts of Lemna paucicostata. Lysine inhibited approximately 93%, and threonine approximately 6%; together, these amino acids inhibited 99%. Inhibition by lysine was synergistically increased by S-adenosylmethionine, which by itself had no effect on activity. Essentially complete inhibition of threonine-resistant activity was obtained with lysine, and of lysine-resistant activity with threonine. Inhibition by lysine and threonine was additive, with no indication of concerted inhibition. Aspartate concentration had no effect on the relative proportions of lysine- and threonine-sensitive activities. Aspartokinase activity was in large excess of that reported by other workers, the maximum capacity (Vmax) far exceeding the in vivo requirements. Estimations of rates of aspartokinase in vivo suggest that the step catalyzed by this enzyme may not be the overall `rate-limiting' one for entry of 4-carbon units into the aspartate family of amino acids, and that feedback inhibition of this enzyme by lysine and threonine may not be a major factor in regulating flux through this step.  相似文献   

2.
The enzymes aspartokinase and homoserine dehydrogenase catalyze the reaction at key branching points in the aspartate pathway of amino acid biosynthesis. Enterococcus faecium has been found to contain two distinct aspartokinases and a single homoserine dehydrogenase. Aspartokinase isozymes eluted on gel filtration chromatography at molecular weights greater than 250,000 and about 125,000. The molecular weight of homoserine dehydrogenase was determined to be 220,000. One aspartokinase isozyme was slightly inhibited by meso-diaminopimelic acid. Another aspartokinase was repressed and inhibited by lysine. Although the level of diaminopimelate-sensitive (DAPs) enzyme was not much affected by growth conditions, the activity of lysine-sensitive (Lyss) aspartokinase disappeared rapidly during the stationary phase and was depressed in rich media. The synthesis of homoserine dehydrogenase was controlled by threonine and methionine. Threonine also inhibited the specific activity of this enzyme. The regulatory properties of aspartokinase isozymes and homoserine dehydrogenase from E. faecium are discussed and compared with those from Bacillus subtilis.  相似文献   

3.
Metabolism of aspartate in Mycobacterium smegmatis   总被引:2,自引:0,他引:2  
Mycobacterium smegmatis grows best on L-asparagine as a sole nitrogen source; this was confirmed. [14C]Aspartate was taken up rapidly (46 nmol.mg dry cells-1.h-1 from 1 mM L-asparagine) and metabolised to CO2 as well as to amino acids synthesised through the aspartate pathway. Proportionately more radioactivity appeared in the amino acids in bacteria grown in medium containing low nitrogen. Activities of aspartokinase and homoserine dehydrogenase, the initial enzymes of the aspartate pathway, were carried by separate proteins. Aspartokinase was purified as three isoenzymes and represented up to 8% of the soluble protein of M. smegmatis. All three isoenzymes contained molecular mass subunits of 50 kDa and 11 kDa which showed no activity individually; full enzyme activity was recovered on pooling the subunits. Km values for aspartate were: aspartokinases I and III, 2.4 mM; aspartokinase II, 6.4 mM. Aspartokinase I was inhibited by threonine and homoserine and aspartokinase III by lysine, but aspartokinase II was not inhibited by any amino acids. Aspartokinase activity was repressed by methionine and lysine with a small residue of activity attributable to unrepressed aspartokinase I. Homoserine dehydrogenase activity was 96% inhibited by 2 mM threonine; isoleucine, cysteine and valine had lesser effects and in combination gave additive inhibition. Homoserine dehydrogenase was repressed by threonine and leucine. Only amino acids synthesised through the aspartate pathway were tested for inhibition and repression. Of these, only one, meso-diaminopimilate, had no discernable effect on either enzyme activity.  相似文献   

4.
Little, if any, regulation of threonine synthesis was observed in Lemna paucicostata Hegelm. 6746 supplemented with concentrations of threonine and/or isoleucine that allow for uptake of these amino acids in amounts sufficient for total plant requirements, and that increase tissue concentrations of soluble threonine manyfold. High tissue concentrations of soluble threonine generated endogenously in isoleucine-supplemented plants were no more effective in regulation than a similar concentration of threonine accumulated from the medium. These studies exclude also major regulation of threonine biosynthesis by bivalent repression by threonine plus isoleucine. Isoleucine biosynthesis was severely inhibited by supplementation with isoleucine, but not with threonine or methionine. The fivefold increase in soluble threonine in isoleucine-supplemented plants suggests that threonine dehydratase is a major locus for feedback regulation of isoleucine synthesis. It is concluded that regulation of threonine biosynthesis differs from that of the other amino acids of the aspartate family (isoleucine, methionine, and lysine), each of which strongly feedback regulates its own synthesis. Methionine supplementation had a negligible effect on the tissue concentration of soluble threonine, indicating that threonine is not important in balancing changes of flux into methionine by equivalent changes of flux through the step catalyzed by aspartokinase.  相似文献   

5.
Aspartate kinase (EC 2.7.2.4.) has been purified from 7 day etiolated wheat (Triticum aestivum L. var. Maris Freeman) seedlings and from embryos imbibed for 8 h. The enzyme was 50% inhibited by 0.25 mM lysine. In this study wheat aspartate kinase was not inhibited by threonine alone or cooperatively with lysine; these results contrast with those published previously. In vivo regulation of the synthesis of aspartate-derived amino acids was examined by feeding [14C]acetate and [35S]sulphate to 2–3 day germinating wheat embryos in culture in the presence of exogenous amino acids. Lysine (1 mM) inhibited lysine synthesis by 86%. Threonine (1 mM) inhibited threonine synthesis by 79%. Lysine (1 mM) plus threonine (1 mM) inhibited threonine synthesis by 97%. Methionine synthesis was relatively unaffected by these amino acids, suggesting that there are important regulatory sites other than aspartate kinase and homoserine dehydrogenase. [35S]sulphate incorporation into methionine was inhibited 50% by lysine (2 mM) plus threonine (2 mM) correlating with the reported 50% inhibition of growth by these amino acids in this system. The synergistic inhibition of growth, methionine synthesis and threonine synthesis by lysine plus threonine is discussed in terms of lysine inhibition of aspartate kinase and threonine inhibition of homoserine dehydrogenase.Abbreviations AEC S-(2-aminoethyl) cysteine  相似文献   

6.
The activity of three enzymes, aspartokinase, homoserine dehydrogenase, and homoserine kinase, has been studied in the industrial strainSaccharomyces cerevisiae IFI256 and in the mutants derived from it that are able to overproduce methionine and/or threonine. Most of the mutants showed alteration of the kinetic properties of the enzymes aspartokinase, which was less inhibited by threonine and increased its affinity for aspartate, and homoserine dehydrogenase and homoserine kinase, which both lost affinity for homoserine. Furthermore, they showed in vitro specific activities for aspartokinase and homoserine kinase that were higher than those of the wild type, resulting in accumulation of aspartate, homoserine, threonine, and/or methionine/S-adenosyl-methionine (Ado-Met). Together with an increase in the specific activity of both aspartokinase and homoserine kinase, there was a considerable and parallel increase in methionine and threonine concentration in the mutants. Those which produced the maximal concentration of these amino acids underwent minimal aspartokinase inhibition by threonine. This supports previous data that identify aspartokinase as the main agent in the regulation of the biosynthetic pathway of these amino acids. The homoserine kinase in the mutants showed inhibition by methionine together with a lack or a reduction of the inhibition by threonine that the wild type undergoes, which finding suggests an important role for this enzyme in methionine and threonine regulation. Finally, homoserine dehydrogenase displayed very similar specific activity in the mutants and the wild type in spite of the changes observed in amino acid concentrations; this points to a minor role for this enzyme in amino acid regulation.  相似文献   

7.
The control of aspartokinase and homoserine dehydrogenase activities was compared in aerobic and fermentative pseudomonads (genera Pseudomonas and Aeromonas), and in coliform bacteria representative of the principal genera of the Enterobacteriaceae. Isofunctional aspartokinases subject to independent end-product control occur in the Enterobacteriaceae and in Aeromonas. In Pseudomonas, there appears to be a single aspartokinase, subject to concerted feedback inhibition by lysine and threonine. Within this genus, the sensitivity of aspartokinase to the single allosteric inhibitors varies considerably: the aspartokinase of the acidovorans group is little affected by the single inhibitors, whereas that of the fluorescent group is severely inhibited by either amino acid at high concentration. In all bacteria examined, homoserine dehydrogenase activity is inhibited by threonine; inhibition is more severe in aerobic pseudomonads than in the other groups. In most of the bacteria examined, either nicotinamide adenine dinucleotide (NAD) or nicotinamide adenine dinucleotide phosphate can serve as a cofactor for this enzyme, though the relative activity with the two pyridine nucleotides varies widely. Aerobic pseudomonads of the acidovorans group contain a homoserine dehydrogenase that is absolutely specific for NAD. The taxonomic implications of these findings are discussed.  相似文献   

8.
9.
Growth of Chlorobium vibrioforme f. thiosulfatophilum NCIB 8327 could be monitored by measurement of turbidity (E600); absorbance at 745 and 665 nm; increase in methanol-extractable pigment (E660); fixation of 14CO2; and titration of thiosulphate and sulphide in the medium. Growth could be inhibited by formate, methionine, tryptophan, tyrosine, threonine, serine and glycine, but not by 14 other amino acids, shikimic acid, some alcohols, sugars or acetate. Inhibition could some-times be relieved by the presence of other amino acids. This was probably partly due to restoration of normal internal amino acid requirements by “feeding”, and partly because uptake of amino acids appeared to show some competition for two or more low specificity uptake systems. Numerous 14C-labelled amino acids, formate and glucose were shown to be photoassimilated by Chlorobium, and the labelling patterns obtained provided information on its pathways of intermediary biosynthesis. Growth inhibition by threonine could be related to the probable presence of a normal branched pathway for the synthesis of the aspartate family of amino acids, with an aspartokinase enzyme subject to strong inhibition by threonine and lysine, separately and in combination.  相似文献   

10.
Mills WR 《Plant physiology》1980,65(6):1166-1172
The metabolism of 14C-labeled aspartic acid, diaminopimelic acid, malic acid and threonine by isolated pea (Pisum sativum L.) chloroplasts was examined. Light enhanced the incorporation of [14C] aspartic acid into soluble homoserine, isoleucine, lysine, methionine and threonine and protein-bound aspartic acid plus asparagine, isoleucine, lysine, and threonine. Lysine (2 millimolar) inhibited its own formation as well as that of homoserine, isoleucine and threonine. Threonine (2 millimolar) inhibited its own synthesis and that of homoserine but had only a small effect on isoleucine and lysine formation. Lysine and threonine (2 millimolar each) in combination strongly inhibited their own synthesis as well as that of homoserine. Radioactive [1,7-14C]diaminopimelic acid was readily converted into [14C]threonine in the light and its labeling was reduced by exogenous isoleucine (2 millimolar) or a combination of leucine and valine (2 millimolar each). The strong light stimulation of amino acid formation illustrates the point that photosynthetic energy is used in situ for amino acid and protein biosynthesis, not solely for CO2 fixation.  相似文献   

11.
Aspartokinase has been isolated from wheat germ and a preliminary survey made of its properties in a partially purified extract. The enzyme has an absolute requirement for ATP and a divalent metal ion. The phosphate donor can be either ATP or GTP, but other nucleotides are ineffective. Both magnesium and manganese will activate the enzyme, whereas calcium shows a trace amount of activity. The enzyme has a Km of 16.7 mm for aspartate, 1.2 mm for ATP, and 3.3 mm for MgCl2. Lysine inhibits the reaction at fairly low concentrations, and threonine inhibits at high concentrations. Other amino acids which are derived from aspartate (methionine, homoserine, threonine, and isoleucine) have little effect. When lysine and threonine are added together, they show a concerted inhibition of the reaction. The enzyme is also stabilized against heat inactivation by lysine and threonine together but not by either when added separately. It is suggested that aspartokinase from plants is a regulatory enzyme and exhibits a concerted feedback mechanism.  相似文献   

12.
The presence of a single aspartokinase was demonstrated in Rhodospirillum tenue. The enzyme has been purified about 60-fold. No physical association exists in this species between aspartokinase and homoserine dehydrogenase. The general properties of the enzyme are described. Inhibition by l-lysine, by l-threonine, and concerted inhibition by these two end products are regulatory characters which have also been found in many other species. In R. tenue, aspartokinase is also subject to a hitherto not encountered type of concerted feedback inhibition, by l-threonine plus l-methionine. The inhibition caused by lysine can be reversed either by glycine, l-isoleucine, l-methionine, or l-phenylalanine. The concerted inhibition by lysine plus threonine is reversed by glycine, l-isoleucine, or l-phenylalanine, but not by l-methionine, which exerts in conjunction with threonine the independent concerted inhibition referred to above. Addition of single or several metabolites to cultures of R. tenue caused inhibition of growth and reversal of growth inhibition, compatible with the effects observed in vitro on aspartokinase activity. The regulation of this enzyme in relation to that of other bacterial aspartokinases is discussed.  相似文献   

13.
In Escherichia coli K12 the biosynthetic pathway of lysine, methionine and threonine is characterized by three isofunctional aspartokinases and two homoserine dehydrogenases. A single polypeptide chain carries the threonine-sensitive aspartokinase and homoserine dehydrogenase (AK I-HDH I), and a different polypeptide chain carries the methionine-repressible aspartokinase and homoserine dehydrogenase (AK II-HDH II). Immuno-adsorbants prepared with rabbit antibodies against AK I-HDH I bind the lysine-sensitive aspartokinase (AK III), the AK II-HDH II, and the homoserine kinase (HSK), an enzyme of the threonine biosynthetic pathway. Saturation of the immunoadsorbant with AK I-HDH I results in a decreased binding capacity for the other enzymes. Displacement of bound AK III or HSK can be obtained with pure AK I-HDH I, showing that the affinity of the antibodies to homologous antigens is higher than to heterologous ones. Immunoadsorbants prepared with anti-HSK antibodies show the same type of recognition: binding of the three aspartkinases and a capacity to displace the heterologous antigens bound. Accordingly, the same antibodies, implicated in the binding of the homologous antigen, bind the other enzymes. None of the other enzymes of the pathway, or the other kinases tested are recognized by the two immunoadsorbants. It can be postulated that in E. coli K12, duplication of a common ancestor gene gave rise to the three aspartokinases and to the homoserine kinase; two of the genes coding for the aspartokinases fused with those coding for the homoserine dehydrogenases. Indicating that only few epitopes are shared by these enzymes, by conventional immuno-diffusion techniques no precipitation lines appeared with antibodies against AK I-HDH I and the other proteins.  相似文献   

14.
Aspartokinase (EC 2.7.2.4) and homoserine dehydrogenase (EC 1.1.1.3) catalyze steps in the pathway for the synthesis of lysine, threonine, and methionine from aspartate. Homoserine dehydrogenase was purified from carrot (Daucus carota L.) cell cultures and portions of it were subjected to amino acid sequencing. Oligonucleotides deduced from the amino acid sequences were used as primers in a polymerase chain reaction to amplify a DNA fragment using DNA derived from carrot cell culture mRNA as template. The amplification product was radiolabelled and used as a probe to identify cDNA clones from libraries derived from carrot cell culture and root RNA. Two overlapping clones were isolated. Together the cDNA clones delineate a 3089 bp long sequence encompassing an open reading frame encoding 921 amino acids, including the mature protein and a long chloroplast transit peptide. The deduced amino acid sequence has high homology with the Escherichia coli proteins aspartokinase I-homoserine dehydrogenase I and aspartokinase II-homoserine dehydrogenase II. Like the E. coli genes the isolated carrot cDNA appears to encode a bifunctional aspartokinase-homoserine dehydrogenase enzyme.Abbreviations AK aspartokinase - HSDH homoserine dehydrogenase - PCR polymerase chain reaction - SDS sodium dodecyl sulfate The mention of vendor or product does not imply that they are endorsed or recommended by the U.S. Department of Agriculture over vendors of similar products not mentioned.  相似文献   

15.
In order to clarify the mechanism of l-lysine accumulation by Micrococcus glutamicus No. 901, a homoserine-auxotrophic mutant, the effects of various amino acids on the two enzymic reactions on the biosynthetic pathway of lysine, the phosphorylation of aspartate and the condensation of aspartic β-semialdehyde (ASA) with pyruvate, were studied using the cell-free extracts of the organism.

The aspartokinase received a multivalent inhibition by threonine plus lysine. Lysine exerted no feedback inhibition in its first step condensing reaction. From these results, the mechanism of the accumulation of lysine by the organism was discussed.  相似文献   

16.
Mutants requiring threonine plus methionine (or homoserine), or threonine plus methionine plus diaminopimelate (or homoserine plus diaminopimelate) have been isolated from strains possessing only one of the three isofunctional aspartokinases. They have been classified in several groups according to their enzymatic defects. Their mapping is described. Several regions of the chromosome are concerned: thrA (aspartokinase I-homoserine dehydrogenase I) is mapped in the same region as thrB and thrC (0 min). lysC (aspartokinase III) is mapped at 80 min, far from the other genes coding for diaminopimelate synthesis. metLM (aspartokinase II-homoserine dehydrogenase II) lies at 78 min closely linked to metB, metJ, and metF.  相似文献   

17.
Abstract Threonine and lysine are two of the economically most important essential amino acids. They are produced industrially by species of the genera Corynebacterium and Brevibacterium . The branched biosynthetic pathway of these amino acids in corynebacteria is unusual in gene organization and in the control of key enzymatic steps with respect to other microorganisms. This article reviews the molecular control mechanisms of the biosynthetic pathways leading to threonine and lysine in corynebacteria, and their implications in the production of these amino acids. Carbon flux can be redirected at branch points by gene disruption of the competing pathways for lysine or threonine. Removal of bottlenecks has been achieved by amplification of genes which encode feedback resistant aspartokinase and homoserine dehydrogenase (obtained by in vitro directed mutagenesis).  相似文献   

18.
To construct a threonine-hyperproducing strain of Serratia marcescens Sr41, the six regulatory mutations for three aspartokinases and two homoserine dehydrogenases were combined in a single strain by three transductional crosses. The constructed strain, T-1026, carried the lysC1 mutation leading to lack of feedback inhibition and repression of aspartokinase III, the thrA1(1) mutation desensitizing aspartokinase I to feedback inhibition, the thrA2(1) mutation releasing feedback inhibition of homoserine dehydrogenase I, the two hnr mutations derepressing aspartokinase I and homoserine dehydrogenase I, and the etr-1 mutation derepressing aspartokinase II and homoserine dehydrogenase II. The strain produced ca. 40 mg of threonine per ml of medium containing sucrose and urea. Furthermore, the productivity of strain T-1026 was compared with those of strains devoid of more than one of the six regulatory mutations.  相似文献   

19.
A threonine-producing strain of Serratia marcescens Sr41 was constructed according to the following process. Thr- strain E-60 was derived from strain HNr59 having constitutive levels of threonine-sensitive aspartokinase and homoserine dehydrogenase. Thr+ transductant T-570 was constructed from strain E-60 and phage grown on strain HNr21 having feedback-resistant threonine-sensitive aspartokinase and homoserine dehydrogenase. This transductant lacked both feedback inhibition and repression for the two enzymes. Thr- strain N-11 was derived from strain AECr174 lacking feedback inhibition and repression of lysine-sensitive aspartokinase. Subsequently, the threonine region of strain T-570 was transduced into strain N-11. One of the THR+ transductants, strain T-693, produced markedly high levels of the two aspartokinases and homoserine dehydrogenase, which were insensitive to feedback inhibition. This strain produced about 25 mg of threonine per ml in the medium containing sucrose and urea.  相似文献   

20.
Tissue culture selection techniques were used to isolate a maize (Zea mays L.) variant D33, in which the aspartate family pathway was less sensitive to feedback inhibition by lysine. D33 was recovered by successively subculturing cultures originally derived from immature embryos on MS medium containing growth-inhibitory levels of lysine+threonine. The ability of D33 to grow vigorously on lysine+ threonine medium was retained after growth for 12 months on nonselection medium. New cultures initiated from shoot tissues of plants regenerated from D33 also were resistant to lysine+threonine inhibition. The Ki of aspartokinase for its feedback inhibitor, lysine, was about 9-fold higher in D33 than for the enzyme from unselected cultures. The free pools of lysine, threonine, isoleucine and methionine were increased 2–9-fold in D33 cultures. This was consistent with the observed change in feedback regulation of aspartokinase, the first enzyme common to the biosynthesis of these amino acids in the aspartate pathway. The accumulated evidence including the stability of resistance in the cultures, the resistance of cultures initiated from regenerated plants, the altered feedback regulation, and the increased free amino acids, indicates a mutational origin for these traits in line D33.Abbreviation LT lysine+threonine in equimolar concentration Paper No. 10880, Scientific Journal Series, Minnesota Agricultural Expertment Station  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号