首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Sulfur Chemistry in Bacterial Leaching of Pyrite   总被引:7,自引:2,他引:5       下载免费PDF全文
In the case of pyrite bioleaching by Leptospirillum ferrooxidans, an organism without sulfur-oxidizing capacity, besides the production of tetra- and pentathionate, a considerable accumulation of elemental sulfur occurred. A similar result was obtained for chemical oxidation assays with acidic, sterile iron(III) ion-containing solutions. In the case of Thiobacillus ferrooxidans, only slight amounts of elemental sulfur were detectable because of the organism's capacity to oxidize sulfur compounds. In the course of oxidative, chemical pyrite degradation under alkaline conditions, the accumulation of tetrathionate, trithionate, and thiosulfate occurred. The data indicate that thiosulfate, trithionate, tetrathionate, and disulfane-monosulfonic acid are key intermediate sulfur compounds in oxidative pyrite degradation. A novel (cyclic) leaching mechanism is proposed which basically is indirect.  相似文献   

2.
Reduced sulfur compound oxidation by Thiobacillus caldus.   总被引:7,自引:0,他引:7       下载免费PDF全文
The oxidation of reduced inorganic sulfur compounds was studied by using resting cells of the moderate thermophile Thiobacillus caldus strain KU. The oxygen consumption rate and total oxygen consumed were determined for the reduced sulfur compounds thiosulfate, tetrathionate, sulfur, sulfide, and sulfite in the absence and in the presence of inhibitors and uncouplers. The uncouplers 2,4-dinitrophenol and carbonyl cyanide m-chlorophenyl-hydrazone had no affect on the oxidation of thiosulfate, suggesting that thiosulfate is metabolized periplasmically. In contrast, the uncouplers completely inhibited the oxidation of tetrathionate, sulfide, sulfur, and sulfite, indicating that these compounds are metabolized in the cytoplasm of T. caldus KU. N-Ethylmaleimide inhibited the oxidation of tetrathionate and thiosulfate at the stage of elemental sulfur, while 2-heptyl-4-hydroxyquinoline-N-oxide stopped the oxidation of thiosulfate, tetrathionate, and elemental sulfur at the stage of sulfite. The following intermediates in the oxidation of the sulfur compounds were found by using uncouplers and inhibitors: thiosulfate was oxidized to tetrathionate, elemental sulfur was formed during the oxidation of tetrathionate and sulfide, and sulfite was found as an intermediate of tetrathionate and sulfur metabolism. On the basis of these data we propose a model for the metabolism of the reduced inorganic sulfur compounds by T. caldus KU.  相似文献   

3.
Thiosulfate oxidation and mixotrophic growth with succinate or methanol plus thiosulfate was examined in nutrient-limited mixotrophic condition for Methylobacterium oryzae CBMB20, which was recently characterized and reported as a novel species isolated from rice. Methylobacterium oryzae was able to utilize thiosulfate in the presence of sulfate. Thiosulfate oxidation increased the protein yield by 25% in mixotrophic medium containing 18.5 mmol.L-1 of sodium succinate and 20 mmol.L-1 of sodium thiosulfate on day 5. The respirometric study revealed that thiosulfate was the most preferable reduced inorganic sulfur source, followed by sulfur and sulfite. Thiosulfate was predominantly oxidized to sulfate and intermediate products of thiosulfate oxidation, such as tetrathionate, trithionate, polythionate, and sulfur, were not detected in spent medium. It indicated that bacterium use the non-S4 intermediate sulfur oxidation pathway for thiosulfate oxidation. Thiosulfate oxidation enzymes, such as rhodanese and sulfite oxidase activities appeared to be constitutively expressed, but activity increased during growth on thiosulfate. No thiosulfate oxidase (tetrathionate synthase) activity was detected.  相似文献   

4.
By proteomic analysis we found a 21-kDa protein (P21) from Acidithiobacillus ferrooxidans ATCC 19859 whose synthesis was greatly increased by growth of the bacteria in pyrite, thiosulfate, elemental sulfur, CuS, and ZnS and was almost completely repressed by growth in ferrous iron. After we determined the N-terminal amino acid sequence of P21, we used the available preliminary genomic sequence of A. ferrooxidans ATCC 23270 to isolate the DNA region containing the p21 gene. The nucleotide sequence of this DNA fragment contained a putative open reading frame (ORF) coding for a 23-kDa protein. This difference in size was due to the presence of a putative signal peptide in the ORF coding for P21. When p21 was cloned and overexpressed in Escherichia coli, the signal peptide was removed, resulting in a mature protein with a molecular mass of 21 kDa and a calculated isoelectric point of 9.18. P21 exhibited 27% identity and 42% similarity to the Deinococcus radiodurans thiosulfate-sulfur transferase (rhodanese; EC 2.8.1.1) and similar values in relation to other rhodaneses, conserving structural domains and an active site with a cysteine, both characteristic of this family of proteins. However, the purified recombinant P21 protein did not show rhodanese activity. Unlike cytoplasmic rhodaneses, P21 was located in the periphery of A. ferrooxidans cells, as determined by immunocytochemical analysis, and was regulated depending on the oxidizable substrate. The genomic context around gene p21 contained other ORFs corresponding to proteins such as thioredoxins and sulfate-thiosulfate binding proteins, clearly suggesting the involvement of P21 in inorganic sulfur metabolism in A. ferrooxidans.  相似文献   

5.
A set of proteins that changed their levels of synthesis during growth of Acidithiobacillus ferrooxidans ATCC 19859 on metal sulfides, thiosulfate, elemental sulfur, and ferrous iron was characterized by using two-dimensional polyacrylamide gel electrophoresis. N-terminal amino acid sequencing and mass spectrometry analysis of these proteins allowed their identification and the localization of the corresponding genes in the available genomic sequence of A. ferrooxidans ATCC 23270. The genomic context around several of these genes suggests their involvement in the energetic metabolism of A. ferrooxidans. Two groups of proteins could be distinguished. The first consisted of proteins highly upregulated by growth on sulfur compounds (and downregulated by growth on ferrous iron): a 44-kDa outer membrane protein, an exported 21-kDa putative thiosulfate sulfur transferase protein, a 33-kDa putative thiosulfate/sulfate binding protein, a 45-kDa putative capsule polysaccharide export protein, and a putative 16-kDa protein of unknown function. The second group of proteins comprised those downregulated by growth on sulfur (and upregulated by growth on ferrous iron): rusticyanin, a cytochrome c(552), a putative phosphate binding protein (PstS), the small and large subunits of ribulose biphosphate carboxylase, and a 30-kDa putative CbbQ protein, among others. The results suggest in general a separation of the iron and sulfur utilization pathways. Rusticyanin, in addition to being highly expressed on ferrous iron, was also newly synthesized, as determined by metabolic labeling, although at lower levels, during growth on sulfur compounds and iron-free metal sulfides. During growth on metal sulfides containing iron, such as pyrite and chalcopyrite, both proteins upregulated on ferrous iron and those upregulated on sulfur compounds were synthesized, indicating that the two energy-generating pathways are induced simultaneously depending on the kind and concentration of oxidizable substrates available.  相似文献   

6.
Ferrobacillus ferrooxidans, grown on either elemental sulfur or ferrous sulfate, was able to use either substrate as an energy source for the assimilation of CO(2). In both cases, 0.01 mumole of carbon was incorporated per mumole of oxygen utilized. Glucose inhibited substrate oxidation and CO(2) fixation. Sulfur and iron oxidation were inhibited 5 to 15% and 40 to 50%, respectively, in the presence of 10% glucose. Under the same conditions, CO(2) assimilation was inhibited 50% with elemental sulfur as the energy source, and was almost totally inhibited when ferrous iron was used.  相似文献   

7.
The oxidation of ferrous iron and elemental sulfur by Thiobacillus ferrooxidans that was absorbed and unabsorbed onto the surface of sulfur prills was studied. Unadsorbed sulfur-grown cells oxidized ferrous iron at a rate that was 3 to 7 times slower than that of ferrous iron-grown cells, but sulfur-grown cells were able to reach the oxidation rate of the ferrous iron-adapted cells after only 1.5 generations in a medium containing ferrous iron. Bacteria that were adsorbed to sulfur prills oxidized ferrous iron at a rate similar to that of unadsorbed sulfur-grown bacteria. They also showed the enhancement of ferrous iron oxidation activity in the presence of ferrous iron, even though sulfur continued to be available to the bacteria in this case. An increase in the level of rusticyanin together with the enhancement of the ferrous iron oxidation rate were observed in both sulfur-adsorbed and unadsorbed cells. On the other hand, sulfur oxidation by the adsorbed bacteria was not affected by the presence of ferrous iron in the medium. When bacteria that were adsorbed to sulfur prills were grown at a higher pH (ca. 2.5) in the presence of ferrous iron, they rapidly lost both ferrous iron and sulfur oxidation capacities and became inactive, apparently because of the deposition of a jarosite-like precipitate onto the surface to which they were attached.  相似文献   

8.
Abstract Neisseria gonorrhoeae is unable to grow with sulfate but can use thiosulfate as sole source of sulfur.
Thiosulfate sulfur transferase (TST) (rhodanese) activity was present in the cytoplasmic soluble fraction. In the same extract, thiosulfate reductase (TSR), trithionate reductase and tetrathionate reductase activities were also detected using hydrogen as electron donor in the presence of viologen dyes and hydrogenase from Desulfovibrio gigas .
The significance of and the possible relationship between these different activities are discussed.  相似文献   

9.
The moderately thermophilic acidophilic bacterium Sulfobacillus thermosulfidooxidans subsp. asporogenes strain 41 is capable of utilizing sulfides of gold-arsenic concentrate and elemental sulfur as a source of energy. The growth in the presence of S0 under auto- or mixotrophic conditions was less stable compared with the media containing iron monoxide. The enzymes involved in oxidation of sulfur inorganic compounds--thiosulfate-oxidizing enzyme, tetrathionate hydrolase, rhodonase, adenylyl sulfate reductase, sulfite oxidase, and sulfur oxygenase--were discovered in the cells of Sulfobacillus grown in the mineral medium containing 0.02% yeast extract and either sulfur or iron monoxide and thiosulfate. Cell-free extracts of the cultures grown in the medium with sulfur under auto- or mixotrophic conditions displayed activity of the key enzyme of the Calvin cycle--ribulose bisphosphate carboxylase--and several other enzymes involved in heterotrophic fixation of carbonic acid. Activities of carboxylases depended on the composition of cultivation media.  相似文献   

10.
Abstract The chemotactic response of Thiobacillus ferrooxidans toward thiosulfate was observed. The traditional assay technique was modified by direct microscopic enumeration of cells which moved into the attractant solution. The optimum concentration shown by thiosulfate-grown cells, tetrathionate-grown cells as well as iron-grown cells was 103 times the optimum concentration shown by cells grown on elemental sulfur. Iron-grown cells which lack thiosulfate-oxidizing activity showed increased accumulation at optimum concentration as compared to cells grown on elemental sulfur and other reduced sulfur compounds. This indicated the constitutive nature of chemotaxis by T. ferrooxidans toward thiosulfate.  相似文献   

11.
Growth of Thiobacillus ferrooxidans in batch culture on 10 mM potassium tetrathionate was optimal at pH 2.5 (specific growth rate, 0.092 h-1). Oxygen electrode studies on resting cell suspensions showed that the apparent Km for tetrathionate oxidation (0.13 to 8.33 mM) was pH dependent, suggesting higher substrate affinity at higher pH. Conversely, oxidation rates were greatest at low pH. High substrate concentrations (7.7 to 77 mM) did not affect maximum oxidation rates at pH 3.0, but produced substrate inhibition at other pH values. Tetrathionate-grown cell suspensions also oxidized thiosulfate at pH 2.0 to 4.0. Apparent Km values (1.2 to 25 mM) were of the same order as for tetrathionate, but kinetics were complex. Continuous culture on growth-limiting tetrathionate at pH 2.5, followed by continuous culture on growth-limiting thiosulfate at pH 2.5, indicated true growth yield values (grams [dry weight] per gram-molecule of substrate) of 12.2 and 7.5, and maintenance coefficient values (millimoles of substrate per gram [dry weight) of organisms per hour) of 1.01 and 0.97 for tetrathionate and thiosulfate, respectively. Yield was increased on both media at low dilution rates by increase in CO2 supply. The apparent maintenance coefficient was lowered without affecting YG, suggesting better energy coupling in CO2-rich environments. Prolonged continuous cultivation on tetrathionate or thiosulfate did not affect the ability of the organism to grow subsequently in ferrous iron medium.  相似文献   

12.
13.
Abstract

Thiobacillus ferrooxidans ATCC 23270 was grown with elemental sulfur as the energy source. Substrate oxidation was measured using a Clark‐type oxygen electrode. Whole cells demonstrated a broad pH optimum for sulfur oxidation between pH 2.0 and 8.0. The V max and Ksfor sulfur oxidation varied depending on pH. Sulfite was oxidized at 227 nmol O2/min/mg protein. Thiosulfate oxidation was slow, and tetrathionate oxidation was not detected. At a concentration of 2 mM, sodium azide completely inhibited sulfur, sulfite, and thiosulfate oxidation. Inhibition by N‐ethylmaleimide, antimycin A, and 2‐heptyl‐4‐hydroxyquinoline N‐oxide varied with substrate.  相似文献   

14.
Phenotypic switching of Thiobacillus ferrooxidans   总被引:6,自引:1,他引:5       下载免费PDF全文
Two solid medium formulations, designated 100:10 and 10:10, were developed for the growth of Thiobacillus ferrooxidans. The new media contain a mixture of both ferrous iron and thiosulfate as available energy sources, permitting the detection of colony morphology variants that arise spontaneously in a wild-type population. Several morphological and physiological characteristics of a class of T. ferrooxidans variants, termed LSC for large spreading colony, are described. LSC variants lack the ability to oxidize iron but retain the capacity to utilize thiosulfate or tetrathionate as energy sources. An LSC colony spreads on the surface of solid 100:10 medium as a monolayer of cells in a fashion resembling that of certain swarming or gliding bacteria. The LSC variant reverts to a parental wild type at frequencies that vary in different independently arising isolates. The identity of the LSC variant as a derivative of the parental wild-type T. ferrooxidans was established by Southern blot hybridization.  相似文献   

15.
16.
The SoxXAYZB(CD)2‐mediated pathway of bacterial sulfur‐chemolithotrophy explains the oxidation of thiosulfate, sulfide, sulfur and sulfite but not tetrathionate. Advenella kashmirensis, which oxidizes tetrathionate to sulfate, besides forming it as an intermediate during thiosulfate oxidation, possesses a soxCDYZAXOB operon. Knock‐out mutations proved that only SoxBCD is involved in A. kashmirensis tetrathionate oxidation, whereas thiosulfate‐to‐tetrathionate conversion is Sox independent. Expression of two glutathione metabolism‐related proteins increased under chemolithotrophic conditions, as compared to the chemoorganotrophic one. Substrate‐dependent oxygen consumption pattern of whole cells, and sulfur‐oxidizing enzyme activities of cell‐free extracts, measured in the presence/absence of thiol inhibitors/glutathione, corroborated glutathione involvement in tetrathionate oxidation. Furthermore, proteome analyses detected a sulfite:acceptor oxidoreductase (SorAB) exclusively under chemolithotrophic conditions, while expression of a methanol dehydrogenase (XoxF) homolog, subsequently named thiol dehydrotransferase (ThdT), was found to increase 3‐ and 10‐fold during thiosulfate‐to‐tetrathionate conversion and tetrathionate oxidation respectively. A thdT knock‐out mutant did not oxidize tetrathionate but converted half of the supplied 40 mM S‐thiosulfate to tetrathionate. Knock‐out of another thiosulfate dehydrogenase (tsdA) gene proved that both ThdT and TsdA individually converted ~ 20 mM S‐thiosulfate to tetrathionate. The overexpressed and isolated ThdT protein exhibited PQQ‐dependent thiosulfate dehydrogenation, whereas its PQQ‐independent thiol transfer activity involving tetrathionate and glutathione potentially produced a glutathione:sulfodisulfane adduct and sulfite. SoxBCD and SorAB were hypothesized to oxidize the aforesaid adduct and sulfite respectively.  相似文献   

17.
Thiobacillus denitrificans strain RT could be grown anaerobically in batch culture on thiosulfate but not on other reduced sulfur compounds like sulfide, elemental sulfur, thiocyanate, polythionates or sulfite. During growth on thiosulfate the assimilated cell sulfur was derived totally from the outer or sulfane sulfur. Thiosulfate oxidation started with a rhodanese type cleavage between sulfane and sulfone sulfur leading to elemental sulfur and sulfite. As long as thiosulfate was present elemental sulfur was transiently accumulated within the cells in a form that could be shown to be more reactive than elemental sulfur present in a hydrophilic sulfur sol, however, less reactive than sulfane sulfur of polythionates or organic and inorganic polysulfides. When thiosulfate had been completely consumed, intracellular elemental sulfur was rapidly oxidized to sulfate with a specific rate of 45 natom S°/min·mg protein. Extracellularly offered elemental sulfur was not oxidized under anaerobic conditions.  相似文献   

18.
Thiobacillus thiooxidans was grown at pH 5 on thiosulfate as an energy source, and the mechanism of oxidation of inorganic sulfur compounds was studied by the effect of inhibitors, stoichiometries of oxygen consumption and sulfur, sulfite, or tetrathionate accumulation, and cytochrome reduction by substrates. Both intact cells and cell-free extracts were used in the study. The results are consistent with the pathway with sulfur and sulfite as the key intermediates. Thiosulfate was oxidized after cleavage to sulfur and sulfite as intermediates at pH 5, the optimal growth pH on thiosulfate, but after initial condensation to tetrathionate at pH 2.3 where the organism failed to grow. N-Ethylmaleimide (NEM) inhibited sulfur oxidation directly and the oxidation of thiosulfate or tetrathionate indirectly. It did not inhibit the sulfite oxidation by cells, but inhibited any reduction of cell cytochromes by sulfur, thiosulfate, tetrathionate, and sulfite. NEM probably binds sulfhydryl groups, which are possibly essential in supplying electrons to initiate sulfur oxidation. 2-Heptyl-4-hydroxy-quinoline N-oxide (HQNO) inhibited the oxidation of sulfite directly and that of sulfur, thiosulfate, and tetrathionate indirectly. Uncouplers, carbonyl cyanide-m-chlorophenylhydrazone (CCCP) and 2,4-dinitrophenol (DNP), inhibited sulfite oxidation by cells, but not the oxidation by extracts, while HQNO inhibited both. It is proposed that HQNO inhibits the oxidation of sulfite at the cytochrome b site both in cells and extracts, but uncouplers inhibit the oxidation in cells only by collapsing the energized state of cells, delta muH+, required either for electron transfer from cytochrome c to b or for sulfite binding.  相似文献   

19.
Chen P  Yan L  Leng F  Nan W  Yue X  Zheng Y  Feng N  Li H 《Bioresource technology》2011,102(3):3260-3267
The characteristics of the bioleaching of realgar by Acidithiobacillus ferrooxidans BY-3 (A. ferrooxidans) were investigated in this work. We examined the effects of using ferrous iron and elemental sulfur as the sole and mixed energy sources on the bioleaching of realgar. Under all experimental conditions, A. ferrooxidans BY-3 significantly enhanced the dissolution of realgar. Moreover, arsenic was more efficiently leached using A. ferrooxidans BY-3 in the presence of ferrous iron than in other culture conditions. A high concentration of arsenic was observed in the absence of alternative energy sources. This concentration was higher than that in cultures with sulfur only and lower than that in cultures with ferrous iron and sulfur. Linear or nonlinear models best fit the experimental data; the nonlinear model exhibited the dual effects of dissolution and removal on the bioleaching of realgar, whereas the linear model only applied to situations of slow bioleaching rather than removal.  相似文献   

20.
Iron(III) (oxyhydr)oxides can represent the dominant microbial electron acceptors under anoxic conditions in many aquatic environments, which makes understanding the mechanisms and processes regulating their dissolution and transformation particularly important. In a previous laboratory-based study, it has been shown that 0.05 mM thiosulfate can reduce 6 mM ferrihydrite indirectly via enzymatic reduction of thiosulfate to sulfide by the sulfur-reducing bacterium Sulfurospirillum deleyianum, followed by abiotic reduction of ferrihydrite coupled to reoxidation of sulfide. Thiosulfate, elemental sulfur, and polysulfides were proposed as reoxidized sulfur species functioning as electron shuttles. However, the exact electron transfer pathway remained unknown. Here, we present a detailed analysis of the sulfur species involved. Apart from thiosulfate, substoichiometric amounts of sulfite, tetrathionate, sulfide, or polysulfides also initiated ferrihydrite reduction. The portion of thiosulfate produced during abiotic ferrihydrite-dependent reoxidation of sulfide was about 10% of the total sulfur at maximum. The main abiotic oxidation product was elemental sulfur attached to the iron mineral surface, which indicates that direct contact between microorganisms and ferrihydrite is necessary to maintain the iron reduction process. Polysulfides were not detected in the liquid phase. Minor amounts were found associated either with microorganisms or the mineral phase. The abiotic oxidation of sulfide in the reaction with ferrihydrite was identified as rate determining. Cysteine, added as a sulfur source and a reducing agent, also led to abiotic ferrihydrite reduction and therefore should be eliminated when sulfur redox reactions are investigated. Overall, we could demonstrate the large impact of intermediate sulfur species on biogeochemical iron transformations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号