首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Nerve growth factor (NGF) and related neurotrophins are target‐derived survival factors for sensory neurons. In addition, these peptides modulate neuronal differentiation, axon guidance, and synaptic plasticity. We tested axonal behavior of embryonic trigeminal neurons towards localized sources of NGF in collagen gel assays. Trigeminal axons preferentially grow towards lower doses of localized NGF and grow away from higher concentrations at earlier stages of development, but do not show this response later. Dorsal root ganglion axons also show similar responses to NGF, but NGF‐dependent superior cervical ganglion axons do not. Such axonal responses to localized NGF sources were also observed in Bax−/− mice, suggesting that the axonal effects are largely independent of cell survival. Immunocytochemical studies indicated that axons, which grow towards or away from localized NGF are TrkA‐positive, and TrkA−/− TG axons do not respond to any dose of NGF. We further show that axonal responses to NGF are absent in TG derived from mice that lack the p75 neurotrophin receptor (p75NTR). Collectively, our results suggest that localized sources of NGF can direct axon outgrowth from trigeminal ganglion in a dose‐ and age‐dependent fashion, mediated by p75NTR signaling through TrkA expressing axons. © 2004 Wiley Periodicals, Inc. J Neurobiol, 2005  相似文献   

2.
Postganglionic sympathetic axons display a remarkable ability for new collateral growth in response to local increases in nerve growth factor (NGF). Elevating NGF levels within the brain also induces the directional growth of sympathetic axons, but not within myelinated pathways of adult mammals. In this investigation, we provide in vivo evidence that sympathetic axons are capable of NGF-induced collateral growth through the microenvironment of mature myelinated pathways, especially in the absence of the p75 neurotrophin receptor (NTR). In transgenic mice overexpressing NGF centrally and expressing p75NTR, only a few varicose sympathetic axons invade the optic tract after the first month of postnatal life. In other transgenic mice overexpressing NGF centrally but lacking p75NTR expression, the incidence of sympathetic axons within this myelinated tract substantially increases. Moreover, numerous unmyelinated sympathetic axons cluster together to form large processes extending through the optic tract; such structures are first seen 8 weeks after birth. Only these large axon bundles display prominent immunostaining for GAP-43, which is preferentially localized to the sympathetic fibers, since nonmyelinating Schwann cells are not associated with these axon bundles. These data provide the first direct evidence that sympathetic axons are indeed capable of NGF-induced collateral growth into myelinated tracts of mature mammals, and that their continued growth through this microenvironment is markedly enhanced by the absence of p75NTR expression. We propose that p75NTR among sympathetic axons may either directly or indirectly limit collateral branching of these fibers in response to increased levels of NGF.  相似文献   

3.
Singh KK  Miller FD 《Neuron》2005,45(6):837-845
Developmental axon competition plays a key role in sculpting neural circuitry. Here, we have asked how activity and neurotrophins could interact to select one axon over another. Using compartmented cultures of sympathetic neurons, we show that, in the presence of NGF, local depolarization confers a competitive growth advantage on the depolarized axon collaterals and at the same time disadvantages the growth of unstimulated axons from the same and competing neurons. Depolarization mediates the competitive advantage by activating a CaMKII-MEK pathway, which converges to enhance local NGF-mediated downstream growth signals. Patterned electrical stimulation also acts via this pathway to enhance NGF-promoted axonal growth. In contrast, the competitive disadvantage is due to BDNF secreted from and acting on the unstimulated, competing axons through p75NTR. Thus, activity regulates both positive and negative neurotrophin-derived signaling cascades to confer a competitive growth advantage on one axon versus another, thereby providing a cellular mechanism for developmental axon selection.  相似文献   

4.
Postganglionic sympathetic axons display a remarkable ability for new collateral growth in response to local increases in nerve growth factor (NGF). Elevating NGF levels within the brain also induces the directional growth of sympathetic axons, but not within myelinated pathways of adult mammals. In this investigation, we provide in vivo evidence that sympathetic axons are capable of NGF‐induced collateral growth through the microenvironment of mature myelinated pathways, especially in the absence of the p75 neurotrophin receptor (NTR). In transgenic mice overexpressing NGF centrally and expressing p75NTR, only a few varicose sympathetic axons invade the optic tract after the first month of postnatal life. In other transgenic mice overexpressing NGF centrally but lacking p75NTR expression, the incidence of sympathetic axons within this myelinated tract substantially increases. Moreover, numerous unmyelinated sympathetic axons cluster together to form large processes extending through the optic tract; such structures are first seen 8 weeks after birth. Only these large axon bundles display prominent immunostaining for GAP‐43, which is preferentially localized to the sympathetic fibers, since nonmyelinating Schwann cells are not associated with these axon bundles. These data provide the first direct evidence that sympathetic axons are indeed capable of NGF‐induced collateral growth into myelinated tracts of mature mammals, and that their continued growth through this microenvironment is markedly enhanced by the absence of p75NTR expression. We propose that p75NTR among sympathetic axons may either directly or indirectly limit collateral branching of these fibers in response to increased levels of NGF. © 1999 John Wiley & Sons, Inc. J Neurobiol 39: 51–66, 1999  相似文献   

5.
The p75 neurotrophin receptor (p75(NTR)) plays multiple roles in neuronal physiology through interactions with many ligands and coreceptors. However, its intracellular neuronal trafficking prior to and after neurotrophin activation is still poorly characterized. We have previously shown that in response to nerve growth factor (NGF), p75(NTR) is retrogradely transported along the axons of motor neurons (MNs) in carriers shared with NGF, brain-derived neurotrophic factor and the tyrosine kinase receptor TrkB. Here, we report that NGF does not enhance the internalization or degradation of p75(NTR), which undergoes a rapid dynamin-dependent and clathrin-independent recycling process in MNs. Instead, incubation of cells with NGF leads to the redirection of a pool of plasma membrane p75(NTR) into clathrin-coated pits. The subsequent internalization of p75(NTR) via clathrin-mediated endocytosis, as well as the activity of Rab5, are essential for the sorting of the p75(NTR)-containing endosomes to the axonal retrograde transport pathway and for the delivery of p75(NTR) to the soma. Our findings suggest that the spatial regulation of p75(NTR) signalling is controlled by these ligand-driven routes of endocytosis.  相似文献   

6.
We have recently shown that nerve growth factor (NGF) induces the phosphorylation of the microtubule-associated protein 1B (MAP1B) by activating the serine/threonine kinase glycogen synthase kinase 3beta (GSK3beta) in a spatio-temporal pattern in PC12 cells that correlates tightly with neurite growth. PC12 cells express two types of membrane receptor for NGF: TrkA receptors and p75NTR receptors, and it was not clear from our studies which receptor was responsible. We show here that brain-derived neurotrophic factor, which activates p75NTR but not TrkA receptors, does not stimulate GSK3beta phosphorylation of MAP1B in PC12 cells. Similarly, NGF fails to activate GSK3beta phosphorylation of MAP1B in PC12 cells that lack TrkA receptors but express p75NTR receptors (PC12 nnr). Chick ciliary ganglion neurons in culture lack TrkA receptors but express p75NTR and also fail to show NGF-dependent GSK3beta phosphorylation of MAP1B, whereas in rat superior cervical ganglion neurons in culture, NGF activation of TrkA receptors elicits GSK3beta phosphorylation of MAP1B. Finally, inhibition of TrkA receptor tyrosine kinase activity in PC12 cells and superior cervical ganglion neurons with K252a potently and dose-dependently inhibits neurite elongation while concomitantly blocking GSK3beta phosphorylation of MAP1B. These results suggest that the activation of GSK3beta by NGF is mediated through the TrkA tyrosine kinase receptor and not through p75NTR receptors.  相似文献   

7.
The p75 neurotrophin receptor (p75NTR) is known to transduce the signal from some myelin-associated axon growth inhibitors, including Nogo and myelin-associated glycoprotein. As ephrin-B3, a member of the ephrin family, is also expressed in myelin and inhibits axon growth, the purpose of this study was to assess the possible involvement of p75NTR in ephrin-B3 signaling. Here, we report that p75NTR is required for the inhibitory effect of ephrin-B3 on neurite growth in vitro. While ephrin-B3 inhibited neurite elongation of embryonic cortical neurons, the neurons with p75NTR knockdown or with EphA4 knockdown were less sensitive to ephrin-B3. Although no direct interaction of p75NTR with ephrin-B3 was observed, Pep5, a peptide that specifically inhibits RhoA activation mediated by p75NTR, reduced the effect of ephrin-B3. Therefore, p75NTR functions as a signal transducer for ephrin-B3. Moreover, axonal regeneration in vivo was induced by Pep5 application after optic nerve crush injury in mice. Thus, Pep5 is a promising agent that contributes to axonal regeneration in the central nervous system.  相似文献   

8.
Reverse signaling by ephrin-As upon binding EphAs controls axon guidance and mapping. Ephrin-As are GPI-anchored to the membrane, requiring that they complex with transmembrane proteins that transduce their signals. We show that the p75 neurotrophin receptor (NTR) serves this role in retinal axons. p75(NTR) and ephrin-A colocalize within caveolae along retinal axons and form a complex required for Fyn phosphorylation upon binding EphAs, activating a signaling pathway leading to cytoskeletal changes. In vitro, retinal axon repulsion to EphAs by ephrin-A reverse signaling requires p75(NTR), but repulsion to ephrin-As by EphA forward signaling does not. Constitutive and retina-specific p75(NTR) knockout mice have aberrant anterior shifts in retinal axon terminations in superior colliculus, consistent with diminished repellent activity mediated by graded ephrin-A reverse signaling induced by graded collicular EphAs. We conclude that p75(NTR) is a signaling partner for ephrin-As and the ephrin-A- p75(NTR) complex reverse signals to mediate axon repulsion required for guidance and mapping.  相似文献   

9.
Rabies virus (RABV) is a neurotropic virus that depends on long distance axonal transport in order to reach the central nervous system (CNS). The strategy RABV uses to hijack the cellular transport machinery is still not clear. It is thought that RABV interacts with membrane receptors in order to internalize and exploit the endosomal trafficking pathway, yet this has never been demonstrated directly. The p75 Nerve Growth Factor (NGF) receptor (p75NTR) binds RABV Glycoprotein (RABV-G) with high affinity. However, as p75NTR is not essential for RABV infection, the specific role of this interaction remains in question. Here we used live cell imaging to track RABV entry at nerve terminals and studied its retrograde transport along the axon with and without the p75NTR receptor. First, we found that NGF, an endogenous p75NTR ligand, and RABV, are localized in corresponding domains along nerve tips. RABV and NGF were internalized at similar time frames, suggesting comparable entry machineries. Next, we demonstrated that RABV could internalize together with p75NTR. Characterizing RABV retrograde movement along the axon, we showed the virus is transported in acidic compartments, mostly with p75NTR. Interestingly, RABV is transported faster than NGF, suggesting that RABV not only hijacks the transport machinery but can also manipulate it. Co-transport of RABV and NGF identified two modes of transport, slow and fast, that may represent a differential control of the trafficking machinery by RABV. Finally, we determined that p75NTR-dependent transport of RABV is faster and more directed than p75NTR-independent RABV transport. This fast route to the neuronal cell body is characterized by both an increase in instantaneous velocities and fewer, shorter stops en route. Hence, RABV may employ p75NTR-dependent transport as a fast mechanism to facilitate movement to the CNS.  相似文献   

10.
Axonal elongation and guidance are controlled by extracellular factors such as the neurotrophins. Indeed, nerve growth factor (NGF) seems to promote axon growth through binding to its p75NTR receptor and inactivating RhoA. Furthermore, the local inhibition of glycogen synthase kinase (GSK)-3beta by NGF also favors microtubule polymerization and axon extension. Inactivation of GSK-3beta may be due to the NGF/TrkA-mediated activation of phosphatidylinositol-3 kinase (PI-3 kinase), which increases the levels of phosphatydilinositol 3-phosphate [PI3P]. However, we show here that NGF may inactivate GSK-3beta through an alternative mechanism. In cultured hippocampal neurons, the capacity of NGF to promote axon elongation is mostly mediated by p75NTR, and the activation of this pathway leads to the inactivation of GSK-3beta. However, the signaling pathway triggered by NGF/p75NTR acts through casein kinase II (CK2). NGF/p75NTR-activated CK2 phosphorylates the phosphatase and tensin homologue deleted on chromosome 10 (PTEN), thus rendering this phosphatase inactive. Like activation of the PI-3 kinase, PTEN inactivation allows PI3P levels to increase, thus favoring GSK-3beta inactivation and axon outgrowth. This newly disclosed mechanism may help to extend the repertoire of pharmacological agents that activate CK2 or that inhibit PTEN to stimulate axon regeneration after trauma or disease.  相似文献   

11.
AimsAfter peripheral nerve injury, p75NTR was upregulated in Schwann cells of the Wallerian degenerative nerves and in motor neurons but down-regulated in the injured sensory neurons. As p75NTR in neurons mediates signals of both neurotrophins and inhibitory factors, it is regarded as a therapeutic target for the treatment of neurodegeneration. However, its physiological function in the nerve regeneration is not fully understood. In the present study, we aimed to examine the role of p75NTR in the regeneration of peripheral nerves.Main methodsIn p75NTR knockout mice (exon III deletion), the sciatic nerves and facial nerves on one side were crushed and regenerating neurons in the facial nuclei and in the dorsal root ganglia were labelled by Fast Blue. The regenerating fibres in the sciatic nerve were also labelled by an anterograde tracer and by immunohistochemistry.Key findingsThe results showed that the axonal growth of injured axons in the sciatic nerve of p75NTR mutant mice was significantly retarded. The number of regenerated neurons in the dorsal root ganglia and in the facial nuclei in p75NTR mutant mice was significantly reduced. Immunohistochemical staining of regenerating axons also showed the reduction in nerve regeneration in p75NTR mutant mice.SignificanceOur data suggest that p75NTR plays an important role in the regeneration of injured peripheral nerves.  相似文献   

12.
During mammalian hindbrain development, sensory axons grow along highly stereotyped routes within the cranial mesenchyme to reach their appropriate entry points into the neuroepithelium. Thus, trigeminal ganglion axons always project to rhombomere (r)2, whilst facial/acoustic ganglia axons always project to r4. Axons are never observed to enter the mesenchyme adjacent to r3, raising the possibility that r3 mesenchyme contains an axon growth-inhibitory activity. Conversely, in mice which lack the erbB4 receptor (normally expressed in r3), trigeminal and facial/acoustic ganglia axons misproject into r3 mesenchyme, suggesting that the putative axon barrier is absent. To investigate this hypothesis, we have developed an in vitro model in which dissociated wild-type embryonic trigeminal ganglion neurons are cultured on longitudinal cryosections of embryonic mouse head. We observed that on wild-type embryonic day 10 (E10) cryosections, neurites generally failed to grow into r3 mesenchyme from the adjacent r2 or r4 mesenchyme. This barrier was removed if cryosections were pretreated with chondroitinase or were washed with excess chondroitin 6-sulphate or hypertonic saline. By contrast, when trigeminal neurons were seeded onto cryosections of E10 erbB4 -/- embryo heads their neurites readily entered mutant r3 mesenchyme. Immunohistochemical analysis demonstrated chondroitin-sulphated proteoglycans throughout the cranial mesenchyme in both wild-type and erbB4 -/- embryos. We propose that trigeminal axons are excluded from wild-type r3 mesenchyme by a growth-inhibitory activity which associates with chondroitin-sulphated proteoglycans and that the synthesis of this activity may rely on signals transduced by erbB receptors.  相似文献   

13.
Reactive astrocytes frequently surround degenerating motor neurons in patients and transgenic animal models of amyotrophic lateral sclerosis (ALS). We report here that reactive astrocytes in the ventral spinal cord of transgenic ALS-mutant G93A superoxide dismutase (SOD) mice expressed nerve growth factor (NGF) in regions where degenerating motor neurons expressed p75 neurotrophin receptor (p75(NTR)) and were immunoreactive for nitrotyrosine. Cultured spinal cord astrocytes incubated with lipopolysaccharide (LPS) or peroxynitrite became reactive and accumulated NGF in the culture medium. Reactive astrocytes caused apoptosis of embryonic rat motor neurons plated on the top of the monolayer. Such motor neuron apoptosis could be prevented when either NGF or p75(NTR) was inhibited with blocking antibodies. In addition, nitric oxide synthase inhibitors were also protective. Exogenous NGF stimulated motor neuron apoptosis only in the presence of a low steady state concentration of nitric oxide. NGF induced apoptosis in motor neurons from p75(NTR +/+) mouse embryos but had no effect in p75(NTR -/-) knockout embryos. Culture media from reactive astrocytes as well as spinal cord lysates from symptomatic G93A SOD mice-stimulated motor neuron apoptosis, but only when incubated with exogenous nitric oxide. This effect was prevented by either NGF or p75(NTR) blocking-antibodies suggesting that it might be mediated by NGF and/or its precursor forms. Our findings show that NGF secreted by reactive astrocytes induce the death of p75-expressing motor neurons by a mechanism involving nitric oxide and peroxynitrite formation. Thus, reactive astrocytes might contribute to the progressive motor neuron degeneration characterizing ALS.  相似文献   

14.
Cell adhesion molecules of the immunoglobulin superfamily (IgCAMs) have been shown to modulate growth factor signaling and follow complex trafficking pathways in neurons. Similarly, several growth factors, including members of the neurotrophin family, undergo axonal retrograde transport that is required to elicit their full signaling potential in neurons. We sought to determine whether IgCAMs that enter the axonal retrograde transport route co-operate with neurotrophin signaling. We identified activated leukocyte cell adhesion molecule (ALCAM), a protein involved in axon pathfinding and development of the neuromuscular junction, to be associated with an axonal endocytic compartment that contains neurotrophins and their receptors. Although ALCAM enters carriers that are transported bidirectionally in motor neuron axons, it is predominantly co-transported with the neurotrophin receptor p75(NTR) toward the cell body. ALCAM was found to specifically potentiate nerve growth factor (NGF)-induced differentiation and signaling. The extracellular domain of ALCAM is both necessary and sufficient to potentiate NGF-induced neurite outgrowth, and its homodimerization is required for this novel role. Our findings indicate that ALCAM synergizes with NGF to induce neuronal differentiation, raising the possibility that it functions not only as an adhesion molecule but also in the modulation of growth factor signaling in the nervous system.  相似文献   

15.
16.
Myelin-associated glycoprotein (MAG) is a potent inhibitor of neurite outgrowth from a variety of neurons. The receptor for MAG or signals that elicit morphological changes in neurons remained to be established. Here we show that the neurotrophin receptor p75 (p75(NTR)) is the signal transducing element for MAG. Adult dorsal root ganglion neurons or postnatal cerebellar neurons from mice carrying a mutation in the p75(NTR) gene are insensitive to MAG with regard to neurite outgrowth. MAG activates small GTPase RhoA, leading to retarded outgrowth when p75(NTR)) is present. Colocalization of p75(NTR) and MAG binding is seen in neurons. Ganglioside GT1b, which is one of the binding partners of MAG, specifically associates with p75(NTR). Thus, p75(NTR) and GT1b may form a receptor complex for MAG to transmit the inhibitory signals in neurons.  相似文献   

17.
Previous studies have shown that most neurons in cultures established during the early stages of neurogenesis in the embryonic mouse trigeminal ganglion are supported by BDNF whereas most neurons cultured from older ganglia survive with NGF. To ascertain to what extent these developmental changes in neurotrophin responsiveness result from separate phases of generation of BDNF- and NGF-responsive neurons or from a developmental switch in the response of neurons from BDNF to NGF, we administered BrdU to pregnant mice at different stages of gestation to identify neurons born at different times and studied the survival of labelled neurons in dissociated cultures established shortly after BrdU administration. Most early-generated neurons responded to BDNF, neurons generated at intermediate times responded to both factors and late-generated neurons responded to NGF, indicating that there are overlapping phases in the generation of BDNF- and NGF-responsive neurons and that late-generated neurons do not switch responsiveness from BDNF to NGF. To ascertain if early-generated neurons do switch their response to neurotrophins during development, we used repeated BrdU injection to label all neurons generated after an early stage in neurogenesis and studied the neurotrophin responsiveness of the unlabelled neurons in cultures established after neurogenesis had ceased. The response of these early-generated neurons had decreased to BDNF and increased to NGF, indicating that at least a proportion of early-generated neurons switch responsiveness to neurotrophins in vivo. Because early-generated neurons do not switch responsiveness from BDNF to NGF in long-term dissociated cultures, we cultured early trigeminal ganglion explants with and without their targets for 24 hours before establishing dissociated cultures. This period of explant culture was sufficient to enable many early-generated neurons to switch their response from BDNF to NGF and this switch occurred irrespective of presence of target tissue. Our findings conclusively demonstrate for the first time that individual neurons switch their neurotrophin requirements during development and that this switch depends on cell interactions within the ganglion. In addition, we show that there are overlapping phases in the generation of BDNF- and NGF-responsive neurons in the trigeminal ganglion.  相似文献   

18.
The p75 neurotrophin receptor (p75NTR) is a death domain (DD) containing receptor of the TNF/FAS(APO-1) family. p75NTR has recently been shown to mediate apoptosis in certain types of neurons as well as in oligodendrocytes. The molecular mechanisms by which p75NTR stimulates apoptosis are still unknown. Here, we have tested whether overexpression of p75NTR could modulate survival of sympathetic neurons cultured in the presence or absence of NGF. Moreover, using the yeast two-hybrid system, we tested whether p75NTR intracellular domain was able to dimerize or interact with known DD-containing proteins including FADD, RIP, RAIDD and TRADD. We found that over-expression of p75NTR had no effect on the survival of sympathetic neurons cultured in the presence of NGF but instead delayed neuronal death following NGF deprivation. These results strongly support the finding that p75NTR is not involved in the apoptosis process induced by NGF deprivation in sympathetic neurons. We also foun d that the intracellular domain of p75NTR failed to associate either with itself or with other known DD-containing proteins. This suggests that the mechanisms by which p75NTR triggers apoptosis in certain cell types are different from those used by other receptors of the TNF/FAS family.  相似文献   

19.
The axonal transport of organelles is critical for the development, maintenance, and survival of neurons, and its dysfunction has been implicated in several neurodegenerative diseases. Retrograde axon transport is mediated by the motor protein dynein. In this study, using embryonic chicken dorsal root ganglion neurons, we investigate the effects of Ciliobrevin D, a pharmacological dynein inhibitor, on the transport of axonal organelles, axon extension, nerve growth factor (NGF)‐induced branching and growth cone expansion, and axon thinning in response to actin filament depolymerization. Live imaging of mitochondria, lysosomes, and Golgi‐derived vesicles in axons revealed that both the retrograde and anterograde transport of these organelles was inhibited by treatment with Ciliobrevin D. Treatment with Ciliobrevin D reversibly inhibits axon extension and transport, with effects detectable within the first 20 min of treatment. NGF induces growth cone expansion, axonal filopodia formation and branching. Ciliobrevin D prevented NGF‐induced formation of axonal filopodia and branching but not growth cone expansion. Finally, we report that the retrograde reorganization of the axonal cytoplasm which occurs on actin filament depolymerization is inhibited by treatment with Ciliobrevin D, indicating a role for microtubule based transport in this process, as well as Ciliobrevin D accelerating Wallerian degeneration. This study identifies Ciliobrevin D as an inhibitor of the bidirectional transport of multiple axonal organelles, indicating this drug may be a valuable tool for both the study of dynein function and a first pass analysis of the role of axonal transport. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 75: 757–777, 2015  相似文献   

20.
During development, neurons pass through a critical phase in which survival is dependent on neurotrophin support. In order to dissect the potential role of p75NTR, the common neurotrophin receptor, in neurotrophin dependence, we expressed wild-type and mutant p75NTR in cells that do not express endogenous p75NTR or Trk family members (NIH3T3). Expression of wild-type p75NTR created a state of neurotrophin dependence: cells could be rescued by nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), or neurotrophin-3 (NT-3), but not by a mutant NGF that binds well to Trk A but poorly to p75NTR. Similarly, expression of p75NTR in human prostate cancer cells in culture rendered a metastatic tumor cell line (PC-3) sensitive to the availability of neurotrophins for survival. Moreover, expression of mutant p75NTR's in another neurotrophin-insensitive cell line (HEK293T) showed that a domain within the intracellular domain governs alternate responses to neurotrophins: the carboxy terminus of the intracellular domain of p75NTR including the sixth alpha helix domain is necessary for rescue by BDNF, but not NGF. These results, when considered with previous studies of the timing of p75NTR expression, support the hypothesis that p75NTR is a mediator of neurotrophin dependence during the critical phase of developmental cell death and during the progression of carcinogenesis in prostate cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号