首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The dynamics of the cerebral vascular response to blood pressure changes in hypertensive humans is poorly understood. Because cerebral blood flow is dependent on adequate perfusion pressure, it is important to understand the effect of hypertension on the transfer of pressure to flow in the cerebrovascular system of elderly people. Therefore, we examined the effect of spontaneous and induced blood pressure changes on beat-to-beat and within-beat cerebral blood flow in three groups of elderly people: normotensive, controlled hypertensive, and uncontrolled hypertensive subjects. Cerebral blood flow velocity (transcranial Doppler), blood pressure (Finapres), heart rate, and end-tidal CO(2) were measured during the transition from a sit to stand position. Transfer function gains relating blood pressure to cerebral blood flow velocity were assessed during steady-state sitting and standing. Cerebral blood flow regulation was preserved in all three groups by using changes in cerebrovascular resistance, transfer function gains, and the autoregulatory index as indexes of cerebral autoregulation. Hypertensive subjects demonstrated better attenuation of cerebral blood flow fluctuations in response to blood pressure changes both within the beat (i.e., lower gain at the cardiac frequency) and in the low-frequency range (autoregulatory, 0.03-0.07 Hz). Despite a better pressure autoregulatory response, hypertensive subjects demonstrated reduced reactivity to CO(2). Thus otherwise healthy hypertensive elderly subjects, whether controlled or uncontrolled with antihypertensive medication, retain the ability to maintain cerebral blood flow in the face of acute changes in perfusion pressure. Pressure regulation of cerebral blood flow is unrelated to cerebrovascular reactivity to CO(2).  相似文献   

2.
The Windkessel properties of the vasculature are known to play a significant role in buffering arterial pulsations, but their potential importance in dampening low-frequency fluctuations in cerebral blood flow has not been clearly examined. In this study, we quantitatively assessed the contribution of arterial Windkessel (peripheral compliance and resistance) in the dynamic cerebral blood flow response to relatively large and acute changes in blood pressure. Middle cerebral artery flow velocity (MCA(V); transcranial Doppler) and arterial blood pressure were recorded from 14 healthy subjects. Low-pass-filtered pressure-flow responses (<0.15 Hz) during transient hypertension (intravenous phenylephrine) and hypotension (intravenous sodium nitroprusside) were fitted to a two-element Windkessel model. The Windkessel model was found to provide a superior goodness of fit to the MCA(V) responses during both hypertension and hypotension (R2 = 0.89 ± 0.03 and 0.85 ± 0.05, respectively), with a significant improvement in adjusted coefficients of determination (P < 0.005) compared with the single-resistance model (R2 = 0.62 ± 0.06 and 0.61 ± 0.08, respectively). No differences were found between the two interventions in the Windkessel capacitive and resistive gains, suggesting similar vascular properties during pressure rise and fall episodes. The results highlight that low-frequency cerebral hemodynamic responses to transient hypertension and hypotension may include a significant contribution from the mechanical properties of vasculature and, thus, cannot solely be attributed to the active control of vascular tone by cerebral autoregulation. The arterial Windkessel should be regarded as an important element of dynamic cerebral blood flow modulation during large and acute blood pressure perturbation.  相似文献   

3.
We tested the hypothesis that, during acute glucose-induced hyperosmolality, the brain shrinks less than predicted on the basis of an ideal osmometer and that brain volume regulation is present in fetuses, premature and newborn lambs. Brain water responses to glucose-induced hyperosmolality were measured in the cerebral cortex, cerebellum, and medulla of fetuses at 60% of gestation, premature ventilated lambs at 90% of gestation, newborn lambs, and adult sheep. After exposure of the sheep to increases in osmolality with glucose plus NaCl, brain water and electrolytes were measured. The ideal osmometer is a system in which impermeable solutes do not enter or leave in response to an osmotic stress. In the absence of volume regulation, brain solute remains constant as osmolality changes. The osmotically active solute demonstrated direct linear correlations with plasma osmolality in the cerebral cortex of the fetuses at 60% of gestation (r = 0.72, n = 24, P = 0.0001), premature lambs (r = 0.58, n = 22, P = 0.005), newborn lambs (r = 0.57, n = 24, P = 0.004), and adult sheep (r = 0.70, n = 18, P = 0.001). Similar findings were observed in the cerebellum and medulla. Increases in the quantity of osmotically active solute over the range of plasma osmolalities indicate that volume regulation was present in the brain regions of the fetuses, premature lambs, newborn lambs, and adult sheep during glucose-induced hyperosmolality. We conclude that, during glucose-induced hyperosmolality, the brain shrinks less than predicted on the basis of an ideal osmometer and exhibits volume regulation in fetuses at 60% of gestation, premature lambs, newborn lambs, and adult sheep.  相似文献   

4.
Previous studies in newborn lamb have shown impairment of cerebral blood flow autoregulation after hypoxia followed by reoxygenation. The present study was done to see if such a phenomenon existed in the adult rat and if it could be demonstrated at the level of the pial arterioles. Using an open cranial window preparation, we assessed the changes in pial vessel diameter during blood pressure alterations induced by hemorrhage and reinfusion of blood, before and after 30 s of hypoxia, in 15 male Sprague-Dawley rats. Mean diameters of pial arteries in the study group of rats were 128 +/- 54 microns before hypoxia and 141 +/- 61 microns after normoxia following hypoxia. The corresponding diameters in rats serving as time controls were 136 +/- 52 and 138 +/- 52 microns. Slopes of pial vessel diameters as a function of mean arterial blood pressures decreased significantly (p less than 0.05) after hypoxia from -0.86 +/- 0.45 to 0.03 +/- 0.66 (mean +/- SD). In the control rats not subjected to hypoxia, the slopes remained unchanged over a similar time period (-0.60 +/- 0.16 and -0.42 +/- 0.19). The negative slopes indicate that pial vessels dilate during hypotension and constrict during hypertension. Such vascular responses may play a role in autoregulation of cerebral blood flow. We found that a relatively brief period of hypoxia can cause a long-lasting impairment of vascular responses even after restoration of normoxia. These findings are consistent with a previous report of persistent impairment of cerebral blood flow autoregulation after a brief period of hypoxia.  相似文献   

5.
Short-term cardiovascular responses to postural change from sitting to standing involve complex interactions between the autonomic nervous system, which regulates blood pressure, and cerebral autoregulation, which maintains cerebral perfusion. We present a mathematical model that can predict dynamic changes in beat-to-beat arterial blood pressure and middle cerebral artery blood flow velocity during postural change from sitting to standing. Our cardiovascular model utilizes 11 compartments to describe blood pressure, blood flow, compliance, and resistance in the heart and systemic circulation. To include dynamics due to the pulsatile nature of blood pressure and blood flow, resistances in the large systemic arteries are modeled using nonlinear functions of pressure. A physiologically based submodel is used to describe effects of gravity on venous blood pooling during postural change. Two types of control mechanisms are included: 1) autonomic regulation mediated by sympathetic and parasympathetic responses, which affect heart rate, cardiac contractility, resistance, and compliance, and 2) autoregulation mediated by responses to local changes in myogenic tone, metabolic demand, and CO(2) concentration, which affect cerebrovascular resistance. Finally, we formulate an inverse least-squares problem to estimate parameters and demonstrate that our mathematical model is in agreement with physiological data from a young subject during postural change from sitting to standing.  相似文献   

6.
Impaired autoregulation of cerebral blood flow (CBF) contributes to CNS damage during neonatal meningitis. We tested (i) the hypothesis that cerebrovascular autoregulation is impaired during early onset group B streptococcal (GBS) meningitis, (ii) whether this impairment is regulated by vasoactive mediators such as prostaglandins and (or) nitric oxide (NO), and (iii) whether this impairment is preventable by specific and (or) nonspecific inhibitors: dexamethasone, ibuprofen, and Nomega-nitro-L-arginine, a NO inhibitor. Sterile saline or 10(9) colony-forming units (cfu) of heat-killed GBS was injected into the cerebral ventricle of newborn piglets. CBF autoregulation was determined by altering cerebral perfusion pressure (CPP) with balloon-tipped catheters placed in the aorta. GBS produced a narrow range of CBF autoregulation due to an impairment at the upper limit of CPP. We report that in vivo in the early stages (first 2 h) of induced GBS inflammation (i) GBS impairs the upper limit of cerebrovascular autoregulation; (ii) ibuprofen, dexamethasone, and Nomega-nitro-L-arginine not only prevent this GBS-induced autoregulatory impairment but improve the range of cerebrovascular autoregulation; (iii) these autoregulatory changes do not involve circulating cerebral prostanoids; and (iv) the observed changes correlate with the induction of NO synthase gene expression. Thus, acute early onset GBS-induced impairment of the upper limit of CBF autoregulation can be correlated with increases of NO synthase production, suggesting that NO is a vasoactive mediator of CBF.  相似文献   

7.
We tested the hypothesis that, following exposure to high altitude, cerebrovascular reactivity to CO2 and cerebral autoregulation would be attenuated. Such alterations may predispose to central sleep apnea at high altitude by promoting changes in brain PCO2 and thus breathing stability. We measured middle cerebral artery blood flow velocity (MCAv; transcranial Doppler ultrasound) and arterial blood pressure during wakefulness in conditions of eucapnia (room air), hypocapnia (voluntary hyperventilation), and hypercapnia (isooxic rebeathing), and also during non-rapid eye movement (stage 2) sleep at low altitude (1,400 m) and at high altitude (3,840 m) in five individuals. At each altitude, sleep was studied using full polysomnography, and resting arterial blood gases were obtained. During wakefulness and polysomnographic-monitored sleep, dynamic cerebral autoregulation and steady-state changes in MCAv in relation to changes in blood pressure were evaluated using transfer function analysis. High altitude was associated with an increase in central sleep apnea index (0.2 +/- 0.4 to 20.7 +/- 23.2 per hour) and an increase in mean blood pressure and cerebrovascular resistance during wakefulness and sleep. MCAv was unchanged during wakefulness, whereas there was a greater decrease during sleep at high altitude compared with low altitude (-9.1 +/- 1.7 vs. -4.8 +/- 0.7 cm/s; P < 0.05). At high altitude, compared with low altitude, the cerebrovascular reactivity to CO2 in the hypercapnic range was unchanged (5.5 +/- 0.7 vs. 5.3 +/- 0.7%/mmHg; P = 0.06), while it was lowered in the hypocapnic range (3.1 +/- 0.7 vs. 1.9 +/- 0.6%/mmHg; P < 0.05). Dynamic cerebral autoregulation was further reduced during sleep (P < 0.05 vs. low altitude). Lowered cerebrovascular reactivity to CO2 and reduction in both dynamic cerebral autoregulation and MCAv during sleep at high altitude may be factors in the pathogenesis of breathing instability.  相似文献   

8.
We examined whether nitric oxide (NO) generated from neuronal NO synthase (nNOS) contributes to the reduced ability of the newborn to autoregulate retinal blood flow (RBF) and choroidal blood flow (ChBF) during acute rises in perfusion pressure. In newborn pigs (1-2 days old), RBF (measured by microsphere) is autoregulated over a narrow range of perfusion pressure, whereas ChBF is not autoregulated. N(G)-nitro-L-arginine methyl ester (L-NAME) or specific nNOS inhibitors 7-nitroindazole, 3-bromo-7-nitroindazole, and 1-(2-trifluoromethyl-phenyl)imidazole as well as ganglionic blocker hexamethonium, unveiled a ChBF autoregulation as observed in juvenile (4- to 6-wk old) animals, whereas autoregulation of RBF in the newborn was only enhanced by L-NAME. All NOS inhibitors and hexamethonium prevented the hypertension-induced increase in NO mediator cGMP in the choroid. nNOS mRNA expression and activity were three- to fourfold higher in the choroid of newborn pigs than in tissues of juvenile pigs. It is concluded that increased production of NO from nNOS curtails ChBF autoregulation in the newborn and suggests a role for the autonomic nervous system in this important hemodynamic function, whereas, for RBF autoregulation, endothelial NOS seems to exert a more important contribution in limiting autoregulation.  相似文献   

9.
Transfer function analysis of blood pressure and cerebral blood flow in humans demonstrated that cerebrovascular autoregulation operates most effectively for slow fluctuations in perfusion pressure, not exceeding a frequency of approximately 0.15 Hz. No information on the dynamic properties of cerebrovascular autoregulation is available in rats. Therefore, we tested the hypothesis that cerebrovascular autoregulation in rats is also most effective for slow fluctuations in perfusion pressure below 0.15 Hz. Normotensive Wistar-Kyoto rats (n = 10) were instrumented with catheters in the left common carotid artery and jugular vein and flow probes around the right internal carotid artery. During isoflurane anesthesia, fluctuations in cerebral perfusion pressure were elicited by periodically occluding the abdominal aorta at eight frequencies ranging from 0.008 Hz to 0.5 Hz. The protocol was repeated during inhibition of myogenic vascular function (nifedipine, 0.25 mg/kg body wt iv). Increases in cerebral perfusion pressure elicited initial increases in cerebrovascular conductance and decreases in resistance. At low occlusion frequencies (<0.1 Hz), these initial responses were followed by decreases in conductance and increases in resistance that were abolished by nifedipine. At occlusion frequencies of 0.1 Hz and above, the gains of the transfer functions between pressure and blood flow and between pressure and resistance were equally high in the control and nifedipine trial. At occlusion frequencies below 0.1 Hz, the gains of the transfer functions decreased twice as much under control conditions than during nifedipine application. We conclude that dynamic autoregulation of cerebral blood flow is restricted to very low frequencies (<0.1 Hz) in rats.  相似文献   

10.
The process by which cerebral perfusion is maintained constant over a wide range of systemic pressures is known as “cerebral autoregulation.” Effective dampening of flow against pressure changes occurs over periods as short as ~15 sec and becomes progressively greater over longer time periods. Thus, slower changes in blood pressure are effectively blunted and faster changes or fluctuations pass through to cerebral blood flow relatively unaffected. The primary difficulty in characterizing the frequency dependence of cerebral autoregulation is the lack of prominent spontaneous fluctuations in arterial pressure around the frequencies of interest (less than ~0.07 Hz or ~15 sec). Oscillatory lower body negative pressure (OLBNP) can be employed to generate oscillations in central venous return that result in arterial pressure fluctuations at the frequency of OLBNP. Moreover, Projection Pursuit Regression (PPR) provides a nonparametric method to characterize nonlinear relations inherent in the system without a priori assumptions and reveals the characteristic non-linearity of cerebral autoregulation. OLBNP generates larger fluctuations in arterial pressure as the frequency of negative pressure oscillations become slower; however, fluctuations in cerebral blood flow become progressively lesser. Hence, the PPR shows an increasingly more prominent autoregulatory region at OLBNP frequencies of 0.05 Hz and below (20 sec cycles). The goal of this approach it to allow laboratory-based determination of the characteristic nonlinear relationship between pressure and cerebral flow and could provide unique insight to integrated cerebrovascular control as well as to physiological alterations underlying impaired cerebral autoregulation (e.g., after traumatic brain injury, stroke, etc.).  相似文献   

11.
There are a number of alterations that protect the cerebrovasculature from hemorrhagic stroke development during hypertension. The upper limit of cerebral blood flow autoregulation is shifted to higher blood pressure levels; this allows a constant blood flow to be maintained during hypertension. Studies we have performed have indicated that the middle cerebral arteries (MCA) of Wistar-Kyoto stroke-prone spontaneously hypertensive rats (spSHR) lose their ability to constrict in response to elevations in transmural pressure. The decline in such function precedes stroke development and totally disappears at an age where there is a 100% mortality from stroke. Prior to stroke development, spSHR also develop uremic conditions and signs of renal failure. The induction of uremia in stroke-resistant SHR (srSHR) via nephrectomy induces these animals to develop stroke. Like prestroke spSHR, prestroke uremic srSHR also have MCA with attenuated pressure-dependent myogenic function. It is hypothesized that the inability to increase vascular resistance in response to elevations in pressure might promote overperfusion of the more distal vasculature leading to cerebral hemorrhage formation. Since uremia promotes bleeding tendencies, such alterations along with the loss of cerebrovascular myogenic function could initiate or aggravate hemorrhage formation.  相似文献   

12.
Pressure-flow curves were constructed to determine whether acute autoregulation in rat skeletal muscle was altered during the development of hypertension in the spontaneously hypertensive rat (SHR). Under chloralose:urethane anesthesia, hindlimb blood flow and pressure, plus diameter changes of gracilis muscle arterioles, were simultaneously measured in the 6- and 9-week Wistar-Kyoto (WKY) and SHR. Femoral blood flow was measured by electromagnetic flowmetry and hindlimb pressure controlled with an hydraulic occluder. Arteriolar diameters were measured using image shearing techniques. Acute autoregulatory capacity was assessed by comparing the closed-loop gain and the regression lines over the regulated and passive pressure ranges of the pressure-flow curves. The lower pressure limit of autoregulation (LPLAR) shifted upward as the blood pressure increased in the SHR with age; it did not shift in the WKY. Resting hindlimb flow, elevated in the SHR at 6 weeks, was also elevated at the LPLAR. At 9 weeks hindlimb blood flow was comparable in the WKY and SHR. As blood pressure was increased autoregulation was accompanied by vasoconstriction of gracilis arterioles. However, neither the gain of the autoregulatory system nor the regression lines describing the pressure-flow curves were different between the hypertensive and normotensive animals at either age. These results indicate that the acute autoregulatory response mechanism was not affected by the developing hypertension in the SHR, and is consistent with a structural basis for the chronic maintenance of the elevated peripheral vascular resistance.  相似文献   

13.
Stroke and cerebral hypoxia are among the main complications during cardiopulmonary bypass (CPB). The two main reasons for these complications are the cannula jet, due to altered flow conditions and the sandblast effect, and impaired cerebral autoregulation which often occurs in the elderly. The effect of autoregulation has so far mainly been modeled using lumped parameter modeling, while Computational Fluid Dynamics (CFD) has been applied to analyze flow conditions during CPB. In this study, we combine both modeling techniques to analyze the effect of lumped parameter modeling on blood flow during CPB. Additionally, cerebral autoregulation is implemented using the Baroreflex, which adapts the cerebrovascular resistance and compliance based on the cerebral perfusion pressure.  相似文献   

14.
Cerebral blood flow was studied by the arteriovenous oxygen difference method in patients with severe hypertension and in normotensive controls. The blood pressure was lowered to study the lower limit of autoregulation (the pressure below which cerebral blood flow decreases) and the pressure limit of brain hypoxia. Both limits were shifted upwards in the hypertensive patients, probably as a consequence of hypertrophy of the arteriolar walls. These findings have practical implications for antihypertensive therapy.When the blood pressure was raised some patients showed an upper limit of autoregulation beyond which an increase of cerebral blood flow above the resting value was seen without clinical symptoms. No evidence of vasospasm was found in any patient at high blood pressure. These observations may be of importance for the understanding of the pathogenesis of hypertensive encephalopathy.  相似文献   

15.
Adult impala engage in a form of reciprocal allogrooming distinguished by a high degree of reciprocity and ***lack of influence of dominance or relatedness on partner preference or distribution of grooming between partners. A previous study on reciprocal allogrooming of captive newborn impala lambs in a zoological park found that the allogrooming emerged as early as the first week after birth and was identical in structure and reciprocity to allogrooming in adults. Because these findings of apparently unique allogrooming behavior of newborn impala could have been a reflection of the effects of being born and raised in a small, stable captive herd, it was necessary to investigate reciprocal allogrooming in newborn impala in the wild. The emergence, reciprocity, rate, and partner distribution of reciprocal allogrooming in wild newborn impala were observed at two study sites: a national park in Zimbabwe and a game farm in South Africa. Maternal one-way grooming between mother and newborn emerged as distinct from reciprocal allogrooming and rapidly declined after week 1 postpartum. Reciprocal allogrooming by lambs was first seen between 5 and 8 d postpartum, and as soon as the behavior occurred it was the same basic pattern as seen in adult impala. The reciprocity index for lambs was near 0.5, indicating that lambs delivered as much grooming during an encounter as the partner. Lambs were grooming frequently with non-mother adults and other lambs by week 1 or 2; by week 3 and onward the allogrooming rate of lambs was more than twice that of their mothers, as predicted by the body size principle of the programmed grooming model. The strong predisposition of neonatal impala lambs to deliver reciprocal allogrooming as early as the first or second week postpartum would appear to reflect a genetically acquired adaptation to the threat of tick infestation in their natural habitat.  相似文献   

16.
Conflicting data exist on the role of nitric oxide (NO) in cerebral blood flow (CBF) autoregulation. Previous studies involving human and animal subjects seem to indicate that NO involvement is limited to the CO(2)-dependent mechanism (chemoregulation) and not to the pressure-dependent autoregulation (mechanoregulation). We tested this hypothesis in patients with impaired endothelial function compared with healthy controls. Blood pressure, heart rate, end-tidal Pco(2), CBF velocities (CBFV), forearm blood flow, and reactive hyperemia were assessed in 16 patients with diabetes mellitus and/or hypertension and compared with 12 age- and sex-matched healthy controls. Pressure-dependent autoregulation was determined by escalating doses of phenylephrine. CO(2) vasoreactivity index was extrapolated from individual slopes of mean CBFV during normocapnia, hyperventilation, and CO(2) inhalation. Measurements were repeated after sodium nitroprusside infusion. Indexes of endothelial function, maximal and area under the curve (AUC) of forearm blood flow (FBF) changes, were significantly impaired in patients (maximal flow: 488 +/- 75 vs. 297 +/- 31%; P = 0.01, AUC DeltaFBF: 173 +/- 17 vs. 127 +/- 11; P = 0.03). Patients and controls showed similar changes in cerebrovascular resistance during blood pressure challenges (identical slopes). CO(2) vasoreactivity was impaired in patients compared with controls: 1.19 +/- 0.1 vs. 1.54 +/- 0.1 cm.s(-1).mmHg(-1); P = 0.04. NO donor (sodium nitroprusside) offsets this disparity. These results suggest that patients with endothelial dysfunction have impaired CO(2) vasoreactivity and preserved pressure-dependent autoregulation. This supports our hypothesis that NO is involved in CO(2)-dependent CBF regulation alone. CBFV chemoregulation could therefore be a surrogate of local cerebral endothelial function.  相似文献   

17.
Four groups of lambs aged 1 week, 4 weeks, 1/2 year and 1 year old respectively were inoculated with Ehrlichia phagocytophila infected blood. Clinical signs, temperature reactions, haematological changes and parasitaemia were more moderate in lambs inoculated with E. phagocytophila at the age of 1 week than those recorded in the older animals. The clinical response to tick-borne fever (TBF) appears to be more severe with increasing age of the lambs. The lymphocyte reactivity to mitogens was reduced in the TBF infected lambs, and was most pronounced in lambs in the 3 older age groups.  相似文献   

18.
Obstructive sleep apnea (OSA) increases the risk of stroke independent of known vascular and metabolic risk factors. Although patients with OSA have higher prevalence of hypertension and evidence of hypercoagulability, the mechanism of this increased risk is unknown. Obstructive apnea events are associated with surges in blood pressure, hypercapnia, and fluctuations in cerebral blood flow. These perturbations can adversely affect the cerebral circulation. We hypothesized that patients with OSA have impaired cerebral autoregulation, which may contribute to the increased risk of cerebral ischemia and stroke. We examined cerebral autoregulation in patients with and without OSA by measuring cerebral artery blood flow velocity (CBFV) by using transcranial Doppler ultrasound and arterial blood pressure using finger pulse photoplethysmography during orthostatic hypotension and recovery as well as during 5% CO(2) inhalation. Cerebral vascular conductance and reactivity were determined. Forty-eight subjects, 26 controls (age 41.0+/-2.3 yr) and 22 OSA (age 46.8+/-2.3 yr) free of cerebrovascular and active coronary artery disease participated in this study. OSA patients had a mean apnea-hypopnea index of 78.4+/-7.1 vs. 1.8+/-0.3 events/h in controls. The oxygen saturation during sleep was significantly lower in the OSA group (78+/-2%) vs. 91+/-1% in controls. The dynamic vascular analysis showed mean CBFV was significantly lower in OSA patients compared with controls (48+/-3 vs. 55+/-2 cm/s; P <0.05, respectively). The OSA group had a lower rate of recovery of cerebrovascular conductance for a given drop in blood pressure compared with controls (0.06+/-0.02 vs. 0.20+/-0.06 cm.s(-2).mmHg(-1); P <0.05). There was no difference in cerebrovascular vasodilatation in response to CO(2). The findings showed that patients with OSA have decreased CBFV at baseline and delayed cerebrovascular compensatory response to changes in blood pressure but not to CO(2). These perturbations may increase the risk of cerebral ischemia during obstructive apnea.  相似文献   

19.
The cerebral blood flow of newborn lambs at reduced and elevated arterial blood pressures, induced by intravenous infusion of sodium nitroprusside and phenylephrine hydrochloride as well as blood withdrawal and reinfusion, were compared. Both blood withdrawal and sodium nitroprusside infusion reduced mean arterial pressure from 83 to 60 mmHg (1 mmHg = 133 Pa). Reinfusion of blood increased arterial pressure to 94 mmHg. Phenylephrine hydrochloride infusion increased arterial pressure to 102 mmHg. The cerebral blood flows at corresponding arterial pressures were similar (coefficient of correlation = 0.88, P less than 0.01). Cerebral blood flow before and after infusion of phenylephrine hydrochloride and sodium nitroprusside into the brain via the carotid artery did not change. The results indicate that blood-borne phenylephrine hydrochloride and sodium nitroprusside, in concentrations that would alter arterial blood pressure significantly from its resting level, do not change cerebral blood flow directly.  相似文献   

20.
To test whether cerebral autoregulation is impaired in patients with postural tachycardia syndrome (POTS), we evaluated 17 healthy control subjects and 27 patients with POTS. Blood pressure, heart rate, and cerebral blood velocity (transcranial Doppler) were recorded at rest and during 80 degree head-up tilt (HUT). Static cerebral autoregulation, as assessed from the change in cerebrovascular resistance during HUT, was the same in POTS and in controls. The properties of dynamic cerebral autoregulation were inferred from transfer gain, coherence, and phase of the relationship between blood pressure and cerebral blood velocity estimated from filtered data segments (0.02-0.8 Hz). Dynamic cerebral autoregulation of patients with POTS did not differ from that of controls. The patients' dynamic cerebral autoregulation did not change over the course of HUT, despite increased tachycardia suggestive of worsening orthostatic stress. Inflation of military anti-shock trouser pants substantially reduced the tachycardia of patients with POTS without affecting cerebral autoregulation. Symptoms of orthostatic intolerance were reduced in one-half of the patients following military anti-shock trouser pants inflation. We conclude that cerebral perfusion and autoregulation in many patients with POTS do not differ from that of normal control subjects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号