首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
在将稻田节肢动物群落按营养关系分为植食类、寄生类、捕食类、腐食类和其他类等5个功能团的基础上,从功能团优势度、群落结构参数及群落相异性等方面,经2年3点的调查就2个转cry1Ab基因粳稻(Bt粳稻)品系KMD1和KMD2对稻田节肢动物群落结构的影响做了评价。结果表明:在大多数情况下,Bt粳稻与对照间各功能团优势度、群落结构参数[物种丰富度(S)、Shannon-Wiener多样性指数(H′)、均匀性指数(J)、优势集中性指数(C)]及其时间动态无明显差异;Bt粳稻与对照间植食类、寄生类、捕食类亚群落,及整个节肢动物群落的相似性也较高。综合分析认为,Bt粳稻对稻田节肢动物群落结构无明显的负面影响。  相似文献   

2.
作物多样性对害虫及其天敌多样性的级联效应   总被引:1,自引:0,他引:1  
植物物种丰富度对植食性、寄生性和捕食性节肢动物多样性的影响是群落生态学的一个重要研究内容.探讨了作物物种丰富度对害虫及其天敌多样性的影响.通过连续4年5个作物物种丰富度水平的野外实验,发现作物物种丰富度显著性影响害虫物种丰富度,但对天敌物种丰富度的影响甚微.然而,害虫物种丰富度却显著影响天敌物种丰富度.这些发现表明,相邻营养层之间的级联效应较强,而不相邻营养层之间的作用关系被中间营养层所弱化.此外,本研究还发现,混栽田中节肢动物群落稳定性高于单一种植田中节肢动物群落稳定性.本研究结果突出了不同营养层之间复杂的作用关系以及作物多样性在农业生态系统食物网中的关键性角色.  相似文献   

3.
郝树广  罗跃进 《昆虫学报》1998,41(4):343-353
该项研究通过系统调查,把稻田节肢动物群落按营养和取食关系划分为三个营养层(基位物种,中位物种,顶位物种)和不同的功能集团,在物种、功能集团和营养层三个组织层次水平上探讨了稻田节肢动物群落的结构和多样性,较全面地考察了整个群落中物种和功能集团在时间上的结构动态、功能关系和数量消长规律。结果表明:功能集团多样性与种多样性的变化趋势较一致,在群落研究中似乎可以用对功能集团的研究代替对种的研究,从而简化物种间复杂的网络关系,认为这是研究群落物种间功能关系的途径之一。营养层多样性在时间序列过程中波动性较小,所以可用于群落相似性和稳定性的分析。研究分析了中性昆虫对害虫调控的意义,认为对于天敌作用的评价应以整个群落为基础,全面考虑天敌、害虫、以及中性昆虫的数量、丰盛度、空间时间生态位等信息。  相似文献   

4.
双季稻区两类生境稻田节肢动物群落结构比较   总被引:4,自引:0,他引:4  
刘雨芳  古德祥 《生态科学》2004,23(3):196-199,203
用吸虫器采样法,对双季稻区中处于多样化生境及单一生境中的两类稻田中的节肢动物群落结构特征进行了比较研究。结果表明:在早稻生长发育初期和晚稻生长全期,多样化生境稻田中捕食性节肢动物的物种数和个体数量都显著高于单一化生境稻田。同时,多样化生境中稻田植食性昆虫的物种丰富度高于单一化生境稻田,但其个体数量较低。非稻田生境主要作为稻田捕食性节肢动物群落的种库,能促进稻田捕食性节肢动物群落的重建。  相似文献   

5.
广东双季稻区杂草地和稻田中捕食性节肢动物的群落动态   总被引:11,自引:1,他引:10  
用吸虫器采样法,于1998年对广东省大沙镇双季稻区两块相邻的杂草地和稻田中捕食性节肢动物群落的结构进行了研究。在杂草地生境中共采集到73种捕食性节肢动物,其中55种为蜘蛛,18种为昆虫。3月21日,早稻田翻耕前,在杂草地中采集到33种捕食性节肢动物,密度为130头/m2。4月4日,水稻移栽1周后,在杂草地中采到29种捕食性节肢动物,密度为92头/m2;同期在稻田中采到12种捕食性节肢动物,密度为16.2头/m2。5月13日早稻成熟前期,在杂草地中只采到19种捕食性节肢动物,密度为28头/m2;而此期,在稻田中采到27种捕食性节肢动物,密度为53.2头/m2。在晚稻生长期,杂草地捕食性节肢动物与稻田捕食性节肢动物物种数和密度的变化与早稻生长期情况相似。杂草地与稻田两生境间的捕食性节肢动物群落的相似性系数大于0.5,由此可见,这两类生境中捕食性节肢动物的物种组成是非常相似的,具有较多的共有种。杂草地捕食性节肢动物群落可能是稻田捕食性节肢动物群落重建的重要种库之一。  相似文献   

6.
鱼类在食物网中的营养位置对其消化道寄生蠕虫的群落结构有重要作用。本研究调查了梁子湖、洞庭湖、鄱阳湖中鳜(Siniperca chuatsi)消化道寄生蠕虫群落的组成和多样性。在3个湖泊中共发现11种寄生蠕虫,优势种均为范尼道佛吸虫(Dollfustrema vaneyi),频率分布中感染有1—2种寄生虫的样本占65%,单个样本中最大物种数为6。3个湖泊中平均物种丰富度为1.53—2.13,Brillouin多样性指数为0.12—0.33,其中鄱阳湖中的多样性最高。梁子湖和洞庭湖之间的Jaccard相似度和百分比相似指数最高。通过比较食物网中不同营养位置鱼类的消化道寄生蠕虫群落结构,发现鳜的消化道寄生虫群落的物种丰富度与多样性水平都高于植食性和杂食性鱼类。研究还讨论了宿主食物组成对消化道寄生蠕虫群落结构的影响。  相似文献   

7.
综论稻田生态系中性昆虫的意义及其调控   总被引:10,自引:0,他引:10  
1 中性昆虫的概念及田间动态1.1 概念的提出吴进才等在对稻田节肢动物群落营养物种的系统调查中发现,稻田生态系中,既非害虫又非天敌的一类昆虫占整个节肢动物群落丰盛度的20%~65%[7,8]。生态学理论认为,系统中没有孤立存在的物种[12]。数量庞大的这一昆虫类群在稻田生态系统中有何意义?与稻田害虫的发生有何联系?现有文献还少有涉及。吴进才等[7]、郭玉杰等[1]提出了中性昆虫的概念,用于指称传统植物保护学中的既非害虫又非天敌的一类昆虫,并就其田间动态及在食物网中的作用进行了系统调查、研究和讨论…  相似文献   

8.
在将稻田节肢动物群落按营养关系分为植食类、寄生类、捕食类、腐食类和其他类等5个功能团的基础上,从功能团优势度、群落结构参数及群落相异性等方面,经2年3点的调查就2个转cry1Ab基因粳稻(Bt粳稻)品系KMD1和KMD2对稻田节肢动物群落结构的影响做了评价。结果表明:在大多数情况下,Bt粳稻与对照间各功能团优势度、群落结构参数[物种丰富度(S)、Shannon-Wiener多样性指数(H′)、均匀性指数(J)、优势集中性指数(C)]及其时间动态无明显差异;Bt粳稻与对照间植食类、寄生类、捕食类亚群落,及整个节肢动物群落的相似性也较高。综合分析认为,Bt粳稻对稻田节肢动物群落结构无明显的负面影响。  相似文献   

9.
转cry1Ab/cry1Ac基因籼稻对稻田节肢动物群落影响   总被引:24,自引:3,他引:21  
将稻田节肢动物群落按营养关系划分为5个功能团,即植食类、寄生类、捕食类、腐食类和其它类,从功能团优势度、功能团内科组成及其优势度、群落主要参数及群落相异性等方面,经两年四点的调查就2个转cry1Ab/cry1Ac基因籼稻(Bt水稻)品系TT9.3和TT9.4对稻田节肢动物群落的影响作了较系统评价。植食类、寄生类和腐食类功能团内某些优势科的优势度在Bt水稻田与对照(IR72)田之间有时呈显著或极显著差异,如Bt水稻田中茧蜂或姬蜂科的优势度有时明显低于对照。但是,在大多情况下Bt水稻田与对照田之间功能团优势度、功能团内科组成及其优势度、群落主要参数(物种丰富度、Shannon-Wiener多样性指数、均匀性指数、优势集中性指数)及其时间动态基本无明显差异;Bt水稻田与对照田间植食类、寄生类、捕食类亚群落和整个节肢动物群落的相异性大多较低。可见,Bt水稻对稻田节肢动物群落基本无明显的负面影响。  相似文献   

10.
郭依泉  赵志模 《生态学杂志》1992,11(3):65-68,71
群落是指一定地段或生境里各种生物种群构成的结构单元。群落内各物种不是孤立存在的,它们之间存在着极为复杂的营养联系。一种植物常有多种害虫取食,一种害虫可取食多种植物,同时又被多种天敌捕食或寄  相似文献   

11.
Agricultural intensification (AI) is currently a major driver of biodiversity loss and related ecosystem functioning decline. However, spatio-temporal changes in community structure induced by AI, and their relation to ecosystem functioning, remain largely unexplored. Here, we analysed 16 quantitative cereal aphid–parasitoid and parasitoid–hyperparasitoid food webs, replicated four times during the season, under contrasting AI regimes (organic farming in complex landscapes vs. conventional farming in simple landscapes). High AI increased food web complexity but also temporal variability in aphid–parasitoid food webs and in the dominant parasitoid species identity. Enhanced complexity and variability appeared to be controlled bottom-up by changes in aphid dominance structure and evenness. Contrary to the common expectations of positive biodiversity–ecosystem functioning relationships, community complexity (food-web complexity, species richness and evenness) was negatively related to primary parasitism rates. However, this relationship was positive for secondary parasitoids. Despite differences in community structures among different trophic levels, ecosystem services (parasitism rates) and disservices (aphid abundances and hyperparasitism rates) were always higher in fields with low AI. Hence, community structure and ecosystem functioning appear to be differently influenced by AI, and change differently over time and among trophic levels. In conclusion, intensified agriculture can support diverse albeit highly variable parasitoid–host communities, but ecosystem functioning might not be easy to predict from observed changes in community structure and composition.  相似文献   

12.
One of the key measures that have been used to describe the topological properties of complex networks is the “degree distribution”, which is a measure that describes the frequency distribution of number of links per node. Food webs are complex ecological networks that describe the trophic relationships among species in a community, and the topological properties of empirical food webs, including degree distributions, have been examined previously. Previously, the “niche model” has been shown to accurately predict degree distributions of empirical food webs, however, the niche model-generated food webs were referenced against empirical food webs that had their species grouped together based on their taxonomic and/or trophic relationships (aggregated food webs). Here, we explore the effects of species aggregation on the ability of the niche model to predict the total- (sum of prey and predator links per node), in- (number of predator links per node), and out- (number of prey links per node) degree distributions of empirical food webs by examining two food webs that can be aggregated at different levels of resolution. The results showed that (1) the cumulative total- and out-degree distributions were consistent with the niche model predictions when the species were aggregated, (2) when the species were disaggregated (i.e., higher resolution), there were mixed conclusions with regards to the niche model's ability to predict total- and out-degree distributions, (3) the model's ability to predict the in-degree distributions of the two food webs was generally inadequate. Although it has been argued that universal functional form based on the niche model could describe the degree distribution patterns of empirical food webs, we believe there are some limitations to the model's ability to accurately predict the structural properties of food webs.  相似文献   

13.
Food web topologies depict the community structure as distributions of feeding interactions across populations. Although the soil ecosystem provides important functions for aboveground ecosystems, data on complex soil food webs is notoriously scarce, most likely due to the difficulty of sampling and characterizing the system. To fill this gap we assembled the complex food webs of 48 forest soil communities. The food webs comprise 89 to 168 taxa and 729 to 3344 feeding interactions. The feeding links were established by combining several molecular methods (stable isotope, fatty acid and molecular gut content analyses) with feeding trials and literature data. First, we addressed whether soil food webs (n = 48) differ significantly from those of other ecosystem types (aquatic and terrestrial aboveground, n = 77) by comparing 22 food web parameters. We found that our soil food webs are characterized by many omnivorous and cannibalistic species, more trophic chains and intraguild‐predation motifs than other food webs and high average and maximum trophic levels. Despite this, we also found that soil food webs have a similar connectance as other ecosystems, but interestingly a higher link density and clustering coefficient. These differences in network structure to other ecosystem types may be a result of ecosystem specific constraints on hunting and feeding characteristics of the species that emerge as network parameters at the food‐web level. In a second analysis of land‐use effects, we found significant but only small differences of soil food web structure between different beech and coniferous forest types, which may be explained by generally strong selection effects of the soil that are independent of human land use. Overall, our study has unravelled some systematic structures of soil food‐webs, which extends our mechanistic understanding how environmental characteristics of the soil ecosystem determine patterns at the community level.  相似文献   

14.
Saproxylic insect communities inhabiting tree hollow microhabitats correspond with large food webs which simultaneously are constituted by multiple types of plant-animal and animal-animal interactions, according to the use of trophic resources (wood- and insect-dependent sub-networks), or to trophic habits or interaction types (xylophagous, saprophagous, xylomycetophagous, predators and commensals). We quantitatively assessed which properties of specialised networks were present in a complex networks involving different interacting types such as saproxylic community, and how they can be organised in trophic food webs. The architecture, interacting patterns and food web composition were evaluated along sub-networks, analysing their implications to network robustness from random and directed extinction simulations. A structure of large and cohesive modules with weakly connected nodes was observed throughout saproxylic sub-networks, composing the main food webs constituting this community. Insect-dependent sub-networks were more modular than wood-dependent sub-networks. Wood-dependent sub-networks presented higher species degree, connectance, links, linkage density, interaction strength, and were less specialised and more aggregated than insect-dependent sub-networks. These attributes defined high network robustness in wood-dependent sub-networks. Finally, our results emphasise the relevance of modularity, differences among interacting types and interrelations among them in modelling the structure of saproxylic communities and in determining their stability.  相似文献   

15.
Four genetically modified (GM) maize (Zea mays L.) hybrids (coleopteran resistant, coleopteran and lepidopteran resistant, lepidopteran resistant and herbicide tolerant, coleopteran and herbicide tolerant) and its non‐GM control maize stands were tested to compare the functional diversity of arthropods and to determine whether genetic modifications alter the structure of arthropods food webs. A total number of 399,239 arthropod individuals were used for analyses. The trophic groups’ number and the links between them indicated that neither the higher magnitude of Bt toxins (included resistance against insect, and against both insects and glyphosate) nor the extra glyphosate treatment changed the structure of food webs. However, differences in the average trophic links/trophic groups were detected between GM and non‐GM food webs for herbivore groups and plants. Also, differences in characteristic path lengths between GM and non‐GM food webs for herbivores were observed. Food webs parameterized based on 2‐year in‐field assessments, and their properties can be considered a useful and simple tool to evaluate the effects of Bt toxins on non‐target organisms.  相似文献   

16.
Spiders are dominant terrestrial predators that consume a large variety of prey and engage in intraguild predation. Although the feeding habits of certain species are well known, the trophic structure of spider assemblages still needs to be investigated. Stable isotope analysis enables characterisation of trophic relationships between organisms because it tracks the energy flow in food webs and indicates the average number of trophic transfers between a given species and the base of the web, thus being a useful tool to estimate the magnitude of intraguild predation in food webs. Using this technique, we studied the trophic groups of spiders and their links within the arthropod food web of a Mediterranean organic citrus grove. We assessed the trophic positions of the 25 most common spider species relative to other arthropod predators and potential prey in the four seasons of the year, both in the canopy and on the ground. The analyses showed great seasonal variation in the isotopic signatures of some arthropod species, as well as the existence of various trophic groups and a wide range of trophic levels among spiders, even in species belonging to the same family. Differences in δ15N between spiders and the most abundant prey in the grove usually spanned two trophic levels or more. Our findings provide field evidence of widespread intraguild predation in the food web and caution against using spider families or guilds instead of individual species when studying spider trophic interactions.  相似文献   

17.
Documenting trophic links in a food web has traditionally required complex exclusion experiments coupled with extraordinarily labor-intensive direct observations of predator foraging. Newer techniques such as stable isotope analysis (SIA) may facilitate relatively quick and accurate assessments of consumer feeding behavior. Ratios of N and C isotopes are thought to be useful for determining species' trophic position (e.g., 1 degrees consumer, 2 degrees consumer, or omnivore) and their original carbon source (e.g., C3 or C4 plants; terrestrial or marine nutrients). Thus far, however, applications of stable isotopes to terrestrial arthropod food webs have suggested that high taxon-specific variation may undermine the effectiveness of this method. We applied stable isotope analysis to a pear orchard food web, in which biological control of a dominant pest, pear psylla (Cacopsylla pyricola), involves primarily generalist arthropod predators with a high frequency of omnivory. We found multiple sources of isotopic variation in this food web, including differences among plant tissues; time, stage, and taxon-specific differences among herbivores (despite similar feeding modes); and high taxon-specific variation among predators (with no clear evidence of omnivory). Collectively, these multiple sources of isotopic variation blur our view of the structure of this food web. Idiosyncrasies in consumer trophic shifts make ad hoc application of SIA to even moderately complex food webs intractable. SIA may not be a generally applicable "quick and dirty" method for delineating terrestrial food web structure-not without calibration of specific consumer food trophic shifts.  相似文献   

18.
Decline in landscape complexity owing to agricultural intensification may affect biodiversity, food web complexity and associated ecological processes such as biological control, but such relationships are poorly understood. Here, we analysed food webs of cereal aphids, their primary parasitoids and hyperparasitoids in 18 agricultural landscapes differing in structural complexity (42-93% arable land). Despite little variation in the richness of each trophic group, we found considerable changes in trophic link properties across the landscape complexity gradient. Unexpectedly, aphid-parasitoid food webs exhibited a lower complexity (lower linkage density, interaction diversity and generality) in structurally complex landscapes, which was related to the dominance of one aphid species in complex landscapes. Nevertheless, primary parasitism, as well as hyperparasitism, was higher in complex landscapes, with primary parasitism reaching levels for potentially successful biological control. In conclusion, landscape complexity appeared to foster higher parasitism rates, but simpler food webs, thereby casting doubt on the general importance of food web complexity for ecosystem functioning.  相似文献   

19.
Abstract. 1. Insect–insectivore trophic relations were reviewed using presence–absence data from sixty-one invertebrate-dominated food webs and fifteen food webs from Briand's (1983) original forty web collection. From counts of prey links in higher taxa (orders, classes, phyla), six phyla and thirteen classes of non-insect insectivores and fourteen orders of insect predators and prey were found. 2. Detritus-based habitats (phytotelmata, felled logs, carcasses, dungpads) harboured fewer orders of insects, that interact with other insects, than webs from grazer-based (host plants, some galls) and mixed-based systems (aquatic webs). Consumer–resource networks of higher insect taxa in these webs shared several features found in some species-level biological networks: the trend was towards few pairs of strong asymmetrical links, several weak links and many null interactions. 3. From counts of insect predator–insect prey links, hymenopterans as terrestrial predators and parasitoids interacted with the most number of higher insect taxa. Hymenopterans were also linked as prey more often than other terrestrial insects. In freshwater habitats, plecopterans were linked as predators more often than other aquatic taxa, whereas dipterans were listed as prey more often than other insects. 4. Dipterans were linked in the diets of non-insect insectivores from seven of eight common taxonomic classes. Arachnids were identified as insect predators by food web researchers in the largest number of webs, followed by passerine birds and cyprinodont fishes. From analysis of prey links at the ordinal level, predaceous insects were less polyphagous than other predators (other ectotherms and endotherms). 5. Analysis of chain lengths, as expected, showed that insect prey occupied mostly lowermost trophic levels, non-insect insectivores were found mostly at uppermost trophic levels, and predaceous insects were found mostly at intermediate trophic levels across most habitats. 6. This analysis offers evidence that insects are not just occupying intermediate trophic levels in some communities. Indeed, some taxa feed at the upper ends of long food chains, for example eupelmids in galls, staphylinids in carcasses, and perlid plecopterans in streams.  相似文献   

20.
One of the most important issues in ecology is understanding the causal mechanisms that shape the structure of ecological communities through trophic interactions. The focus on direct, trophic interactions in much of the research to date means that the potential significance of non-trophic, indirect, and facilitative interactions has been largely ignored in traditional food webs. There is a growing appreciation of the community consequences of such non-trophic effects, and the need to start including them in food web research. This review highlights how non-trophic, indirect, and facilitative interactions play an important role in organizing the structure of plant-centered arthropod communities. I argue that herbivore-induced plant responses, insect ecosystem engineers, and mutualisms involving ant–honeydew-producing insects all generate interaction linkages among insect herbivores, thereby producing complex indirect interaction webs on terrestrial plants. These interactions are all very common and widespread on terrestrial plants, in fact they are almost ubiquitous, but these interactions have rarely been included in traditional food webs. Finally, I will emphasize that because the important community consequences of these non-trophic and indirect interactions have been largely unexplored, it is critical that indirect interaction webs should be the focus of future research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号