首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Members of the family Geobacteraceae are commonly the predominant Fe(III)-reducing microorganisms in sedimentary environments, as well as on the surface of energy-harvesting electrodes, and are able to effectively couple the oxidation of acetate to the reduction of external electron acceptors. Citrate synthase activity of these organisms is of interest due to its key role in acetate metabolism. Prior sequencing of the genome of Geobacter sulfurreducens revealed a putative citrate synthase sequence related to the citrate synthases of eukaryotes. All citrate synthase activity in G. sulfurreducens could be resolved to a single 49-kDa protein via affinity chromatography. The enzyme was successfully expressed at high levels in Escherichia coli with similar properties as the native enzyme, and kinetic parameters were comparable to related citrate synthases (kcat = 8.3 s−1; Km = 14.1 and 4.3 μM for acetyl coenzyme A and oxaloacetate, respectively). The enzyme was dimeric and was slightly inhibited by ATP (Ki = 1.9 mM for acetyl coenzyme A), which is a known inhibitor for many eukaryotic, dimeric citrate synthases. NADH, an allosteric inhibitor of prokaryotic hexameric citrate synthases, did not affect enzyme activity. Unlike most prokaryotic dimeric citrate synthases, the enzyme did not have any methylcitrate synthase activity. A unique feature of the enzyme, in contrast to citrate synthases from both eukaryotes and prokaryotes, was a lack of stimulation by K+ ions. Similar citrate synthase sequences were detected in a diversity of other Geobacteraceae members. This first characterization of a eukaryotic-like citrate synthase from a prokaryote provides new insight into acetate metabolism in Geobacteraceae members and suggests a molecular target for tracking the presence and activity of these organisms in the environment.  相似文献   

2.
Previous studies have shown that glucagon-like peptide-1 (GLP-1) provides cardiovascular benefits independent of its role on peripheral glycemic control. However, the precise mechanism(s) by which GLP-1 treatment renders cardioprotection during myocardial ischemia remain unresolved. Here we examined the role for GLP-1 treatment on glucose and fatty acid metabolism in normal and ischemic rat hearts following a 30 min ischemia and 24 h reperfusion injury, and in isolated cardiomyocytes (CM). Relative carbohydrate and fat oxidation levels were measured in both normal and ischemic hearts using a 1-13C glucose clamp coupled with NMR-based isotopomer analysis, as well as in adult rat CMs by monitoring pH and O2 consumption in the presence of glucose or palmitate. In normal heart, GLP-1 increased glucose uptake (↑64%, p<0.05) without affecting glycogen levels. In ischemic hearts, GLP-1 induced metabolic substrate switching by increasing the ratio of carbohydrate versus fat oxidation (↑14%, p<0.01) in the LV area not at risk, without affecting cAMP levels. Interestingly, no substrate switching occurred in the LV area at risk, despite an increase in cAMP (↑106%, p<0.05) and lactate (↑121%, p<0.01) levels. Furthermore, in isolated CMs GLP-1 treatment increased glucose utilization (↑14%, p<0.05) and decreased fatty acid oxidation (↓15%, p<0.05) consistent with in vivo finding. Our results show that this benefit may derive from distinct and complementary roles of GLP-1 treatment on metabolism in myocardial sub-regions in response to this injury. In particular, a switch to anaerobic glycolysis in the ischemic area provides a compensatory substrate switch to overcome the energetic deficit in this region in the face of reduced tissue oxygenation, whereas a switch to more energetically favorable carbohydrate oxidation in more highly oxygenated remote regions supports maintaining cardiac contractility in a complementary manner.  相似文献   

3.
Hypoxia is a common feature in children with sickle cell disease (SCD) that is inconsistently associated with painful crises and acute chest syndrome. To assess the prevalence and risk factors of hypoxia, we recorded daytime, nocturnal, and postexercise pulse oximetry (SpO2) values in 39 SCD patients with a median age of 10.8 years. Median daytime SpO2 was 97% (range, 89%–100%), and 36% of patients had daytime hypoxia defined as SpO2<96%. Median nocturnal SpO2 was 94.7% (range, 87.7%–99.5%), 50% of patients had nocturnal hypoxia defined as SpO2≤93%, and 11(37%) patients spent more than 10% of their total sleep time with SpO2<90%. Median postexercise SpO2 was 94% (range, 72%–100%) and 44.7% of patients had postexercise hypoxia defined as an SpO2 decrease ≥3% after a 6-minute walk test. Among patients with normal daytime SpO2, 35% had nocturnal and 42% postexercise hypoxia. Compared to 9 patients without daytime, nocturnal, or postexercise hypoxia, 25 patients with hypoxia under at least one of these three conditions had greater anemia severity (P = 0.01), lower HbF levels (P = 0.04), and higher aspartate aminotransferase levels (P = 0.03). Males predominated among patients with postexercise hypoxia (P = 0.004). Hypoxia correlated neither with painful crises nor with acute chest syndrome. Of 32 evaluable patients, 6 (18.8%) had a tricuspid regurgitation velocity ≥2.6 m/s, and this feature was associated with anemia (P = 0.044). Median percentage of the predicted distance covered during a 6-minute walk test was 86% [46–120]; the distance was negatively associated with LDH (P = 0.044) and with a past history of acute chest syndrome (P = 0.009). In conclusion, severe episodes of nocturnal and postexercise hypoxia are common in children with SCD, even those with normal daytime SpO2.  相似文献   

4.
“Live High-Train Low” (LHTL) training can alter oxidative status of athletes. This study compared prooxidant/antioxidant balance responses following two LHTL protocols of the same duration and at the same living altitude of 2250 m in either normobaric (NH) or hypobaric (HH) hypoxia. Twenty-four well-trained triathletes underwent the following two 18-day LHTL protocols in a cross-over and randomized manner: Living altitude (PIO2 = 111.9 ± 0.6 vs. 111.6 ± 0.6 mmHg in NH and HH, respectively); training “natural” altitude (~1000–1100 m) and training loads were precisely matched between both LHTL protocols. Plasma levels of oxidative stress [advanced oxidation protein products (AOPP) and nitrotyrosine] and antioxidant markers [ferric-reducing antioxidant power (FRAP), superoxide dismutase (SOD) and catalase], NO metabolism end-products (NOx) and uric acid (UA) were determined before (Pre) and after (Post) the LHTL. Cumulative hypoxic exposure was lower during the NH (229 ± 6 hrs.) compared to the HH (310 ± 4 hrs.; P<0.01) protocol. Following the LHTL, the concentration of AOPP decreased (-27%; P<0.01) and nitrotyrosine increased (+67%; P<0.05) in HH only. FRAP was decreased (-27%; P<0.05) after the NH while was SOD and UA were only increased following the HH (SOD: +54%; P<0.01 and UA: +15%; P<0.01). Catalase activity was increased in the NH only (+20%; P<0.05). These data suggest that 18-days of LHTL performed in either NH or HH differentially affect oxidative status of athletes. Higher oxidative stress levels following the HH LHTL might be explained by the higher overall hypoxic dose and different physiological responses between the NH and HH.  相似文献   

5.

Objective

We examined metabolic and endocrine responses during rest and exercise in moderate hypoxia over a 7.5 h time courses during daytime.

Methods

Eight sedentary, overweight men (28.6±0.8 kg/m2) completed four experimental trials: a rest trial in normoxia (FiO2 = 20.9%, NOR-Rest), an exercise trial in normoxia (NOR-Ex), a rest trial in hypoxia (FiO2 = 15.0%, HYP-Rest), and an exercise trial in hypoxia (HYP-Ex). Experimental trials were performed from 8:00 to 15:30 in an environmental chamber. Blood and respiratory gas samples were collected over 7.5 h. In the exercise trials, subjects performed 30 min of pedaling exercise at 60% of VO2max at 8:00, 10:30, and 13:00, and rested during the remaining period in each environment. Standard meals were provided at 8:30, 11:00, and 13:30.

Results

The areas under the curves for blood glucose and serum insulin concentrations over 7.5 h did not differ among the four trials. At baseline, %carbohydrate contribution was significantly higher in the hypoxic trials than in the normoxic trials (P<0.05). Although exercise promoted carbohydrate oxidation in the NOR-Ex and HYP-Ex trials, %carbohydrate contribution during each exercise and post-exercise period were significantly higher in the HYP-Ex trial than in the NOR-Ex trial (P<0.05).

Conclusion

Three sessions of 30 min exercise (60% of VO2max) in moderate hypoxia over 7.5 h did not attenuate postprandial glucose and insulin responses in young, overweight men. However, carbohydrate oxidation was significantly enhanced when the exercise was conducted in moderate hypoxia.  相似文献   

6.

Background

Hypoxic states of the cardiovacular system are undoubtedly associated with the most frequent diseases of modern time. Therefore, understanding hypoxic resistance encountered after physiological adaptation such as chronic hypoxia, is crucial to better deal with hypoxic insult. In this study, we examine the role of energetic modifications induced by chronic hypoxia (CH) in the higher tolerance to oxygen deprivation.

Methodology/Principal Findings

Swiss mice were exposed to a simulated altitude of 5500 m in a barochamber for 21 days. Isolated perfused hearts were used to study the effects of a decreased oxygen concentration in the perfusate on contractile performance (RPP) and phosphocreatine (PCr) concentration (assessed by 31P-NMR), and to describe the integrated changes in cardiac energetics regulation by using Modular Control Analysis (MoCA). Oxygen reduction induced a concomitant decrease in RPP (−46%) and in [PCr] (−23%) in Control hearts while CH hearts energetics was unchanged. MoCA demonstrated that this adaptation to hypoxia is the direct consequence of the higher responsiveness (elasticity) of ATP production of CH hearts compared with Controls (−1.88±0.38 vs −0.89±0.41, p<0.01) measured under low oxygen perfusion. This higher elasticity induces an improved response of energy supply to cellular energy demand. The result is the conservation of a healthy control pattern of contraction in CH hearts, whereas Control hearts are severely controlled by energy supply.

Conclusions/Significance

As suggested by the present study, the mechanisms responsible for this increase in elasticity and the consequent improved ability of CH heart metabolism to respond to oxygen deprivation could participate to limit the damages induced by hypoxia.  相似文献   

7.
This study investigated the effect of sesamin on myocardial fibrosis in spontaneously hypertensive rats (SHRs) and the possible mechanisms involved. Twenty-eight male SHRs were randomly allocated to SHR group, Ses160 group (sesamin 160 mg/kg), Ses80 group (sesamin 80 mg/kg) and Cap30 group (captopril 30 mg/kg). Seven male WKY rats were used as control. Sesamin and captopril were administered intragastrically for 12 weeks. Captopril significantly reduced systolic blood pressure and angiotensin II (Ang II) levels in SHRs, accompanied by a marked attenuation of left ventricular hypertrophy (LVH) and collagen deposition (P <0.05 or P <0.01). Though sesamin had no significant influence on Ang II levels, and the hypotensive effect was also significantly inferior to that of captopril (P <0.05 or P <0.01), however, the improvement of LVH and collagen deposition was similar to that in captopril group. Sesamin markedly reduced transforming growth factor-β1 (TGF-β1) content in cardiac tissues, with Smad3 phosphorylation decreased and Smad7 protein expression increased notably (P <0.05 or P <0.01). Protein expression of type I collagen and type III collagen, target genes of Smad3, was down-regulated markedly by sesamin (P <0.05 or P <0.01). In addition, sesamin significantly increased total antioxidant capacity and superoxide dismutase protein in cardiac tissues (P <0.05 or P <0.01), while the expression of NADPH oxidase subunit p47phox and malondialdehyde content were reduced markedly (P <0.05 or P <0.01). In vitro studies also demonstrated that sesamin was able to suppress Ang II induced phosphorylation of Smad3 and secretion of TGF-β1 and type I and type III collagen in cultured rat cardiac fibroblasts. These data suggest that sesamin is capable of attenuating hypertensive myocardial fibrosis through, at least partly, suppression of TGF-β1/Smad signaling pathway.  相似文献   

8.
Baicalin purified from the root of Radix scutellariae is widely used in clinical practices. This study aimed to evaluate the effect of baicalin on the pharmacokinetics of nifedipine, a CYP3A probe substrate, in rats in vivo and in vitro. In a randomised, three-period crossover study, significant changes in the pharmacokinetics of nifedipine (2 mg/kg) were observed after treatment with a low (0.225 g/kg) or high (0.45 g/kg) dose of baicalin in rats. In the low- and high-dose groups of baicalin-treated rats, C max of total nifedipine decreased by 40%±14% (P<0.01) and 65%±14% (P<0.01), AUC0–∞ decreased by 41%±8% (P<0.01) and 63%±7% (P<0.01), Vd increased by 85%±43% (P<0.01) and 224%±231% (P<0.01), and CL increased by 97%±78% (P<0.01) and 242%±135% (P<0.01), respectively. Plasma protein binding experiments in vivo showed that C max of unbound nifedipine significantly increased by 25%±19% (P<0.01) and 44%±29% (P<0.01), respectively, and there was a good correlation between the unbound nifedipine (%) and baicalin concentrations (P<0.01). Furthermore, in vitro results revealed that baicalin was a competitive displacer of nifedipine from plasma proteins. In vitro incubation experiments demonstrated that baicalin could also competitively inhibit CYP3A activity in rat liver microsomes in a concentration-dependent manner. In conclusion, the pharmacokinetic changes of nifedipine may be modulated by the inhibitory effects of baicalin on plasma protein binding and CYP3A–mediated metabolism.  相似文献   

9.
10.
The phosphatase and actin regulator 1 (PHACTR1) locus is a very commonly identified hit in genome-wide association studies investigating coronary artery disease and myocardial infarction (MI). However, the function of PHACTR1 in the heart is still unknown. We characterized the mechanisms regulating Phactr1 expression in the heart, used adenoviral gene delivery to investigate the effects of Phactr1 on cardiac function, and analyzed the relationship between MI associated PHACTR1 allele and cardiac function in human subjects. Phactr1 mRNA and protein levels were markedly reduced (60%, P<0.01 and 90%, P<0.001, respectively) at 1 day after MI in rats. When the direct myocardial effects of Phactr1 were studied, the skeletal α-actin to cardiac α-actin isoform ratio was significantly higher (1.5-fold, P<0.05) at 3 days but 40% lower (P<0.05) at 2 weeks after adenovirus-mediated Phactr1 gene delivery into the anterior wall of the left ventricle. Similarly, the skeletal α-actin to cardiac α-actin ratio was lower at 2 weeks in infarcted hearts overexpressing Phactr1. In cultured neonatal cardiac myocytes, adenovirus-mediated Phactr1 overexpression for 48 hours markedly increased the skeletal α-actin to cardiac α-actin ratio, this being associated with an enhanced DNA binding activity of serum response factor. Phactr1 overexpression exerted no major effects on the expression of other cardiac genes or LV structure and function in normal and infarcted hearts during 2 weeks’ follow-up period. In human subjects, MI associated PHACTR1 allele was not associated significantly with cardiac function (n = 1550). Phactr1 seems to regulate the skeletal to cardiac α-actin isoform ratio.  相似文献   

11.
A protective reagent for ARI should have the ability to repair injured tissue caused by radiation and prevent continuous damage from secondary risk factors. Trx-1 was explored as a candidate therapy for ARI, as it scavenges reactive oxygen species, regulates cell growth and differentiation, participates in immune reactions, and inhibits apoptosis by acting inside and/or outside cells. Trx-1 can also decrease excessive inflammation in ARI by regulating the creation of inflamed media, by inhibiting the activation of complement, and by reducing the chemotaxis, adhesion, and migration of inflammatory cells. As effectively and stably expressing exogenous genes in the long term and regulating immune inflammation and tissue repair, MSC are a good choice for Trx-1 gene therapy. In this study, Trx-1-overexpressing hucMSC-Trx-1 were obtained by adenoviral vector-mediated infection. We first measured the redox capacity of hucMSC-Trx-1 with an antioxidant capacity (T-AOC) assay, a hydrogen peroxide (H2O2) content determination assay in vivo, a H2O2-induced oxidation hemolysis assay, and a lipid peroxidation assay in vitro. Then, we measured survival time, the protection of the hematopoietic system, and the regulation of inflammation in important organs in three treatment groups of NOD/SCID mice (treated with hucMSC-Trx-1, with hucMSC, and with saline) that were exposed to 4.5 Gy 60Co-γ-ray radiation. The hucMSC-Trx-1 group achieved superior antioxidation results, protecting bone marrow hematopoietic stem cells (LinCD117+: hucMSC-Trx-1 vs. hucMSC, P<0.05; hucMSC-Trx-1 vs. NS, P<0.01), promoting the formation of red blood cells and hemoglobin (hucMSC-Trx-1 vs. hucMSC or NS, P<0.05), reducing inflammation and damage in important organs (Bone marrow and lung: hucMSC-Trx-1 vs. NS, P<0.01; hucMSC-Trx-1 vs. hucMSC, P<0.05. Liver and intestine: hucMSC-Trx-1 vs. NS, P<0.05; hucMSC-Trx-1 vs. hucMSC, P<0.05), and prolonging survival (hucMSC-Trx-1 vs. hucMSC or NS, P<0.01). Therefore, hucMSC-Trx-1 combines the merits of gene and cell therapy as a multifunctional radioprotector for ARI.  相似文献   

12.

Background

Chronic kidney disease (CKD) is generally considered an independent risk factor for cardiovascular disease (CVD) development, but rates in individuals with estimated glomerular filtration rate (eGFR) >60 ml/min/1.73 m2 are uncertain. The Framingham global CVD risk score (FRS) equation is a widely accepted tool used to predict CVD risk in the general population. The purpose of the present study was to examine whether an association exists between eGFR and FRS in a Chinese population with no CKD or CVD.

Methods

A total of 333 participants were divided into three groups based on FRS. The Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation and CKD-EPI equation for Asians (CKD-EPI-ASIA) were used to measure eGFR.

Results

A significant inverse association between eGFR and FRS was confirmed with Pearson correlation coefficients of –0.669, –0.698 (eGFRCKD-EPI, P<0.01) and –0.658, –0.690 (eGFRCKD-EPI-ASIA, P<0.01). This association gradually diminished with progression from the low- to high-risk groups (eGFRCKD-EPI, r = –0.615, –0.282, –0.197, P<0.01, P<0.01, P>0.05; similar results according to the CKD-EPI-ASIA equation). In the low- or moderate-risk new-groups, this association became stronger with increased FRS (eGFRCKD-EPI-ASIA, r = –0557, –0.622 or –0.326, –0.329, P<0.01). In contrast to the results from 2008, eGFR was independently associated with FRS following adjustment for traditional cardiovascular risk factors (P<0.05).

Conclusion

Renal function has multiple influences on predicting CVD risk in various populations. With increasing FRS and decreasing eGFR, it is also independently associated with CVD, even in individuals with eGFR >60 ml/min/1.73 m2.  相似文献   

13.
Microbial oxidation is the only biological sink for atmospheric methane. We assessed seasonal changes in atmospheric methane oxidation and the underlying methanotrophic communities in grassland near Giessen (Germany), along a soil moisture gradient. Soil samples were taken from the surface layer (0–10 cm) of three sites in August 2007, November 2007, February 2008 and May 2008. The sites showed seasonal differences in hydrological parameters. Net uptake rates varied seasonally between 0 and 70 μg CH4 m−2 h−1. Greatest uptake rates coincided with lowest soil moisture in spring and summer. Over all sites and seasons, the methanotrophic communities were dominated by uncultivated methanotrophs. These formed a monophyletic cluster defined by the RA14, MHP and JR1 clades, referred to as upland soil cluster alphaproteobacteria (USCα)-like group. The copy numbers of pmoA genes ranged between 3.8 × 105–1.9 × 106 copies g−1 of soil. Temperature was positively correlated with CH4 uptake rates (P<0.001), but had no effect on methanotrophic population dynamics. The soil moisture was negatively correlated with CH4 uptake rates (P<0.001), but showed a positive correlation with changes in USCα-like diversity (P<0.001) and pmoA gene abundance (P<0.05). These were greatest at low net CH4 uptake rates during winter times and coincided with an overall increase in bacterial 16S rRNA gene abundances (P<0.05). Taken together, soil moisture had a significant but opposed effect on CH4 uptake rates and methanotrophic population dynamics, the latter being increasingly stimulated by soil moisture contents >50 vol% and primarily related to members of the MHP clade.  相似文献   

14.
BackgroundTumor hypoxia is associated with treatment resistance to cancer therapies. Hypoxia can be investigated by immunohistopathologic methods but such procedure is invasive. A non-invasive method to interrogate tumor hypoxia is an attractive option as such method can provide information before, during, and after treatment for personalized therapies. Our study evaluated the correlations between computed tomography (CT) perfusion parameters and immunohistopathologic measurement of tumor hypoxia.MethodsWistar rats, 18 controls and 19 treated with stereotactic radiosurgery (SRS), implanted with the C6 glioma tumor were imaged using CT perfusion on average every five days to monitor tumor growth. A final CT perfusion scan and the brain were obtained on average 14 days (8–22 days) after tumor implantation. Tumor hypoxia was detected immunohistopathologically with pimonidazole. The tumor, necrotic, and pimonidazole-positive areas on histology samples were measured. Percent necrotic area and percent hypoxic areas were calculated. Tumor volume (TV), blood flow (BF), blood volume (BV), and permeability-surface area product (PS) were obtained from the CT perfusion studies. Correlations between CT perfusion parameters and histological parameters were assessed by Spearman’s ρ correlation. A Bonferroni-corrected P value < 0.05 was considered significant.ResultsBF and BV showed significant correlations with percent hypoxic area ρ = -0.88, P < 0.001 and ρ = -0.81, P < 0.001, respectively, for control animals and ρ = -0.7, P < 0.001 and ρ = -0.6, P = 0.003, respectively, for all animals, while TV and BV were correlated (ρ = -0.64, P = 0.01 and ρ = -0.43, P = 0.043, respectively) with percent necrotic area. PS was not correlated with either percent necrotic or percent hypoxic areas.ConclusionsPercent hypoxic area provided significant correlations with BF and BV, suggesting that CT perfusion parameters are potential non-invasive imaging biomarkers of tumor hypoxia.  相似文献   

15.
Maternal and pediatric obesity has risen dramatically over recent years, and is a known predictor of adverse long-term metabolic outcomes in offspring. However, which particular aspects of obese pregnancy promote such outcomes is less clear. While maternal obesity increases both maternal and placental inflammation, it is still unknown whether this is a dominant mechanism in fetal metabolic programming. In this study, we utilized the Fat-1 transgenic mouse to test whether increasing the maternal n-3/n-6 tissue fatty acid ratio could reduce the consequences of maternal obesity-associated inflammation and thereby mitigate downstream developmental programming. Eight-week-old WT or hemizygous Fat-1 C57BL/6J female mice were placed on a high-fat diet (HFD) or control diet (CD) for 8 weeks prior to mating with WT chow-fed males. Only WT offspring from Fat-1 mothers were analyzed. WT-HFD mothers demonstrated increased markers of infiltrating adipose tissue macrophages (P<0.02), and a striking increase in 12 serum pro-inflammatory cytokines (P<0.05), while Fat1-HFD mothers remained similar to WT-CD mothers, despite equal weight gain. E18.5 Fetuses from WT-HFD mothers had larger placentas (P<0.02), as well as increased placenta and fetal liver TG deposition (P<0.01 and P<0.02, respectively) and increased placental LPL TG-hydrolase activity (P<0.02), which correlated with degree of maternal insulin resistance (r = 0.59, P<0.02). The placentas and fetal livers from Fat1-HFD mothers were protected from this excess placental growth and fetal-placental lipid deposition. Importantly, maternal protection from excess inflammation corresponded with improved metabolic outcomes in adult WT offspring. While the offspring from WT-HFD mothers weaned onto CD demonstrated increased weight gain (P<0.05), body and liver fat (P<0.05 and P<0.001, respectively), and whole body insulin resistance (P<0.05), these were prevented in WT offspring from Fat1-HFD mothers. Our results suggest that reducing excess maternal inflammation may be a promising target for preventing adverse fetal metabolic outcomes in pregnancies complicated by maternal obesity.  相似文献   

16.
Neurotensin and xenin possess antidiabetic potential, mediated in part through augmentation of incretin hormone, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), action. In the present study, fragment peptides of neurotensin and xenin, acetyl-neurotensin and xenin-8-Gln, were fused together to create Ac-NT/XN-8-Gln. Following assessment of enzymatic stability, effects of Ac-NT/XN-8-Gln on in vitro β-cell function were studied. Subchronic antidiabetic efficacy of Ac-NT/XN-8-Gln alone, and in combination with the clinically approved GLP-1 receptor agonist exendin-4, was assessed in high-fat fed (HFF) mice. Ac-NT/XN-8-Gln was highly resistant to plasma enzyme degradation and induced dose-dependent insulin-releasing actions (P<0.05 to P<0.01) in BRIN-BD11 β-cells and isolated mouse islets. Ac-NT/XN-8-Gln augmented (P<0.001) the insulinotropic actions of GIP, while possessing independent β-cell proliferative (P<0.001) and anti-apoptotic (P<0.01) actions. Twice daily treatment of HFF mice with Ac-NT/XN-8-Gln for 32 days improved glycaemic control and circulating insulin, with benefits significantly enhanced by combined exendin-4 treatment. This was reflected by reduced body fat mass (P<0.001), improved circulating lipid profile (P<0.01) and reduced HbA1c concentrations (P<0.01) in the combined treatment group. Following an oral glucose challenge, glucose levels were markedly decreased (P<0.05) only in combination treatment group and superior to exendin-4 alone, with similar observations made in response to glucose plus GIP injection. The combined treatment group also presented with improved insulin sensitivity, decreased pancreatic insulin content as well as increased islet and β-cell areas. These data reveal that Ac-NT/XN-8-Gln is a biologically active neurotensin/xenin fusion peptide that displays prominent antidiabetic efficacy when administered together with exendin-4.  相似文献   

17.

Introduction

The aim of this study was to test the naturally occurring organosulfur compound dipropyltetrasulfide (DPTTS), found in plants, which has antibiotic and anticancer properties, as a treatment for HOCl-induced systemic sclerosis in the mouse.

Methods

The prooxidative, antiproliferative, and cytotoxic effects of DPTTS were evaluated ex vivo on fibroblasts from normal and HOCl mice. In vivo, the antifibrotic and immunomodulating properties of DPTTS were evaluated in the skin and lungs of HOCl mice.

Results

H2O2 production was higher in fibroblasts derived from HOCl mice than in normal fibroblasts (P < 0.05). DPTTS did not increase H2O2 production in normal fibroblasts, but DPTTS dose-dependently increased H2O2 production in HOCl fibroblasts (P < 0.001 with 40 μM DPTTS). Because H2O2 reached a lethal threshold in cells from HOCl mice, the antiproliferative, cytotoxic, and proapoptotic effects of DPTTS were significantly higher in HOCl fibroblasts than for normal fibroblasts. In vivo, DPTTS decreased dermal thickness (P < 0.001), collagen content in skin (P < 0.01) and lungs (P < 0.05), αSMA (P < 0.01) and pSMAD2/3 (P < 0.01) expression in skin, formation of advanced oxidation protein products and anti-DNA topoisomerase-1 antibodies in serum (P < 0.05) versus untreated HOCl mice. Moreover, in HOCl mice, DPTTS reduced splenic B-cell counts (P < 0.01), the proliferative rates of B-splenocytes stimulated by lipopolysaccharide (P < 0.05), and T-splenocytes stimulated by anti-CD3/CD28 mAb (P < 0.001). Ex vivo, it also reduced the production of IL-4 and IL-13 by activated T cells (P < 0.05 in both cases).

Conclusions

The natural organosulfur compound DPTTS prevents skin and lung fibrosis in the mouse through the selective killing of diseased fibroblasts and its immunomodulating properties. DPTTS may be a potential treatment for systemic sclerosis.  相似文献   

18.
When ascending to a higher altitude, changes in air density and oxygen levels affect the way in which explosive actions are executed. This study was designed to compare the effects of acute exposure to real or simulated moderate hypoxia on the dynamics of the force-velocity relationship observed in bench press exercise. Twenty-eight combat sports athletes were assigned to two groups and assessed on two separate occasions: G1 (n = 17) in conditions of normoxia (N1) and hypobaric hypoxia (HH) and G2 (n = 11) in conditions of normoxia (N2) and normobaric hypoxia (NH). Individual and complete force-velocity relationships in bench press were determined on each assessment day. For each exercise repetition, we obtained the mean and peak velocity and power shown by the athletes. Maximum power (Pmax) was recorded as the highest Pmean obtained across the complete force-velocity curve. Our findings indicate a significantly higher absolute load linked to Pmax (∼3%) and maximal strength (1RM) (∼6%) in G1 attributable to the climb to altitude (P<0.05). We also observed a stimulating effect of natural hypoxia on Pmean and Ppeak in the middle-high part of the curve (≥60 kg; P<0.01) and a 7.8% mean increase in barbell displacement velocity (P<0.001). No changes in any of the variables examined were observed in G2. According to these data, we can state that acute exposure to natural moderate altitude as opposed to simulated normobaric hypoxia leads to gains in 1RM, movement velocity and power during the execution of a force-velocity curve in bench press.  相似文献   

19.

Background

Personality traits are associated with health outcomes including non-communicable diseases. This could be partly explained by lifestyle related factors including diet. The personality traits neuroticism, extraversion, openness, agreeableness, and conscientiousness are linked with resilience, meaning adaptability in challenging situations. Resilient people usually comply with favorable health behaviors.

Objective

Our objective was to explore the associations between food and nutrient intake, personality traits and resilience.

Design

A validated semi-quantitative food frequency questionnaire was used to measure diet and the NEO-personality inventory to assess personality in 1681 subjects. Linear regression analysis was used to explore diet-personality associations and cluster analysis to define resilient and non-resilient personality profiles.

Results

Adjusting for age, education and energy intake, and applying Bonferroni corrections, openness in men was associated with higher vegetable (14.9 g/d for 1 SD increase in the personality score, PBonf <0.01) and lower confectionery and chocolate (−2.8 g/d, PBonf <0.01) intakes. In women, neuroticism was associated with lower fish (−4.9 g/d, PBonf <0.001) and vegetable (−18.9 g/d, PBonf <0.01) and higher soft drink (19.9 g/d, PBonf <0.001) intakes. Extraversion, in women, associated with higher meat (5.9 g/d, PBonf <0.05) and vegetable (24.8 g/d, PBonf<0.001) intakes, openness with higher vegetable (23.4 g/d, PBonf <0.001) and fruit (29.5 g/d, PBonf <0.01) intakes. Agreeableness was associated with a lower soft drink (−16.2 g/d, PBonf <0.01) and conscientiousness with a higher fruit (32.9 g/d, PBonf<0.01) intake in women. Comparing resilient and non-resilient subjects, we found resilience in women to be associated with higher intakes of vegetables (52.0 g/d, P<0.001), fruits (58.3 g/d, P<0.01), fish (8.6 g/d, P<0.01) and dietary fiber (1.6 g/d, P<0.01).

Conclusion

Personality traits are associated with dietary intake and especially subjects with resilient personality profiles had healthier dietary intakes. These associations were stronger in women than in men.  相似文献   

20.
Little is known about the effects of NaCl stress on perennial ryegrass (Lolium perenne L.) photosynthesis and carbohydrate flux. The objective of this study was to understand the carbohydrate metabolism and identify the gene expression affected by salinity stress. Seventy-four days old seedlings of two perennial ryegrass accessions (salt-sensitive ‘PI 538976’ and salt-tolerant ‘Overdrive’) were subjected to three levels of salinity stress for 5 days. Turf quality in all tissues (leaves, stems and roots) of both grass accessions negatively and significantly correlated with GFS (Glu+Fru+Suc) content, except for ‘Overdrive’ stems. Relative growth rate (RGR) in leaves negatively and significantly correlated with GFS content in ‘Overdrive’ (P<0.01) and ‘PI 538976’ (P<0.05) under salt stress. ‘Overdrive’ had higher CO2 assimilation and Fv/Fm than ‘PI 538976’. Intercellular CO2 concentration, however, was higher in ‘PI 538976’ treated with 400 mM NaCl relative to that with 200 mM NaCl. GFS content negatively and significantly correlated with RGR in ‘Overdrive’ and ‘PI 538976’ leaves and in ‘PI 538976’ stems and roots under salt stress. In leaves, carbohydrate allocation negatively and significantly correlated with RGR (r2 = 0.83, P<0.01) and turf quality (r2 = 0.88, P<0.01) in salt-tolerant ‘Overdrive’, however, the opposite trend for salt-sensitive ‘PI 538976’ (r2 = 0.71, P<0.05 for RGR; r2 = 0.62, P>0.05 for turf quality). A greater up-regulation in the expression of SPS, SS, SI, 6-SFT gene was observed in ‘Overdrive’ than ‘PI 538976’. A higher level of SPS and SS expression in leaves was found in ‘PI 538976’ relative to ‘Overdrive’. Accumulation of hexoses in roots, stems and leaves can induce a feedback repression to photosynthesis in salt-stressed perennial ryegrass and the salt tolerance may be changed with the carbohydrate allocation in leaves and stems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号