首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 62 毫秒
1.
谌贤  刘洋  邓静  师嘉淇 《植物研究》2017,37(2):216-226
为了了解亚高山森林凋落物在不同分解阶段的化学计量特征,采用空间代替时间的方法,以自然状态下凋落物的3个层次--新鲜凋落物层(L)、发酵层(F)、腐殖质层(H))模拟凋落物分解的不同阶段,对川西亚高山不同林分类型(岷江冷杉天然林、粗枝云杉人工林、白桦天然林、杜鹃矮曲林)凋落物的碳氮磷(C、N、P)及可溶性碳氮磷(DOC、SN、SP)含量进行研究。结果表明:林分类型及分解阶段将显著影响凋落物分解过程中的碳氮磷含量及其化学计量比。亚高山森林凋落物可溶性有机碳、水溶性磷含量均随着分解过程的不断进行而降低,分解初期快速淋溶,而分解中后期释放变缓。4种林分比较而言,水溶性碳氮磷含量表现为:白桦 > 杜鹃 > 冷杉 > 云杉,阔叶树种凋落物的可溶性碳氮磷普遍高于针叶树种,尤其在分解初期。针叶树种凋落物SN在分解过程中呈现释放模式,而阔叶树种SN呈现先富集后释放模式。凋落物C含量随着分解的不断进行而降低,冷杉、白桦及杜鹃N含量呈现先富集后释放的趋势,分解阶段对云杉与白桦各层P含量影响不显著,但冷杉却呈现先降低后升高的现象,而杜鹃则是在分解后期P含量显著降低。从总体来看,亚高山森林凋落物C/P和N/P均显著小于全球平均水平,凋落物C/N、C/P、N/P、DOC/C、SN/N、SP/P均随着分解的不断进行呈现降低的趋势。分解初期白桦和杜鹃DOC/C显著降低,而冷杉则在分解后期显著降低。冷杉N/P先升高后降低,杜鹃N/P随着分解的不断进行呈现升高趋势。这些研究结果为深入理解亚高山森林生态系统的凋落物分解进程和养分循环提供了依据。  相似文献   

2.
森林凋落物作为森林土壤腐殖质的主要来源, 在土壤腐殖质的形成中发挥着重要作用, 但不同森林类型凋落物因其含量、组成等的不同, 对土壤腐殖质的影响也不同。该研究以川西亚高山针叶林、阔叶林和针阔混交林3种不同森林类型为对象, 采用凋落物原位控制实验, 对比研究不同关键期凋落物去除对土壤可提取腐殖质、胡敏酸和富里酸含量及胡敏酸/富里酸、胡敏酸/可提取腐殖质的影响。主要结果: (1)土壤可提取腐殖质、胡敏酸和富里酸含量在不同森林类型中差异显著。土壤可提取腐殖质含量总体表现为针叶林>针阔混交林>阔叶林, 胡敏酸含量总体表现为针阔混交林>针叶林>阔叶林, 而富里酸含量则表现为针叶林>阔叶林>针阔混交林, 其中3种林型中土壤腐殖质的主要成分为富里酸, 总体均表现为富里酸型。不同采样时期也显著影响了土壤可提取腐殖质、胡敏酸和富里酸含量, 总体均表现为先升高后下降的趋势。除个别采样时期外, 凋落物去除总体降低了土壤可提取腐殖质、胡敏酸和富里酸的含量。(2)胡敏酸/富里酸和胡敏酸/可提取腐殖质的结果显示3种林型土壤总体腐殖化程度均较低, 整体表现为针阔混交林>阔叶林>针叶林, 凋落物去除在一定程度上有利于提高阔叶林与针阔混交林的腐殖质品质。(3)相关分析表明不同凋落物处理间土壤可提取腐殖质与土壤有机碳含量、全氮含量和土壤含水量呈显著正相关关系, 与温度呈显著负相关关系。综上所述, 短期的凋落物去除会降低土壤腐殖物质的含量, 但不同林型间由于凋落物类型差异会导致土壤腐殖质的不同变化, 说明土壤腐殖质的动态变化受凋落物类型以及环境因素的综合调控。因此, 关于凋落物变化对土壤腐殖质的影响还需进一步的长期研究。  相似文献   

3.
采用凋落物分解袋法,研究了土壤动物对川西高山/亚高山森林代表性植物康定柳、方枝柏、红桦和岷江冷杉凋落物在分解第一年(2011年11月-2012年10月)不同关键时期质量损失的贡献.结果表明: 在凋落物第一年的分解过程中, 不同物种凋落物的分解速率大小依次为康定柳>红桦>岷江冷杉>方枝柏,且均为生长季节大于冻融季节.土壤动物对凋落物分解的贡献率(Pfau)为方枝柏(26.7%)>岷江冷杉(18.8%)>红桦(15.7%)>康定柳(13.2%),其中康定柳和方枝柏的Pfau在生长季节大于冻融季节,而红桦和岷江冷杉的Pfau为冻融季节大于生长季节.冻融季节土壤动物的作用与凋落物初始C、P和N/P显著相关,而生长季节则与N、C/N、木质素、木质素/纤维素显著相关.  相似文献   

4.
高山森林冬季不同厚度雪被格局可能通过影响凋落物的分解过程中酸溶性和酸不溶性组分特征,改变凋落物分解过程,但缺乏必要关注。采用凋落物分解袋法,研究了高山森林林窗中央至林下形成的天然雪被厚度梯度(厚型雪被、中型雪被、薄型雪被和无雪被)覆盖下,6种典型物种岷江冷杉(Abies faxoniana)、红桦(Betula albo-sinensis)、四川红杉(Larix mastersiana)、方枝柏(Sabina saltuaria)、康定柳(Salix paraplesia)和高山杜鹃(Rhododendron lapponicum)凋落物在不同关键时期(雪被形成期、雪被覆盖期和雪被融化期)的酸溶性组分和酸不溶性组分变化特征。经历一个冬季的分解后,6种凋落物酸溶性组分绝对含量呈降低趋势,除红桦外5种凋落物酸不溶性组分绝对含量呈增加趋势。不同厚度雪被显著影响雪被覆盖期和融化期凋落物酸不溶性和酸溶性组分绝对变化量;其中方枝柏、红桦和康定柳凋落物酸不溶性组分增加量在厚型雪被下显著高于其它雪被覆盖;而相对于阔叶凋落物酸溶性组分变化量在薄型雪被和无雪被梯度达到最大值,针叶凋落物酸溶性组分在厚型雪被下具有最大的变化量。一个冬季分解结束后,表征6种凋落物酸溶性和酸不溶性组分含量相对比例的LCI指数(Lignocellulose index)总体升高,雪被对LCI指数的影响主要表现在雪被覆盖期和融化期,且方枝柏、岷江冷杉和康定柳凋落物LCI在冬季分解后均在厚型雪被达到最高值。同时统计分析结果表明,物种极显著影响冬季不同阶段凋落物酸溶性和酸不溶性组分的变化。这些结果意味着气候变暖情景下,高山森林冬季雪被和冻融格局的改变将显著影响凋落物分解过程中酸溶性、酸不溶性组分以及LCI指数代表的抵抗性组分结构的变化,且影响趋势受到凋落物质量的调控。  相似文献   

5.
利用连续收获法研究了川西亚高山老龄林(VF)、桦木林(BF)、次生针阔混交林(MF)、人工云杉林(AF)及高山栎灌丛(AO) 5种主要森林类型的凋落物组成及其动态,目的在于探索不同恢复途径对森林凋落物组成和产量的影响。结果表明,5种森林类型的全年凋落产量大小依次为VF(4.32 t/hm~2)、MF(4.10 t/hm~2)、BF(3.52 t/hm~2)、AO(3.01 t/hm~2)、AF(2.34 t/hm~2)。AF全年凋落量显著小于其他3种乔木森林类型(VF,BF,MF)(P 0. 05)。各森林类型的叶片年凋落量占总量比例均超过70%。VF、AF、AO均在生长前期(前一年10月至当年5月)达到最大凋落量2.41,1.29,1.63 t/hm~2; BF、MF凋落产量在生长季后期(当年7月至10月)到达最大值,分别为1.34,1.80 t/hm~2。常绿针叶树为主的VF、AF叶片凋落物样地间变异显著高于落叶阔叶树为主的BF、MF,表明其对立地条件的响应更为敏感。林分密度与胸高断面积组合因子更能反映凋落物特征。  相似文献   

6.
季节性雪被可能通过冻结、淋溶以及冻融循环等对高山森林凋落物水溶性和有机溶性组分含量产生影响.本文采用凋落物分解袋法,以川西高山森林典型乔木(四川红杉、岷江冷杉、红桦、方枝柏)和灌木(高山杜鹃、康定柳)凋落物为研究对象,研究了雪被覆盖不同时期(雪被形成期、雪被覆盖期和雪被融化期)和雪被厚度(厚型雪被、中型雪被、薄型雪被和无雪被)下凋落物水溶性和有机溶性组分含量的动态变化特征.结果表明: 在一个冬季的分解过程中,6种凋落物水溶性组分含量在雪被形成期和融化期降低而雪被覆盖期增加,但除高山杜鹃凋落物有机溶性组分含量在雪被覆盖期增加外,其他5种凋落物有机溶性组分含量在整个冬季呈降低趋势.相对于凋落物有机溶性组分含量,不同厚度雪被斑块对凋落物水溶性组分含量变化的影响更大,且主要表现在雪被形成期和雪被覆盖期.相对于其他雪被斑块,薄型雪被斑块更加显著地促进了高山柳和高山杜鹃凋落物水溶性组分含量降低,但显著抑制了方枝柏凋落物水溶性组分含量降低,而其他凋落物水溶性组分含量变化在不同斑块间无显著差异.冬季高山森林雪被对凋落物水溶性和有机溶性组分含量的影响主要受控于凋落物质量.  相似文献   

7.
森林凋落物既是土壤腐殖质的主要来源,也可以通过新鲜凋落物中易降解组分的输入激发土壤原有腐殖质的降解,导致其相互关系并不明确。以王朗国家级自然保护区内的典型亚高山针叶林、针阔混交林以及阔叶林为研究对象,开展土壤原位培养试验,设置允许凋落物正常输入和去除凋落物两种处理,分析2017年-2019年期间不同凋落物处理下森林土壤可提取腐殖物质的光密度特征,研究土壤腐殖化程度与凋落物的关系。结果表明,在2年的试验过程中,3种森林土壤的腐殖化程度整体表现为针叶林>混交林>阔叶林,均展现出在冬季降低,生长季增加的动态规律;凋落物对3个森林的土壤腐殖化程度均无显著影响,但凋落物输入明显改变了土壤腐殖化程度的季节性变化趋势,且在冬季的阔叶林和混交林中表现更为突出。冬季凋落物的输入使得阔叶林和混交林土壤的腐殖化程度明显降低,而生长季凋落物输入对3种森林土壤腐殖化程度无显著影响。这些结果表明气候变暖情景下冬季温度的上升可能导致土壤的腐殖化程度增加,但凋落物的存在可以减缓增加的趋势。这些结果对于具有明显季节性冻融且对气候变化敏感的亚高山森林土壤肥力管理及可持续经营具有一定的科学意义。  相似文献   

8.
季节性冻融期间亚高山森林凋落物的质量变化   总被引:1,自引:1,他引:1  
凋落物质量是影响凋落物分解的重要生物因子,其在季节性冻融期间的变化可能对亚高山森林生态系统过程产生显著的影响。因此,采用凋落物分解袋法,研究了岷江冷杉(Abies faxoniana)和白桦(Betula platyphylla)凋落物质量在一个季节性冻融期间(2006年10月至2007年4月)的变化。季节性冻融期间,岷江冷杉和白桦凋落物的木质素(L)和纤维素的降解率为全年降解的70%-75%,岷江冷杉和白桦凋落物的C/N、L/N和纤维素/N均显著增加,而纤维素/P均有所降低。岷江冷杉凋落物的C/P和L/P有所增加,但白桦凋落物的C/P和L/P有所降低。可见,季节性冻融期间,亚高山森林凋落物的质量发生了较为显著的变化,其显著影响了亚高山凋落物分解过程。  相似文献   

9.
凋落叶分解所产生的水溶性组分(water soluble matter)是森林水陆不同生境碳和养分迁移的重要载体。本研究通过布设高寒森林4种代表物种凋落叶分解袋,即康定柳(Salix paraplesia)、高山杜鹃(Rhododendron lapponicum)、方枝柏(Sabina saltuaria)和四川红杉(Larix mastersiana),探讨其在林下地表、溪流和河岸带3种生境下不同分解时期(冻结初期、冻结期、融化期、生长季节、生长季节后期)的水溶性组分及水溶性碳含量动态及其影响因素。结果表明:经两年的分解,发现溪流显著促进了凋落叶中水溶性组分和水溶性碳的释放;同一物种凋落叶在不同生境下水溶性组分和水溶性碳损失差异显著(P<0.05),整体表现为溪流>河岸带>林下;在分解初期水溶性组分含量有明显的降低;在整个分解过程中,水溶性组分(-70.43%)和水溶性碳(-84.31%)含量变化基本一致且呈明显降低趋势。此外,凋落叶中水溶性组分和水溶性碳的释放速率受时间、物种以及区域环境因子(温度、p H值、营养成分)的调控。这些结果表明,高寒森林凋落叶中水溶性...  相似文献   

10.
川西亚高山森林林窗对凋落枝早期分解的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
林窗调控的土壤水热环境和分解者群落结构可能深刻影响凋落物分解过程, 已有的研究结果具有不确定性。为了解高海拔森林林窗面积对凋落枝分解的影响, 采用凋落物分解袋法, 于2012-2016年冬季和生长季节, 研究了川西亚高山森林255-290 m 2(FG1)、153-176 m 2(FG2)、38-46 m 2(FG3) 3种面积林窗和林下对岷江冷杉(Abies faxoniana)凋落枝质量损失的影响。结果显示: 林窗面积大小显著改变了林窗和林下的雪被厚度、温度和冻融循环频次; 雪被厚度和温度以FG1林窗最高, 林下最低; FG1、FG2、FG3林窗和林下枝条分解4年后的质量残留率分别为59.9%、59.5%、62.1%和55.3%, 分解系数k值分别为0.127、0.131、0.120和0.135, 95%分解时间分别为23.6、22.7、25.0和22.2 a; 与林下相比, 林窗显著增加了第一年和第二年生长季节的质量损失速率, 降低了第一年和第四年冬季的枝条质量损失速率; 林窗大小对质量损失速率的影响随分解时期变化差异明显, 质量损失速率在第一年和第三年冬季随林窗面积增大而增大, 在第三年生长季节随林窗面积增大而降低; 枝条质量损失的比例在第一年最高, 随林窗面积增加而增加, 且冬季高于生长季节。综上所述, 林窗环境变化深刻影响亚高山森林凋落枝分解, 但这种影响随林窗面积和分解时间有所差异。  相似文献   

11.
中国西南季风常绿阔叶林不同恢复阶段凋落物动态分析   总被引:1,自引:0,他引:1  
为探索季风常绿阔叶林不同恢复阶段群落凋落物产量及其动态变化规律,于云南普洱地区通过设置凋落物承接网并定期收集网内的凋落物,对中国西南季风常绿阔叶林区不同恢复阶段群落凋落物产量及其动态变化进行研究。结果表明:(1)不同恢复阶段季风常绿阔叶林年凋落物总量在8 133.1~8 798.3kg/hm2之间,年凋落物总量大小关系为恢复30年群落老龄林群落恢复40年群落。其中叶凋落量最高,其次为枝凋落量,两者贡献量超过总凋落量的3/4。(2)季风常绿阔叶林不同恢复阶段群落中凋落物随时间的动态变化趋势大致相同,2月份达到高峰值,随后逐渐减少,在9月份降至最低,随后又有所升高,为单峰或多峰曲线;在不同凋落物组分凋落量时间动态上,不同恢复阶段群落叶凋落量随月份变化均为单峰曲线;枝凋落量在恢复群落中为单峰曲线,而在老龄林中则为多峰曲线;皮凋落量随月份的变化在恢复30年及老龄林群落间均为单峰曲线,但在恢复40年群落中为平缓曲线,月份间变化不大;繁殖体凋落物在恢复30年及老龄林群落间均为多峰曲线,但在恢复40年群落中为单峰曲线;半分解物凋落量在恢复30年及老龄林群落中随月份呈单峰曲线,在恢复40年群落中则为多峰曲线。(3)在短刺栲、刺栲和红木荷3种优势物种中,短刺栲叶片年凋落量在所有群落中均最大(分别占恢复30年群落的53.93%、恢复40年群落的47.83%、老龄林的28.32%),红木荷次之(分别占恢复30年群落的8.45%、恢复40年群落的10.71%、老龄林的31.69%),刺栲最少(分别占恢复30年群落的6.1%、恢复40年群落的7.53%、老龄林的6.36%)。短刺栲叶凋落量随月份的变化在恢复群落中呈单峰曲线,而在老龄林中则呈现多峰曲线;红木荷在3种群落中则均为单峰曲线;刺栲则是在恢复30年及老龄林中呈单峰曲线,而在恢复40年群落中呈多峰曲线。  相似文献   

12.
郭鲲  刘瑞鹏  张玲  毛子军 《植物研究》2015,35(5):716-723
采用凋落物网袋(litter bag)分解法,模拟红松(Pinus koraiensis)(以下用P表示)和蒙古栎(Quercus mongolica)(以下用M表示)在不同演替阶段可能的组成比例(P、M/P1∶3、M/P1∶1、M/P3∶1、M)进行野外分解实验。分析不同比例的两种凋落叶混合的分解特征、相互作用及机理。结果表明:1.从质量损失率来看,与单种凋落叶分解情况相比,蒙古栎和红松凋落叶混合对凋落物分解具有促进作用,其中蒙古栎和红松(M/P)按1∶3混合分解最快,且随着蒙古栎凋落叶在混合比例中的增加,混合分解速率先减小后增大。2.从C、N元素动态看,C素在各处理的凋落叶主要表现为净释放,而N素在各处理中变现比较复杂,在各处理的红松凋落叶中表现为富集,而在各处理蒙古栎凋落叶中则表现为释放。蒙古栎凋落叶可以促进红松凋落叶C元素释放和N元素的富集,降低红松凋落叶的C/N比,促进红松凋落叶的分解。红松凋落叶能促进蒙古栎凋落物C元素释放,但对蒙古栎凋落叶N元素的释放作用不明显,对蒙古栎凋落叶的C/N比影响也并不一致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号