首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Visceral adipose tissue (VAT) inflammation has been linked to the pathogenesis of insulin resistance and metabolic syndrome. VAT has recently been established as a new component of the immune system and is involved in the production of various adipokines and cytokines. These molecules contribute to inducing and accelerating systemic insulin resistance. In this report, we investigated the role of B cell-activating factor (BAFF) in the induction of insulin resistance. We investigated BAFF levels in the sera and VAT of obese mice. In obese mice, the BAFF levels were preferentially increased in VAT and sera compared to these levels in normal control mice. Next, we treated mice with BAFF to analyze its influence on insulin sensitivity. BAFF impaired insulin sensitivity in normal mice. Finally, we investigated the mechanisms underlying insulin resistance induced by BAFF in adipocytes. BAFF also induced alterations in the expression levels of genes related to insulin resistance in adipocytes. In addition, BAFF directly affected the glucose uptake and phosphorylation of insulin receptor substrate-1 in adipocytes. We propose that autocrine or paracrine BAFF and BAFF-receptor (BAFF-R) interaction in VAT leads to impaired insulin sensitivity via inhibition of insulin signaling pathways and alterations in adipokine production.  相似文献   

2.
Lipid infusion and high fat feeding are established causes of systemic and adipose tissue insulin resistance. In this study, we treated 3T3-L1 adipocytes with a mixture of free fatty acids (FFAs) to investigate the molecular mechanisms underlying fat-induced insulin resistance. FFA treatment impaired insulin receptor-mediated signal transduction and decreased insulin-stimulated GLUT4 translocation and glucose transport. FFAs activated the stress/inflammatory kinases c-Jun N-terminal kinase (JNK) and IKKbeta, and the suppressor of cytokine signaling protein 3, increased secretion of the inflammatory cytokine tumor necrosis factor (TNF)-alpha, and decreased secretion of adiponectin into the medium. RNA interference-mediated down-regulation of JNK blocked JNK activation and prevented most of the FFA-induced defects in insulin action. Blockade of TNF-alpha signaling with neutralizing antibodies to TNF-alpha or its receptors or with a dominant negative TNF-alpha peptide had a partial effect to inhibit FFA-induced cellular insulin resistance. We found that JNK activation by FFAs was not inhibited by blocking TNF-alpha signaling, whereas the FFA-induced increase in TNF-alpha secretion was inhibited by RNA interference-mediated JNK knockdown. Together, these results indicate that 1) JNK can be activated by FFAs through TNF-alpha-independent mechanisms, 2) activated JNK is a major contributor to FFA-induced cellular insulin resistance, and 3) TNF-alpha is an autocrine/paracrine downstream effector of activated JNK that can also mediate insulin resistance.  相似文献   

3.
Autophagy, a predominantly cytoprotective process, is an important regulator in diabetic metabolism and endoplasmic reticulum (ER) stress responses. However, the interaction and biological significance between autophagic imbalance and ER stress involved in insulin resistance remain not fully elucidated. In the present study, when compared with normal glucose tolerance (NGT) subjects, enhanced ER stress and pronounced protein and mRNA levels of the autophagic genes such as Atg7, LC3A, and LC3B were evident in adipose tissue of patients with type 2 diabetes. An increased number of autophagosomes and elevated autophagy flux in adipose explants incubated with lysomoal inhibitor were also observed in type 2 diabetes. In addition, adipocytes differentiation was significantly repressed by exogenous ER stress and defective autophagy in vitro. Tunicamycin-induced ER stress in adipocytes can trigger autophagic response and insulin insensitivity that was partially attributed to the upregulation of IRE1-JNK pathway, whereas autophagy deficiency resulted in ER stress and impaired insulin signaling, further supporting the crucial roles of autophagy in ER stress and insulin resistance. Moreover, disturbance of autophagy and insulin sensitivity induced by tunicamycin can be effectively corrected by the addition of osteocalcin in an NFκB-dependent manner in vitro. In conclusion, our results demonstrated a reciprocal functional interaction among autophagy, ER stress, and insulin signaling in adipose tissue of type 2 diabetes and adipocytes, supporting an adaptive role of autophagy-dependent mechanism in response to ER stress-induced insulin resistance in type 2 diabetes.  相似文献   

4.
Adipose tissue is a critical regulator of energy balance and substrate metabolism, and synthesizes several different substances with endocrine or paracrine functions, which regulate the overall energetic homeostasis. An excessive amount of adipose tissue has been associated with the development of type 2 diabetes, premature atherosclerosis, and cardiovascular disease. It is believed that the adverse metabolic impact of visceral fat relies on a relative resistance to the action of insulin in this depot compared to other adipose tissue depots. However, information on insulin signalling reactions in human fat is limited. In this paper, we review the major insulin signalling pathways in adipocytes and their relevance for metabolic regulation, and discuss recent data indicating different signalling properties of visceral fat as compared to other fat depots, which may explain the metabolic and hormonal specificity of this fat tissue depot in humans.  相似文献   

5.
It now appears that, in most obese patients, obesity is associated with a low-grade inflammation of white adipose tissue (WAT) resulting from chronic activation of the innate immune system and which can subsequently lead to insulin resistance, impaired glucose tolerance and even diabetes. WAT is the physiological site of energy storage as lipids. In addition, it has been more recently recognized as an active participant in numerous physiological and pathophysiological processes. In obesity, WAT is characterized by an increased production and secretion of a wide range of inflammatory molecules including TNF-alpha and interleukin-6 (IL-6), which may have local effects on WAT physiology but also systemic effects on other organs. Recent data indicate that obese WAT is infiltrated by macrophages, which may be a major source of locally-produced pro-inflammatory cytokines. Interestingly, weight loss is associated with a reduction in the macrophage infiltration of WAT and an improvement of the inflammatory profile of gene expression. Several factors derived not only from adipocytes but also from infiltrated macrophages probably contribute to the pathogenesis of insulin resistance. Most of them are overproduced during obesity, including leptin, TNF-alpha, IL-6 and resistin. Conversely, expression and plasma levels of adiponectin, an insulin-sensitising effector, are down-regulated during obesity. Leptin could modulate TNF-alpha production and macrophage activation. TNF-alpha is overproduced in adipose tissue of several rodent models of obesity and has an important role in the pathogenesis of insulin resistance in these species. However, its actual involvement in glucose metabolism disorders in humans remains controversial. IL-6 production by human adipose tissue increases during obesity. It may induce hepatic CRP synthesis and may promote the onset of cardiovascular complications. Both TNF-alpha and IL-6 can alter insulin sensitivity by triggering different key steps in the insulin signalling pathway. In rodents, resistin can induce insulin resistance, while its implication in the control of insulin sensitivity is still a matter of debate in humans. Adiponectin is highly expressed in WAT, and circulating adiponectin levels are decreased in subjects with obesity-related insulin resistance, type 2 diabetes and coronary heart disease. Adiponectin inhibits liver neoglucogenesis and promotes fatty acid oxidation in skeletal muscle. In addition, adiponectin counteracts the pro-inflammatory effects of TNF-alpha on the arterial wall and probably protects against the development of arteriosclerosis. In obesity, the pro-inflammatory effects of cytokines through intracellular signalling pathways involve the NF-kappaB and JNK systems. Genetic or pharmacological manipulations of these effectors of the inflammatory response have been shown to modulate insulin sensitivity in different animal models. In humans, it has been suggested that the improved glucose tolerance observed in the presence of thiazolidinediones or statins is likely related to their anti-inflammatory properties. Thus, it can be considered that obesity corresponds to a sub-clinical inflammatory condition that promotes the production of pro-inflammatory factors involved in the pathogenesis of insulin resistance.  相似文献   

6.
Type 2 diabetes is a heterogeneous disease characterized by hyperglycemia and insulin resistance in peripheral tissues such as adipose tissue and skeletal muscle. This review focuses on obesity as one of the major environmental factors contributing to the development of diabetes. It has become evident that adipose tissue represents an active secretory organ capable of releasing a variety of cytokines such as TNFalpha, IL-6, adiponectin and other still unknown factors that might constitute the missing link between adipose tissue and insulin resistance. In fact, adipocyte-derived factors are significantly increased in obesity and represent good predictors of the development of type 2 diabetes. The negative crosstalk between adipocytes and skeletal muscle cells leads to disturbances in muscle cell insulin signalling and insulin resistance involving major pathways in inflammation, cellular stress and mitogenesis. Positive regulators of insulin sensitivity include the adipocyte hormone adiponectin and inhibitors of inflammatory pathways such as JNK-, IKK- and ERK-inhibitors. In summary, a better knowledge of intracellular and intercellular mechanisms by which adipose tissue affects skeletal muscle cell physiology may help to develop new strategies for diabetes treatment.  相似文献   

7.
8.
PURPOSE OF REVIEW: Adiponectin is secreted exclusively by adipocytes, aggregates in multimeric forms, and circulates at high concentrations in blood. This review summarizes recent studies highlighting cellular effects of adiponectin and its role in human lipid metabolism and atherosclerosis. RECENT FINDINGS: Adiponectin is an important autocrine/paracrine factor in adipose tissue that modulates differentiation of preadipocytes and favors formation of mature adipocytes. It also functions as an endocrine factor, influencing whole-body metabolism via effects on target organs. Adiponectin multimers exert differential biologic effects, with the high-molecular-weight multimer associated with favorable metabolic effects (i.e. greater insulin sensitivity, reduced visceral adipose mass, reduced plasma triglycerides, and increased HDL-cholesterol). Adiponectin influences plasma lipoprotein levels by altering the levels and activity of key enzymes (lipoprotein lipase and hepatic lipase) responsible for the catabolism of triglyceride-rich lipoproteins and HDL. It thus influences atherosclerosis by affecting the balance of atherogenic and antiatherogenic lipoproteins in plasma, and by modulating cellular processes involved in foam cell formation. SUMMARY: Recent studies emphasize the role played by adiponectin in the homeostasis of adipose tissue and in the pathogenesis of the metabolic syndrome, type 2 diabetes, and atherosclerosis. These pleiotropic effects make it an attractive therapeutic target for obesity-related conditions.  相似文献   

9.
10.
Despite the prevalence of insulin resistance and type 2 diabetes mellitus, their underlying mechanisms remain incompletely understood. Many secreted endocrine factors and the intertissue cross-talk they mediate are known to be dysregulated in type 2 diabetes mellitus. Here, we describe CTRP12, a novel adipokine with anti-diabetic actions. The mRNA and circulating levels of CTRP12 were decreased in a mouse model of obesity, but its expression in adipocytes was increased by the anti-diabetic drug rosiglitazone. A modest rise in circulating levels of CTRP12 by recombinant protein administration was sufficient to lower blood glucose in wild-type, leptin-deficient ob/ob, and diet-induced obese mice. A short term elevation of serum CTRP12 by adenovirus-mediated expression improved glucose tolerance and insulin sensitivity, normalized hyperglycemia and hyperinsulinemia, and lowered postprandial insulin resistance in obese and diabetic mice. CTRP12 improves insulin sensitivity in part by enhancing insulin signaling in the liver and adipose tissue. Further, CTRP12 also acts in an insulin-independent manner; in cultured hepatocytes and adipocytes, CTRP12 directly activated the PI3K-Akt signaling pathway to suppress gluconeogenesis and promote glucose uptake, respectively. Collectively, these data establish CTRP12 as a novel metabolic regulator linking adipose tissue to whole body glucose homeostasis through insulin-dependent and independent mechanisms.  相似文献   

11.
Inflammation and insulin resistance   总被引:10,自引:0,他引:10  
de Luca C  Olefsky JM 《FEBS letters》2008,582(1):97-105
Obesity-induced chronic inflammation is a key component in the pathogenesis of insulin resistance and the Metabolic syndrome. In this review, we focus on the interconnection between obesity, inflammation and insulin resistance. Pro-inflammatory cytokines can cause insulin resistance in adipose tissue, skeletal muscle and liver by inhibiting insulin signal transduction. The sources of cytokines in insulin resistant states are the insulin target tissue themselves, primarily fat and liver, but to a larger extent the activated tissue resident macrophages. While the initiating factors of this inflammatory response remain to be fully determined, chronic inflammation in these tissues could cause localized insulin resistance via autocrine/paracrine cytokine signaling and systemic insulin resistance via endocrine cytokine signaling all of which contribute to the abnormal metabolic state.  相似文献   

12.
To explore a novel adipokine, we screened adipocyte differentiation-related gene and found that TIG2/chemerin was strongly induced during the adipocyte differentiation. Chemerin was secreted by the mature 3T3-L1 adipocytes and expressed abundantly in adipose tissue in vivo as recently described. Intriguingly, the expression of chemerin was differently regulated in the liver and adipose tissue in db/db mice. In addition, serum chemerin concentration was decreased in db/db mice. Chemerin and its receptor/ChemR23 were expressed in mature adipocytes, suggesting its function in autocrine/paracrine fashion. Finally, chemerin potentiated insulin-stimulated glucose uptake concomitant with enhanced insulin signaling in the 3T3-L1 adipocytes. These data establish that chemerin is a novel adipokine that regulates adipocyte function.  相似文献   

13.
PURPOSE OF REVIEW: The aim of this review is to assess the role of adipose tissue-derived hormones and inflammatory cytokines in the pathogenesis of obesity-linked type II diabetes, with a special focus on articles published between December 2002 and December 2003. RECENT FINDINGS: Insulin resistance is widely recognized as a fundamental defect seen in obesity and type II diabetes. Although the molecular mechanisms triggering the development of insulin resistance remain elusive, recent studies have suggested that adipose tissue and adipose tissue-derived hormones and inflammatory cytokines play essential roles in the overall insulin sensitivity in vivo. Dysfunctions of adipose tissue can lead to systemic insulin resistance. SUMMARY: Understanding the regulation of the metabolic and secretory functions of adipose tissue, as well as its subsequent impact on overall insulin sensitivity, is becoming increasingly important given the therapeutic potential of targeting the root causes of insulin resistance in the treatment of type 2 diabetes and its associated complications, such as cardiovascular and cerebrovascular diseases.  相似文献   

14.
Presence of thermogenically active adipose tissue in adult humans has been inversely associated with obesity and type 2 diabetes. While it had been shown that insulin is crucial for the development of classical brown fat, its role in development and function of inducible brown-in-white (brite) adipose tissue is less clear. Here we show that insulin deficiency impaired differentiation of brite adipocytes. However, adrenergic stimulation almost fully induced the thermogenic program under these settings. Although brite differentiation of adipocytes as well as browning of white adipose tissue entailed substantially elevated glucose uptake by adipose tissue, the capacity of insulin to stimulate glucose uptake surprisingly was not higher in the brite state. Notably, in line with the insulin-independent stimulation of glucose uptake, our data revealed that brite recruitment results in induction of solute carrier family 2 (GLUT-1) expression in adipocytes and inguinal WAT. These results for the first time demonstrate that insulin signaling is neither essential for brite recruitment, nor is it improved in cells or tissues upon browning.  相似文献   

15.
Gangliosides are known as modulators of transmembrane signaling by regulating various receptor functions. We have found that insulin resistance induced by tumor necrosis factor-alpha (TNF-alpha) in 3T3-L1 adipocytes was accompanied by increased GM3 ganglioside expression caused by elevating GM3 synthase activity and its mRNA. We also demonstrated that TNF-alpha simultaneously produced insulin resistance by uncoupling insulin receptor activity toward insulin receptor substrate-1 (IRS-1) and suppressing insulin-sensitive glucose transport. Pharmacological depletion of GM3 in adipocytes by an inhibitor of glucosylceramide synthase prevented the TNF-alpha-induced defect in insulin-dependent tyrosine phosphorylation of IRS-1 and also counteracted the TNF-alpha-induced serine phosphorylation of IRS-1. Moreover, when the adipocytes were incubated with exogenous GM3, suppression of tyrosine phosphorylation of insulin receptor and IRS-1 and glucose uptake in response to insulin stimulation was observed, demonstrating that GM3 itself is able to mimic the effects of TNF on insulin signaling. We used the obese Zucker fa/fa rat and ob/ob mouse, which are known to overproduce TNF-alpha mRNA in adipose tissues, as typical models of insulin resistance. We found that the levels of GM3 synthase mRNA in adipose tissues of these animals were significantly higher than in their lean counterparts. Taken together, the increased synthesis of cellular GM3 by TNF may participate in the pathological conditions of insulin resistance in type 2 diabetes.  相似文献   

16.
Triacylglycerol (TAG) stored in adipose tissue can be rapidly mobilized by the hydrolytic action of lipases, with the release of fatty acids (FA) that are used by other tissues during times of energy deprivation. Unlike synthesis of TAG, which occurs not only in adipose tissue but also in other tissues such as liver for very-low-density lipoprotein formation, hydrolysis of TAG, lipolysis, predominantly occurs in adipose tissue. Until recently, hormone-sensitive lipase was considered to be the key rate-limiting enzyme responsible for regulating TAG mobilization. However, recent studies on hormone-sensitive lipase-null mice have challenged such a concept. A novel lipase named desnutrin/ATGL has been recently discovered to play a key role in lipolysis in adipocytes. Lipolysis is under tight hormonal regulation. Although opposing regulation of lipolysis in adipose tissue by insulin and catecholamines is well understood, autocrine/paracrine factors may also participate in its regulation. Intricate cooperation of these endocrine and autocrine/paracrine factors leads to a fine regulation of lipolysis in adipocytes, needed for energy homeostasis. In this review, we summarize and discuss the recent progress made in the regulation of adipocyte lipolysis.  相似文献   

17.
Type 2 diabetes has traditionally been viewed as a metabolic disorder characterised by chronic high glucose levels, insulin resistance, and declining insulin secretion from the pancreas. Modern lifestyle, with abundant nutrient supply and reduced physical activity, has resulted in dramatic increases in the rates of obesity-associated disease conditions, including diabetes. The associated excess of nutrients induces a state of systemic low-grade chronic inflammation that results from production and secretion of inflammatory mediators from the expanded pool of activated adipocytes. Here, we review the mechanisms by which obesity induces adipose tissue dysregulation, detailing the roles of adipose tissue secreted factors and their action upon other cells and tissues central to glucose homeostasis and type 2 diabetes. Furthermore, given the emerging importance of adipokines, cytokines and chemokines in disease progression, we suggest that type 2 diabetes should now be viewed as an autoinflammatory disease, albeit one that is driven by metabolic dysregulation.  相似文献   

18.
19.
Type 2 diabetes originates in an expanding adipose tissue that for unknown reasons becomes insulin resistant. Insulin resistance reflects impairments in insulin signaling, but mechanisms involved are unclear because current research is fragmented. We report a systems level mechanistic understanding of insulin resistance, using systems wide and internally consistent data from human adipocytes. Based on quantitative steady-state and dynamic time course data on signaling intermediaries, normally and in diabetes, we developed a dynamic mathematical model of insulin signaling. The model structure and parameters are identical in the normal and diabetic states of the model, except for three parameters that change in diabetes: (i) reduced concentration of insulin receptor, (ii) reduced concentration of insulin-regulated glucose transporter GLUT4, and (iii) changed feedback from mammalian target of rapamycin in complex with raptor (mTORC1). Modeling reveals that at the core of insulin resistance in human adipocytes is attenuation of a positive feedback from mTORC1 to the insulin receptor substrate-1, which explains reduced sensitivity and signal strength throughout the signaling network. Model simulations with inhibition of mTORC1 are comparable with experimental data on inhibition of mTORC1 using rapamycin in human adipocytes. We demonstrate the potential of the model for identification of drug targets, e.g. increasing the feedback restores insulin signaling, both at the cellular level and, using a multilevel model, at the whole body level. Our findings suggest that insulin resistance in an expanded adipose tissue results from cell growth restriction to prevent cell necrosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号