首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photosynthetic responses to temperature and photosynthetically active radiation (PAR) were investigated on the heteromorphic life history stages (macroscopic and microscopic stages) of an edible Japanese brown alga, Cladosiphon okamuranus from the Ryukyu Islands. Measurements were carried out by using optical dissolved oxygen sensors and a pulse‐amplitude modulated fluorometer. Maximum net photosynthetic rates and other parameters of the Photosynthesis – PAR curves at 28°C were somewhat similar in both life history stages, without characteristic photoinhibition at 1000 μmol photons m?2 s?1. Results of oxygenic gross photosynthesis and dark respiration experiments over a temperature range of 8–40°C revealed similar temperature optima for both stages (29.7°C, macroscopic stage; 30.3°C, microscopic stage), which support their observed occurrences in the habitat during summer. Maximum quantum yields of photosystem II (PSII ) (F v /F m ) were relatively stable at low temperatures with the highest at 15.1°C for the macroscopic stage and at 16.5°C for the microscopic stage; but dropped at higher temperatures especially above 28°C. Continuous exposures (6 h) to 200 and 1000 μmol photons m?2 s?1 at 8, 16, and 28°C revealed greater depressions in effective quantum yields of PSII (Φ PSII ) of the microscopic stage at 8°C, as well as its F v /F m that barely increased after 6 h of dark acclimation. Whereas post‐dark acclimation F v /F m of both stages exposed to low PAR fairly recovered at 28°C, suggesting their photosynthetic tolerance to such high temperature. Under natural conditions, both heteromorphic stages of C. okamuranus may persist throughout the year in this region. Beyond its northern limit of distribution, the microscopic stage of this species may suffer from photodamage, as enhanced by low winter temperatures; hence, its restricted occurrence.  相似文献   

2.
Photoinhibition is a significant constraint for improvement of radiation-use efficiency and yield potential in cereal crops. In this work, attached fully expanded leaves of seedlings were used to assay the factors determining photoinhibition and for evaluation of tolerance to photoinhibition in wheat (Triticum aestivum L.). Our results showed that even 1 h under PPFD of 600 µmol(photon) m?2 s?1 could significantly reduce maximal quantum yield of PSII photochemistry (Fv/Fm) and performance index (PI) compared to low light [300 µmol(photon) m?2 s?1]. The decrease of Fv/Fm and PI was more noticeable with the increase of light intensity; irradiance higher than 800 µmol(photon) m?2 s?1 resulted in photoinhibition. Compared to 25°C, lower (20°C) or higher temperature (≥ 35°C) aggravated photoinhibition, while slightly high temperature (28°) alleviated photoinhibition. At 25°C, irradiance of 1,000 µmol(photon) m–2 s–1 for 1 h was enough to cause photoinhibition and a significant decrease of Fv/Fm, PI, trapped energy flux, electron transport flux, and density of reaction center as well as increase of dissipated energy flux per cross section were observed. In addition, seedlings at 21–32 days after planting showed a relatively stable phenotype, while the younger or older seedlings indicated an increased susceptibility to photoinhibition, especially in senescing leaves. Finally, six wheat varieties with relative tolerance to photoinhibition were identified from 22 Chinese winter wheat varieties by exposing attached leaves of the 25-d old seedlings for 1 h to 1,000 µmol(photon) m–2 s–1 at 25°C. Therefore, our work established a possible method for development of new wheat varieties with enhanced tolerance to photoinhibition.  相似文献   

3.
The effect of a wide range of temperatures (?15 and 60°C) in darkness or under strong irradiation [1,600 μmol(photon) m?2 s?1] on quantum yield of photosystem II photochemistry and xanthophyll cycle pigments was investigated in a tropical fruit crop (Musa sp.) and a temperate spring flowering plant (Allium ursinum L.). In darkness within the nonlethal thermal window of A. ursinum (from ?6.7 to 47.7°C; 54.5 K) and of Musa sp. (from ?2.2°C to 49.5°C; 51.7 K) maximal quantum yield of PSII photochemistry (Fv/Fm) was fairly unaffected by temperature over more than 40 K. At low temperature Fv/Fm started to drop with ice nucleation but significantly only with initial frost injuries (temperature at 10% frost damage; LT10). The critical high temperature threshold for PSII (Tc) was 43.8°C in A. ursinum and 44.7°C in Musa sp. Under strong irradiation, exposure to temperatures exceeding the growth ones but being still nonlethal caused photoinhibition in both species. Severity of photoinhibition increased with increasing distance to the growth temperature range. ΔF/Fm′ revealed distinctly different optimum temperature ranges: 27–36°C for Musa sp. and 18–27°C for A. ursinum exceeding maximum growth temperature by 2–7 K. In both species only at temperatures > 30°C zeaxanthin increased and violaxanthin decreased significantly. At nonlethal low temperature relative amounts of xanthophylls remained unchanged. At temperatures > 40°C β-carotene increased significantly in both species. In Musa sp. lutein and neoxanthin were significantly increased at 45°C, in A. ursinum lutein remained unchanged, neoxanthin levels decreased in the supraoptimal temperature range. In darkness, Fv/Fm was highly temperature-insensitive in both species. Under strong irradiation, whenever growth temperature was exceeded, photoinhibition occurred with xanthophylls being changed only under supraoptimal temperature conditions as an antiradical defence mechanism.  相似文献   

4.
Exposure to high temperatures affects the photosynthetic processes in marine benthic microalgae by limiting the transport of electrons, thus reducing the ability of the cell to use light. This causes damage to the Photosystem II (PSII) and may lead to photoinhibition. However, the PSII of benthic microalgal communities from Brown Bay, eastern Antarctica, were relatively unaffected by significant changes in temperature. Benthic microalgae exposed to temperatures up to 8°C and an irradiance of 450 μmol photons m−2 s−1 did not experience any photosynthetic damage or irreversible photoinhibition. The effective quantum yield (∆F/F m′) at 8°C (0.433 ± 0.042) was higher by comparison to cell incubated at −0.1°C (0.373 ± 0.015) with similar irradiances. Temperatures down to −5°C at a similar irradiance showed a decrease in photosynthesis with decreasing temperature, but no severe photoinhibition as the cells were able to dissipate excess energy via non-photochemical quenching and recover from damage. These responses are consistent with those recorded in past studies on Antarctic benthic microalgae and suggest that short-term temperature change (from −5 to 8°C) will not do irreversible damage to the PSII and will not affect the photosynthesis of the benthic microalgae.  相似文献   

5.
The survival of dipterocarp seedlings in the understorey of south‐east Asian rain forests is limited by their ability to maintain a positive carbon balance. Photosynthesis during sunflecks is an important component of carbon gain. Field measurements demonstrated that Shorea leprosula seedlings in a rain forest understorey received a high proportion of daily photon flux density at temperatures supra‐optimal for photosynthesis (72% at ≥30 °C, 14% at ≥35 °C). To investigate the effect of high temperatures on photosynthesis during sunflecks, gas exchange and chlorophyll fluorescence measurements were made on seedlings grown in controlled environment conditions either, under uniform, saturating irradiance (approximately 539 µmol m?2 s?1) or, shade/fleck sequences (approximately 30 µmol m?2 s?1/approximately 525 µmol m?2 s?1) at two temperatures, 28 or 38 °C. The rate of light‐saturated photosynthesis, under uniform irradiance, was inhibited by 40% at 38 °C compared with 28 °C. However, during the shade/fleck sequence, photosynthesis was inhibited by 59% at 38 °C compared with 28 °C. The greater inhibition of photosynthesis during the shade/fleck sequence, when compared with uniform irradiance, was driven by the lower efficiency of dynamic photosynthesis combined with lower steady‐state rates of photosynthesis. These results suggest that, contrary to current dogma, sunfleck activity may not always result in significant carbon gain. This has important consequences for seedling regeneration processes in tropical forests as well as for leaves in other canopy positions where sunflecks make an important contribution to total photon flux density.  相似文献   

6.

The effects of temperature, irradiance, and desiccation on the photosynthesis of a cultivated Japanese green alga Caulerpa lentillifera (Caulerpaceae) were determined by a pulse amplitude modulation (PAM)-chlorophyll fluorometer and dissolved oxygen sensors. The photochemical efficiency in the photosystem II (Fv/Fm and ΔF/Fm') during the 72-h temperature exposures (8, 12, 16, 20, 24, 28, 32, 36, and 40°C) was generally stable at 16–32°C but quickly dropped at lower and higher temperatures. The photosynthesis–temperature curve at 200 μmol photons m?2 s?1 also revealed that the maximum gross photosynthesis (GPmax) occurred at 30.7°C (30.5–30.9, 95% highest density credible intervals). Photosynthesis–irradiance curves at 16, 24, and 32°C quickly saturated, then expressed photoinhibition, and revealed that the maximum net photosynthetic rates (NPmax) and saturation irradiance (Ek) were highest at 32°C and lowest at 16°C. Continuous 6-h exposure to irradiances of 200 (low) and 400 (high) μmol photons m?2 s?1 at 16, 24, and 32°C expressed greater declines in their ΔF/Fm' at 16°C, revealing chronic chilling-light stress. The response to continuous desiccation (~480 min) under 50% humidity at 24°C showed that ΔF/Fm' dropped to zero at 480-min aerial exposure, and the treatments of more than 60-min desiccation did not return to the initial level even after 24-h subsequent rehydration in seawater. Likewise, ΔF/Fm' fell when the absolute water content (AWC) of the frond dropped below AWC of 90% and mostly did not return to the initial level even after 24-h subsequent rehydration in seawater, signifying a low tolerance to desiccation.

  相似文献   

7.
The performance of the photosynthetic apparatus was examined in the third leaves of Zea mays L. seedlings grown at near-optimal (25 °C) or at suboptimal (15 °C) temperature by measuring chlorophyll (ChI) a fluorescence parameters and oxygen evolution in different temperature and light conditions. In leaf tissue grown at 25 and 15 °C, the quantum yield of PSII electron transport (ψPSII) and the rate of O2 evolution decreased with decreasing temperature (from 25 to 4 °C) at a photon flux density of 125 μmol m?2 s?1. In leaves grown at 25 °C, the decrease of ψPSII correlated with a decrease of photochemical ChI fluorescence quenching (qp), whereas in leaves crown at 15 °C qp was largely insensitive to the temperature decrease. Compared with leaves grown at 25 °C, leaves grown at 15 °C were also able to maintain a higher fraction of oxidized to reduced QA (greater qp) at high photon flux densities (up to 2000 μmol m?2 s?1), particularly when the measurements were performed at high temperature (25 °C). With decreasing temperature and/or increasing light intensity, leaves grown at 15 °C exhibited a substantial quenching of the dark level of fluorescence F0 (q0) whereas this type of quenching was virtually absent in leaves grown at 25 °C. Furthermore, leaves grown at 15 °C were able to recover faster from photo inhibition of photosynthesis after a photoinhibitory treatment (1200 μmol m?2 s?1 at 25, 15 or 6 °C for 8 h) than leaves grown at 25 °C. The results suggest that, in spite of having a low photosynthetic capacity, Z. mays leaves grown at sub optimal temperature possess efficient mechanisms of energy dissipation which enable them to cope better with photoinhibition than leaves grown at near-optimal temperature. It is suggested that the resistance of Z. mays leaves grown at 15 °C to photoinhibition is related to the higher content of carotenoids of the xanthophyll cycle (violaxanthin + antheraxanthin + zeaxanthin) measured in these leaves than in leaves grown at 25 °C.  相似文献   

8.
Six genotypes of Zea mays L. were grown in pots inside a glasshouse at a mean temperature of 22±2°C and a minimum photosynthetic photon flux density (Q) during the daylight period of 400 μmol m?2 s?1. Chilling-dependent photoinhibition was induced by exposing plants to a temperature of 7°C and a Q of 1 000 μmol m?2 s?1 for 6 h. Recovery from photoinhibition was then followed at a temperature of 25°C and a Q of 200 μmol m?2 s?1. Leaf gas exchange and chlorophyll fluorescence were measured on attached leaves at room temperature prior to the photoinhibitory treatments and at 6 sampling intervals from 0 to 24 h during the recovery period. The relative water content (RWC) was also measured during the recovery period. The results showed a significant genotypic variation in the susceptibility to and rate of recovery from chilling-dependent photoinhibition of photosynthesis in Zea mays seedlings. The Highland Pool 1a from highland sites in Mexico was the least susceptible to chill-induced photoinhibition, but had the slowest rate of recovery. The hybrid variety LG11 showed the highest rate of recovery, whilst the inbred line ZPF307 was the most susceptible to chill-induced photoinhibition. Susceptibility to photoinhibition and subsequent recovery were at least partially independent, suggesting that selection for improved genotypes will require independent selection for both tolerance and capacity for recovery. Although chlorophyll fluorescence provided a more rapid method of assessing the occurrence of photoinhibition, it was not as effective as direct gas-exchange measurements of the maximum quantum yield of photosynthesis (φ) in separating genotypes with respect to their susceptibility to photoinhibition, especially in the most vulnerable genotypes such as ZPF307. Water stress induced by chilling and high Q treatments appeared to impair the recovery processes. Decreases in stomatal conductance (gs) produce a significant decrease in intercellular CO2 concentration (Ci), although this decrease was never so extreme that it limited photosynthetic rates at the light intensities used to determine φ. Nevertheless, closure of stomata in patches, producing local restriction of CO2 supply, would explain the poor correlation between chlorophyll fluorescence and quantum yield measurements in some genotypes immediately after photoinhibitory treatments.  相似文献   

9.
Thermal acclimation and photoacclimation of photosynthesis were compared in Laminaria saccharina sporophytes grown at temperatures of 5 and 17 °C and irradiances of 15 and 150μmol photons m?2 s?1. When measured at a standard temperature (17°C), rates of light-saturated photosynthesis (Pmax) were higher in 5 °C-grown algae (c. 3.0 μmol O2 m?2 s?1) than in 17 °C-grown algae (c. 0.9 μmol O2 m-2 s-1). Concentrations of Rubisco were also 3-fold higher (per unit protein) in 5 °C-grown algae than in algae grown at 17 °C. Light-limited photosynthesis responded similarly to high temperature and low light Photon yields (α) were higher in algae grown at high temperature (regardless of light), and at 5 °C in low light, than in algae grown at 5 °C in high light Differences in a were correlated with light absorption; both groups of 17 °C algae and 5 °C low-light algae absorbed c. 75% of incident light, whereas 5 °C high-light algae absorbed c. 55%. Increased absorption was correlated with increases in pigment content PSII reaction centre densities and the fucoxanthin-Chl ale protein complex (FCP). Changes in a were also attributed, in part, to changes in the maximum photon yield of photosynthesis (0max). PSI reaction centre densities were unaffected by growth temperature, but the areal concentration of PSI in low-light-grown algae was twice that of high-light-grown algae (c. 160.0 versus 80.0 nmol m?2). We suggest that complex metabolic regulation allows L, saccharina to optimize photosynthesis over the wide range of temperatures and light levels encountered in nature.  相似文献   

10.
Tropical plants are sensitive to chilling temperatures above zero but it is still unclear whether photosystem I (PSI) or photosystem II (PSII) of tropical plants is mainly affected by chilling temperatures. In this study, the effect of 4°C associated with various light densities on PSII and PSI was studied in the potted seedlings of four tropical evergreen tree species grown in an open field, Khaya ivorensis, Pometia tomentosa, Dalbergia odorifera, and Erythrophleum guineense. After 8 h chilling exposure at the different photosynthetic flux densities of 20, 50, 100, 150 μmol m−2 s−1, the maximum quantum yield of PSII (F v /F m) in all of the four species decreased little, while the quantity of efficient PSI complex (P m) remained stable in all species except E. guineense. However, after chilling exposure under 250 μmol m−2 s−1 for 24 h, F v /F m was severely photoinhibited in all species whereas P m was relative stable in all plants except E. guineense. At the chilling temperature of 4°C, electron transport from PSII to PSI was blocked because of excessive reduction of primary electron acceptor of PSII. F v /F m in these species except E. guineense recovered to ~90% after 8 h recovery in low light, suggesting the dependence of the recovery of PSII on moderate PSI and/or PSII activity. These results suggest that PSII is more sensitive to chilling temperature under the moderate light than PSI in tropical trees, and the photoinhibition of PSII and closure of PSII reaction centers can serve to protect PSI.  相似文献   

11.
Microalgae growing within brine channels (85 psu salinity) of the surface ice layers of Antarctic pack ice showed considerable photosynthetic tolerance to the extreme environmental condition. Brine microalgae exposed to temperatures above ?5°C and at irradiances up to 350 μmol photons·m?2·s?1 showed no photosynthetic damage or limitations. Photosynthesis was limited (but not photoinhibited) when brine microalgae were exposed to ?10°C, provided the irradiance remained under 50 μmol photons·m?2·s?1. The highest level of photosynthetic activity (maximum relative electron transport rate [rETRmax]) in brine microalgae growing within the surface layer of sea ice was at approximately 18 μmol electrons·m?2·s?1, which occurred at ?1.8°C. Effective quantum yield of PSII and rETRmax of the halotolerant brine microalgae exhibited a temperature‐dependent pattern, where both parameters were higher at ?1.8°C and lower at ?10°C. Relative ETRmax at temperatures above ?5°C were stable across a wide range of irradiance.  相似文献   

12.
SUMMARY The effects of photosynthetically active radiation (PAR) and temperature on the photosynthesis of two Vietnamese brown algae, Sargassum mcclurei and S. oligocystum (Fucales), were determined by field and laboratory measurements. Dissolved oxygen sensors and pulse‐amplitude modulated (PAM) fluorometry were used for the measurements of photosynthetic efficiency. A Diving‐PAM revealed that underwater measurements of the effective quantum yield (Φ PSII ) of both species declined with increasing incident PAR, with minimum Φ PSII occurring during noon to early afternoon. Φ PSII recovered in the evening, indicating photo‐adaptation to excessive PAR. In laboratory experiments, Φ PSII also decreased under continuous exposure to 1000 μmol photons m?2 s?1; and full recovery occurred after 12 h of dark acclimatization. The net photosynthesis – PAR experiments of S. mcclurei and S. oligocystum conducted at 28°C revealed that the net photosynthetic rate quickly increased at PAR below the saturation irradiance of 361 and 301 μmol photons m?2 s?1 and nearly saturated to maximum net photosynthetic rates of 385 and 292 μg O2 gww ? 1 min?1 without photoinhibition, respectively. Gross photosynthesis and dark respiration experiments determined over a range of temperatures (12–40°C), revealed that the maximum gross photosynthetic rates of 201 and 147 μg O2 gww ? 1 min?1 occurred at 32.9 and 30.7°C for S. mcclurei and S. oligocystum, respectively. The dark respiration rates increased exponentially over the temperature ranges examined. The estimated maximum value of the maximum quantum yield occurred at 19.3 and 20.0°C and was 0.76 and 0.74, respectively. Similar to the natural habitat of the study site, these two species tolerated the relatively high temperatures and broad range of PAR. The ability of these species to recover from exposure to high PAR is one of the mechanisms that allow them to flourish in the shallow water environment.  相似文献   

13.
Understanding of the physiological responses of kelp to environmental parameters is crucial, especially in the context of environmental change that may have contributed to the decline of kelp forests all over the world. The current study presents the photosynthetic characteristics of the macroscopic sporophyte and microscopic gametophyte stages of the brown alga Alaria crassifolia from Hokkaido, Japan, as determined by examining their photosynthetic responses over a range of temperature and irradiance using dissolved oxygen and chlorophyll fluorescence measurements. Net photosynthetic rates of the sporophyte were consistently higher than those of gametophyte across temperature gradients and irradiance levels. Photosynthesis–irradiance curves at 8°C, 16°C, and 20°C revealed similar initial slopes (α = 0.4–0.9) on the two life history stages, but higher compensation (E c = 4–7 μmol photons m?2 s?1) and saturation irradiances (E k = 53–103 μmol photons m?2 s?1) for the sporophyte than for the gametophyte (E c = 0–7 μmol photons m?2 s?1; E k = 7–10 μmol photons m?2 s?1). Both stages exhibited chronic photoinhibition, as shown by the failure of recovery in their maximum quantum yields (F v/F m) following high irradiance stress, with greater possibility of photodamage at low temperature. Gametophytes were less sensitive to low temperatures than sporophytes, given their relatively stable F v/F m response. Nevertheless, temperature optima for photosynthesis of both stages coincide with each other at 20–23°C, which correspond to the growth and maturation periods of A. crassifolia in Japan. This species is also likely to suffer from thermal inhibition as both GP rates and F v/F m decreased above 24°C.  相似文献   

14.
Photosynthesis and respiration of three Alaskan Porphyra species, P. abbottiae V. Krishnam., P. pseudolinearis Ueda species complex (identified as P. pseudolinearis” below), and P. torta V. Krishnam., were investigated under a range of environmental parameters. Photosynthesis versus irradiance (PI) curves revealed that maximal photosynthesis (Pmax), irradiance at maximal photosynthesis (Imax), and compensation irradiance (Ic) varied with salinity, temperature, and species. The Pmax of Porphyra abbottiae conchocelis varied between 83 and 240 μmol O2 · g dwt?1 · h?1 (where dwt indicates dry weight) at 30–140 μmol photons · m?2 · s?1 (Imax) depending on temperature. Higher irradiances resulted in photoinhibition. Maximal photosynthesis of the conchocelis of P. abbottiae occurred at 11°C, 60 μmol photons · m?2·s?1, and 30 psu (practical salinity units). The conchocelis of P. “pseudolinearis” and P. torta had similar Pmax values but higher Imax values than those of P. abbottiae. The Pmax of P. “pseudolinearis” conchocelis was 200–240 μmol O2 · g dwt?1 · h?1 and for P. torta was 90–240 μmol O2 · g dwt?1 · h?1. Maximal photosynthesis for P. “pseudolinearis” occurred at 7°C and 250 μmol photons · m?2 · s?1 at 30 psu, but Pmax did not change much with temperature. Maximal photosynthesis for P. torta occurred at 15°C, 200 μmol photons · m?2 · s?1, and 30 psu. Photosynthesis rates for all species declined at salinities <25 or >35 psu. Estimated compensation irradiances (Ic) were relatively low (3–5 μmol · photons · m?2 · s?1) for intertidal macrophytes. Porphyra conchocelis had lower respiration rates at 7°C than at 11°C or 15°C. All three species exhibited minimal respiration rates at salinities between 25 and 35 psu.  相似文献   

15.
When plants of Zea mays L. cv. LG11 that have been grown at optimal temperatures are transferred to chilling temperatures (0–12°C) photoinhibition of photosynthetic CO2 assimilation can occur. This study examines how growth at sub-optimal temperatures alters both photosynthetic capacity and resistance to chilling-dependent photoinhibition. Plants of Z. mays cv. LG11 were grown in controlled environments at 14, 17, 20 and 25°C. As a measure of the capacity for photosynthesis under light limiting conditions, the maximum quantum yields of CO2 assimilation (φa.c) and O2 evolution (φa.o) were determined for the laminae of the second leaves at photon fluxes of 50–150 μmol m-2s-1. To determine photosynthetic capacity at photon fluxes approaching light saturation, rates of CO2 uptake (A1500) and O2 evolution (A1500) were determined in a photon flux of 1500 μmol m-2s-1. In leaves developed at 14°C, φ and φ were 26 and 43%, respectively, of the values for leaves grown at 25°C. Leaves grown at 17°C showed intermediate reductions in φ and φ, whilst leaves developed at 20°C showed no significant differences from those grown at 25°C. Similar patterns of decrease were observed for A1500 and A1500.0 with decreasing growth temperature. Leaves developed at 25°C showed higher rates of CO2 assimilation at all light levels and measurement temperatures in comparison to leaves developed at 17 and 14°C. A greater reduction in A1500 relative to A1500.0 with decreasing growth temperature was attributed to increased stomatal limitation. Exposure of leaves to 800–1000 μmol m-2 s-1 when plant temperature was depressed to ca 6.5°C produced a photoinhibition of photosynthetic CO2 assimilation in all leaves. However, in leaves developed at 17°C the decrease in A1500 following this chilling treatment was only 25% compared to 90% in leaves developed at 25°C. Recovery following chilling was completed earlier in leaves developed at 17°C. The results suggest that growth at sub-optimal temperatures induces increased tolerance to exposure to high light at chilling temperatures. This is offset by the large loss in photosynthetic capacity imposed by leaf development at sub-optimal temperatures.  相似文献   

16.
The effects of irradiance, temperature, thermal‐ and chilling‐light sensitivities on the photosynthesis of a temperate alga, Sargassum macrocarpum (Fucales) were determined by a pulse amplitude modulation (PAM)‐chlorophyll fluorometer and dissolved oxygen sensors. Oxygenic photosynthesis–irradiance curves at 8, 20, and 28°C revealed that the maximum net photosynthetic rates (NP max) and saturation irradiance were highest at 28°C, and lowest at 8°C. Gross photosynthesis and dark respiration determined over a range of temperatures (8–36°C) at 300 μmol photons m?2 s?1 revealed that the maximum gross photosynthetic rate (GPmax) occurred at 27.8°C, which is consistent with the highest seawater temperature in the southern distributional limit of this species in Japan. Additionally, the maximum quantum yields of photosystem II (F v/F m) during the 72‐h temperature exposures were stable at 8–28°C, but suddenly dropped to zero at higher temperatures, indicative of PSII deactivation. Continuous exposure (12 h) to irradiance of 200 (low) and 1000 (high) μmol photons m?2 s?1 at 8, 20, and 28°C revealed greater declines in their effective quantum yields (Φ PSII) under high irradiance. While Φ PSII under low irradiance were very similar with the initial F v/F m under 20 and 28°C, values rapidly decreased with exposure duration at 8°C. At this temperature, F v/F m did not recover to initial values even after 12 h of dark acclimation. Final F v/F m of alga at 28°C under high irradiance treatment also did not recover, suggesting its sensitivity to photoinhibition at both low and high temperatures. These photosynthetic characteristics reflect both the adaptation of the species to the general environmental conditions, and its ability to acclimate to seasonal changes in seawater temperature within their geographical range of distribution.  相似文献   

17.
Temperature and irradiance are the most important factors affecting marine benthic microalgal photosynthetic rates in temperate intertidal areas. Two temperate benthic diatoms species, Amphora cf. coffeaeformis (C. Agardh) Kütz. and Cocconeis cf. sublittoralis Hendey, were investigated to determine how their photosynthesis responded to temperatures ranging from 5°C to 50°C after short‐term exposure (1 h) to a range of irradiance levels (0, 500, and 1,100 μmol photons · m?2 · s?1). Significant differences were observed between the temperature responses of maximum relative electron transport rate (rETRmax), photoacclimation index (Ek), photosynthetic efficiency (α), and effective quantum yield (ΔF/Fm’) in both species. A. coffeaeformis had a greater tolerance to higher temperatures than C. sublittoralis, with nonphotochemical quenching (NPQ) activated at temperatures of 45°C and 50°C. C. sublittoralis, however, demonstrated a more rapid rate of recovery at ambient temperatures. Temperatures between 10°C and 20°C were determined to be optimal for photosynthesis for both species. High temperatures and irradiances caused a greater decrease in ΔF/Fm’ values. These results suggest that the effects of temperature are species specific and that short‐term exposure to adverse temperature slows the recovery process, which subsequently leads to photoinhibition.  相似文献   

18.
Suaeda salsa L., a C3 euhalophytic herb, is native to saline soils, demonstrates high resistance to salinity stress. The effect of chilling stress on S. salsa under high salinity, particularly the change in unsaturated fatty acid content within membrane lipids, has not been investigated. After a 12 h chilling treatment (4 °C) performed under low irradiance (100 μmol m?2 s?1), the chlorophyll contents, maximal photochemical efficiency of photosystem II (F v/F m) and actual PSII efficiency (ΦPSII) were determined. These measurements were significantly decreased in S. salsa leaves in the absence of salt treatment yet there were no significant changes with a 200 mM NaCl treatment. Chlorophyll contents, F v/F m and ΦPSII in S. salsa under 200 mM NaCl were higher than those without salt treatment. The unsaturated fatty acid content and the double bond index (DBI) of major membrane lipids of monogalactosyldiacylglycerols, digalactosyldiacylglycerols (DGDG), sulphoquinovosyldiacylglycerols and phosphatidylglycerols (PG) significantly increased following the chilling treatment (4 °C) (with 12 h of low irradiance and 200 mM of NaCl). The DBI of DGDG and PG was decreased in the absence of the salt treatment. These results suggest that in the euhalophyte S. salsa, a 200 mM NaCl treatment increases chilling tolerance under conditions of low irradiance (100 μmol m?2 s?1).  相似文献   

19.
The susceptibility to photoinhibition of tree species from three different successional stages were examined using chlorophyll fluorescence and gas exchange techniques. The three deciduous broadleaf tree species were Betula platyphylla var. japonica, pioneer and early successional, Quercus mongolica, intermediate shade‐tolerant and mid‐successional, and Acer mono, shade‐tolerant and late successional. Tree seedlings were raised under three light regimes: full sunlight (open), 10% full sun, and 5% full sun. Susceptibility to photoinhibition was assessed on the basis of the recovery kinetics of the ratio of vaviable to maximum fluorescence (Fv/Fm) of detached leaf discs exposed to about 2000 μmol m?1 s?1 photon flux density (PFD) for 2 h under controlled conditions (25 to 28 °C, fully hydrated). Differences in susceptibility to photodamage among species were not significant in the open and 10% full sun treatments. But in 5% full sun, B. platyphylla sustained a significantly greater photodamage than other species, probably associated with having the lowest photosynthetic capacity indicated by light‐saturated photosynthetic rate (B. platyphylla, 9·87, 5·85 and 2·82; Q. mongolica, 8·05, 6·28 and 4·41; A. mono, 7·93, 6·11 and 5·08 μmol CO2 m?1 s?1for open, 10% and 5% full sun, respectively). To simulate a gap formation and assess its complex effects including high temperature and water stress in addition to strong light on the susceptibility to photoinhibition, we examined photoinhibition in the field by means of monitoring ΔF/Fm on the first day of transfer to natural daylight. Compared with ΔF/Fm in AM, the lower ΔF/Fm in PM responding to lower PFD following high PFD around noon indicated that photoinhibition occurred in plants grown in 10 and 5% full sun. The diurnal changes of ΔF/Fm showed that Q. mongolica grown in 5% full sun was less susceptible to photoinhibition than A. mono although they showed little differences both in photosynthetic capacity in intact leaves and susceptibility to photoinhibition based on leaf disc measurements. These results suggest that shade‐grown Q. mongolica had a higher tolerance for additional stresses such as high temperature and water stress in the field, possibly due to their lower plasticity in leaf anatomy to low light environment.  相似文献   

20.
The response of effective quantum yield of photosystem 2 (ΔF/Fm’) to temperature was investigated under field conditions (1 950 m a.s.l.) in three alpine plant species with contrasting leaf temperature climates. The in situ temperature response did not follow an optimum curve but under saturating irradiances [PPFD >800 µìmol(photon) m?2s?1] highest ΔF/Fm’ occurred at leaf temperatures below 10°C. This was comparable to the temperature response of antarctic vascular plants. Leaf temperatures between 0 and 15°C were the most frequently (41 to 56%) experienced by the investigated species. At these temperatures, ΔF/Fm’ was highest in all species (data from all irradiation classes included) but the species differed in the temperature at which ΔF/Fm’ dropped below 50% (Soldanella pusilla >20°C, Loiseleuria procumbens >25°C, and Saxifraga paniculata >40°C). The in situ response of ΔF/Fm’ showed significantly higher ΔF/Fm’ values at saturating PPFD for the species growing in full sunlight (S. paniculata and L. procumbens) than for S. pusilla growing under more moderate PPFD. The effect of increasing PPFD on ΔF/Fm’, for a given leaf temperature, was most pronounced in S. pusilla. Despite the broad diurnal leaf temperature amplitude of alpine environments, only in S. paniculata did saturating PPFD occur over a broad range of leaf temperatures (43 K). In the other two species it was half of that (around 20 K). This indicates that the setting of environmental scenarios (leaf temperature×PPFD) in laboratory experiments often likely exceeds the actual environmental demand in the field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号