首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The Xmrk oncogene involved in melanoma formation in the fish Xiphophorus was formed relatively recently by duplication of the epidermal growth factor co-orthologue egfrb. In the platyfish X. maculatus, Xmrk is located close to the major sex-determining locus in a subtelomeric region of the X and Y sex chromosomes that frequently undergoes duplications and other rearrangements. This region accumulates repetitive sequences: more than 80% of the 33-kb region 3' of Xmrk is constituted by retrotransposable elements. The high degree of nucleotide identity between X- and Y-linked sequences and the rarity of gonosome-specific rearrangements indicated that the instability observed was not a manifestation of gonosome-specific degeneration. Seven other duplicated genes were found, all corresponding, in contrast to Xmrk, to pseudogenes (nonfunctionalization). Functional persistence of Xmrk in a highly unstable region in divergent Xiphophorus species suggests a beneficial function under certain conditions for this dispensable and potentially injurious gene.  相似文献   

3.
The incomplete correlation between the organismal complexities and the number of genes among eukaryotic organisms can be partially explained by multiple protein products of a gene created by alternative splicing. One type of alternative splicing involves alternative selection of mutually exclusive exons and creates protein products with substitution of one segment of the amino acid sequence for another. To elucidate the evolution of the mutually exclusive 115-bp exons, designated flip and flop, of vertebrate AMPA receptor genes, the gene structures of chordate (tunicate, cephalochordate, and vertebrate) and protostome (Drosophila and Caenorhabditis elegans) AMPA receptor subunits were compared. Phylogenetic analysis supports that the vertebrate flip and flop exons evolved from a common sequence. Flip and flop exons exist in all vertebrate AMPA receptor genes but only one 115-bp exon is present in the genes of tunicates and cephalochordates, suggesting that the exon duplication event occurred at the ancestral vertebrate AMPA receptor gene after the separation of vertebrates from primitive chordates. The structures of animal AMPA receptor genes also suggest that an intron insertion to separate the primordial flip/flop exon from the M4-coding exon occurred before the exon duplication event and probably at the chordate lineage. [Reviewing Editor: Dr. Manyuan Long]  相似文献   

4.
Certain interspecific hybrids of the fish Xiphophorus spontaneously develop melanoma induced by the derepression of the Xmrk oncogene. Xmrk is a recent duplicate of an orthologue of the mammalian epidermal growth factor receptor gene Egfr. In addition to a specific overexpression in melanoma, amino-acid substitutions in the extracellular domain leading to ligand-independent dimerisation and constitutive autophosphorylation are responsible for the tumorigenic potential of Xmrk. The Xmrk receptor induces several signal transduction pathways mediating cell proliferation and resistance to apoptosis and initiating dedifferentiation. Moreover, Xmrk upregulates the expression of the secreted protein osteopontin, inducing an autocrine loop possibly allowing invasion and survival in the dermis as a first step in malignancy. Hence, Xmrk is able to induce pathways essential for a transformed phenotype. Some of these events are equivalent to those found downstream of the mammalian Egfr, but others have clearly evolved differently or are specific for pigment cells. Xmrk is potentially hazardous, nonessential and located in a very unstable genomic region. Nevertheless, Xmrk has been maintained under purifying selection in divergent Xiphophorus species. Hence, Xmrk has probably a beneficial function under certain conditions. The analysis of this function is a major challenge for future research in the Xiphophorus model.  相似文献   

5.
The epidermal growth factor receptor (EGFR) gives name to a family of receptors formed by four members in mammals (EGFR, ErbB2, ErbB3, and ErbB4). Members of this family can be activated to become potent oncogenes, and many human and animal tumors express qualitatively or quantitatively altered receptors from this group. We have isolated and characterized a second egfr gene in the melanoma model fish Xiphophorus. Both Xiphophorus egfra and egfrb duplicates are co-orthologs of the mammalian egfr gene. Database analysis showed that not only egfr but also erbB3 and erbB4 are present as duplicates in some fish species. They originated from ancient duplication events that might be consistent with the hypothesis of a fish-specific genome duplication. In Xiphophorus, the egfrb gene underwent a second duplication that generated the melanoma-inducing oncogene Xmrk. The study and comparison of some of the functional characteristics of both Xiphophorus EGF receptors, including expression profile, ligand-binding abilities, and intracellular signal transduction revealed that Xiphophorus Egfra not only shares common features with Egfrb and the human EGFR but also shows significant differences in its functional characteristics. The mechanism of maintenance of these duplicates remains to be clarified.  相似文献   

6.
For many genes, ray-finned fish (Actinopterygii) have two paralogous copies, where only one ortholog is present in tetrapods. The discovery of an additional, almost-complete set of Hox clusters in teleosts (zebrafish, pufferfish, medaka, and cichlid) but not in basal actinopterygian lineages (Polypterus) led to the formulation of the fish-specific genome duplication hypothesis. The phylogenetic timing of this genome duplication during the evolution of ray-finned fish is unknown, since only a few species of basal fish lineages have been investigated so far. In this study, three nuclear genes (fzd8, sox11, tyrosinase) were sequenced from sturgeons (Acipenseriformes), gars (Semionotiformes), bony tongues (Osteoglossomorpha), and a tenpounder (Elopomorpha). For these three genes, two copies have been described previously teleosts (e.g., zebrafish, pufferfish), but only one orthologous copy is found in tetrapods. Individual gene trees for these three genes and a concatenated dataset support the hypothesis that the fish-specific genome duplication event took place after the split of the Acipenseriformes and the Semionotiformes from the lineage leading to teleost fish but before the divergence of Osteoglossiformes. If these three genes were duplicated during the proposed fish-specific genome duplication event, then this event separates the species-poor early-branching lineages from the species-rich teleost lineage. The additional number of genes resulting from this event might have facilitated the evolutionary radiation and the phenotypic diversification of the teleost fish.[Reviewing Editor: Martin Kreitman]  相似文献   

7.
Kim MS  Seo JS  Ahn SJ  Kim NY  Je JE  Sung JH  Lee HH  Chung JK 《Genomics》2008,92(5):366-371
Fishes possess more genes than other vertebrates, possibly because of a genome duplication event during the evolution of the teleost (ray-finned) fish lineage. To further explore this idea, we cloned five genes encoding phosphoinositide-specific phospholipase C-delta (PLC-delta), designated respectively PoPLC-deltas, from olive flounder (Paralichthys olivaceus), and we performed phylogenetic analysis and sequence comparison to compare our putative gene products (PoPLC-deltas) with the sequences of known human PLC isoforms. The deduced amino acid sequences shared high sequence identity with human PLC-delta1, -delta3, and -delta4 isozymes and exhibited similar primary structures. In phylogenetic analysis of PoPLC-deltas with PLC-deltas of five teleost fishes (zebrafish, stickleback, medaka, Tetraodon, and Takifugu), three tetrapods (human, chicken, and frog), and two tunicates (sea squirt and pacific sea squirt), whose putative sequences of PLC-delta are available in Ensembl genome browser, the result also indicated that the two paralogous genes corresponding to each PLC-delta isoform originated from fish-specific genome duplication prior to the divergence of teleost fish. Our analyses suggest that an ancestral PLC-delta gene underwent three rounds of genome duplication during the evolution of vertebrates, leading to the six genes of three PLC-delta isoforms in teleost fish.  相似文献   

8.
M. Schartl 《Genetics》1990,126(4):1083-1091
Several species of the genus Xiphophorus are polymorphic for specific pigment patterns. Some of these give rise to malignant melanoma following the appropriate crossings. For one of these pattern loci from the playfish Xiphophorus maculatus the melanoma-inducing gene has been cloned and found to encode a novel receptor tyrosine kinase, designated Xmrk. Using molecular probes from this gene in Southern blot analyses on single fish DNA preparations from 600 specimens of different populations of various species of the genus Xiphophorus and their hybrids, either with or without melanoma-predisposing pattern, it was shown that all individuals contain the Xmrk gene as a proto-oncogene. It is located on the sex chromosome. All fish that carry a melanoma-predisposing locus which has been identified by Mendelian genetics contain an additional copy of Xmrk, closely linked to a specific melanophore pattern locus on the sex chromosome. The melanoma-inducing loci of the different species and populations are homologous. The additional copy of Xmrk obviously arose by a gene-duplication event, thereby acquiring the oncogenic potential. The homology of the melanoma-inducing loci points to a similar mechanism of tumor suppression in all feral fish populations of the different species of the genus Xiphophorus.  相似文献   

9.
Despite the major importance of sex determination in aquaculture, no master sex-determining gene has been identified so far in teleost fish. In the platyfish Xiphophorus maculatus, this master gene is flanked by two receptor tyrosine kinase genes, the Xmrk oncogene responsible for melanoma formation in some Xiphophorus interspecific hybrids, and its proto-oncogenic counterpart. Both Xmrk genes, which have already been characterised at the molecular level, delimit a region of about 1 Mb that contains other gene loci involved in sexual maturity, pigmentation and melanoma formation. We have constructed a genomic bacterial artificial chromosome (BAC) library of X. maculatus with a tenfold coverage of the haploid genome and walked on both X and Y sex chromosomes starting from both Xmrk genes. This led to the assembly of BAC contigs from the sex-determining region covering approximately 950 kb of the X and 750 kb of the Y chromosome. To our knowledge, these are the largest contigs reported so far for sex chromosomes in fish. Molecular analysis suggests that the sex-determining region of X. maculatus frequently undergoes retrotranspositions and other kinds of rearrangements. This genomic plasticity might be related to the high genetic variability observed in Xiphophorus for sex determination, sexual maturity, pigmentation and melanoma formation, which are encoded by gene loci located in the sex-determining region.  相似文献   

10.
In humans, the frizzled (FZD) gene family encodes 10 homologous proteins that commonly localize to the plasma membrane. Besides being associated with three main signaling pathways for cell development, most FZDs have different physiological effects and are major determinants in the development process of vertebrates and. Here, we identified and annotated the FZD genes in the whole-genome of common carp (Cyprinus carpio), a teleost fish, and determined their phylogenetic relationships to FZDs in other vertebrates. Our analyses revealed extensive gene duplications in the common carp that have led to the 26 FZD genes that we detected in the common carp genome. All 26 FZD genes were assigned orthology to the 10 FZD genes of on-land vertebrates, with none of genes being specific to the fish lineage. We postulated that the expansion of the FZD gene family in common carp was the result of an additional whole genome duplication event and that the FZD gene family in other teleosts has been lost in their evolution history with the reason that the functions of genes are redundant and conservation. Through the expression profiling of FZD genes in common carp, we speculate that the ancestral gene was likely capable of performing all functions and was expressed broadly, while some descendant duplicate genes only performed partial functions and were specifically expressed at certain stages of development.  相似文献   

11.
From 2R to 3R: evidence for a fish-specific genome duplication (FSGD)   总被引:20,自引:0,他引:20  
An important mechanism for the evolution of phenotypic complexity, diversity and innovation, and the origin of novel gene functions is the duplication of genes and entire genomes. Recent phylogenomic studies suggest that, during the evolution of vertebrates, the entire genome was duplicated in two rounds (2R) of duplication. Later, approximately 350 mya, in the stem lineage of ray-finned (actinopterygian) fishes, but not in that of the land vertebrates, a third genome duplication occurred-the fish-specific genome duplication (FSGD or 3R), leading, at least initially, to up to eight copies of the ancestral deuterostome genome. Therefore, the sarcopterygian (lobe-finned fishes and tetrapods) genome possessed originally only half as many genes compared to the derived fishes, just like the most-basal and species-poor lineages of extant fishes that diverged from the fish stem lineage before the 3R duplication. Most duplicated genes were secondarily lost, yet some evolved new functions. The genomic complexity of the teleosts might be the reason for their evolutionary success and astounding biological diversity.  相似文献   

12.
13.
Melanoma formation in platyfish/swordtail hybrids of genus Xiphophorus is due to overexpression of the receptor tyrosine kinase oncogene Xmrk. This gene is the molecular equivalent to the Tu-locus of platyfish, formerly identified by Mendelian genetics. The supposed evolutionary origin of the Xmrk oncogene is a nonhomologous recombination event in the 5’region of the corresponding Xmrk protooncogene with an anonymous sequence, D. This event led to a gene duplication of Xmrk, whereby the new copy obtained a novel promoter derived from D. Inactivity of this promoter in parental fish warrants lack of tumorigenicity of the Xmrk oncogene in wild playfish. In hybrids, however, the promoter is active. This leads to the pigment cell transforming overexpression of Xmrk.  相似文献   

14.
An understanding of the origin of different body plans requires knowledge of how the genes and genetic pathways that control embryonic development have evolved. The Hox genes provide an appealing starting point for such studies because they play a well-understood causal role in the regionalization of the body plan of all bilaterally symmetric animals. Vertebrate evolution has been characterized by gene, and possibly genome, duplication events, which are believed to have provided raw genetic material for selection to act upon. It has recently been established that the Hox gene organization of ray-finned fishes, such as the zebrafish, differs dramatically from that of their lobe-finned relatives, a group that includes humans and all the other widely used vertebrate model systems. This unusual Hox gene organization of zebrafish is the result of a duplication event within the ray-finned fish lineage. Thus, teleosts, such as zebrafish, have more Hox genes arrayed over more clusters (or "complexes") than do tetrapod vertebrates. Here, I review our understanding of Hox cluster architecture in different vertebrates and consider the implications of gene duplication for Hox gene regulation and function and the evolution of different body plans.  相似文献   

15.
With about 24,000 extant species, teleosts are the largest group of vertebrates. They constitute more than 99% of the ray-finned fishes (Actinopterygii) that diverged from the lobe-finned fish lineage (Sarcopterygii) about 450 MYA. Although the role of genome duplication in the evolution of vertebrates is now established, its role in structuring the teleost genomes has been controversial. At least two hypotheses have been proposed: a whole-genome duplication in an ancient ray-finned fish and independent gene duplications in different lineages. These hypotheses are, however, based on small data sets and lack adequate statistical and phylogenetic support. In this study, we have made a systematic comparison of the draft genome sequences of Fugu and humans to identify paralogous chromosomal regions ("paralogons") in the Fugu that arose in the ray-finned fish lineage ("fish-specific"). We identified duplicate genes in the Fugu by phylogenetic analyses of the Fugu, human, and invertebrate sequences. Our analyses provide evidence for 425 fish-specific duplicate genes in the Fugu and show that at least 6.6% of the genome is represented by fish-specific paralogons. We estimated the ages of Fugu duplicate genes and paralogons using the molecular clock. Remarkably, the ages of duplicate genes and paralogons are clustered, with a peak around 350 MYA. These data strongly suggest a whole-genome duplication event early during the evolution of ray-finned fishes, probably before the origin of teleosts.  相似文献   

16.
A whole-genome duplication in the ray-finned fish lineage has been supported by the analyses of the genome sequence of the Japanese pufferfish, Fugu rubripes. Recently, genome sequence of a second teleost fish, the freshwater pufferfish, Tetraodon nigroviridis, was completed. Comparisons of long-range synteny between the Tetraodon and human genomes provided additional evidence for the whole-genome duplication in the ray-finned fish lineage. In the present study, we conducted phylogenetic analysis of the Tetraodon and human proteins to identify ray-finned fish lineage-specific (‘fish-specific’) duplicate genes in the Tetraodon genome. Our analyses provide evidence for 1087 well defined fish-specific duplicate genes in Tetraodon. We also analyzed the Fugu proteome that was predicted in the recent Fugu genome assembly, and identified 346 duplicate genes in addition to the 425 duplicates previously identified. We estimated the ages of duplicate genes using the molecular clock. The ages of duplicate genes in the two pufferfishes independently support a large-scale gene duplication around 380–400 Myr ago. In addition, a burst of recent gene duplications was evident in the Tetraodon lineage. These findings provide further evidence for a whole-genome duplication early in the evolution of ray-finned fishes, and suggest that independent gene duplications have occurred recently in the Tetraodon lineage.  相似文献   

17.
18.
With the acquisition of complete genome sequences from several animals, there is renewed interest in the pattern of genome evolution on our own lineage. One key question is whether gene number increased during chordate or vertebrate evolution. It is argued here that comparing the total number of genes between a fly, a nematode and human is not appropriate to address this question. Extensive gene loss after duplication is one complication; another is the problem of comparing taxa that are phylogenetically very distant. Amphioxus and tunicates are more appropriate animals for comparison to vertebrates. Comparisons of clustered homeobox genes, where gene loss can be identified, reveals a one to four mode of evolution for Hox and ParaHox genes. Analyses of other gene families in amphioxus and vertebrates confirm that gene duplication was very widespread on the vertebrate lineage. These data confirm that vertebrates have more genes than their closest invertebrate relatives, acquired through gene duplication. abbreviations IHGSC, International Human Genome Sequencing Consortium; TCESC, The C. elegans Sequencing Consortium.  相似文献   

19.
One important mechanism for functional innovation during evolution is the duplication of genes and entire genomes. Evidence is accumulating that during the evolution of vertebrates from early deuterostome ancestors entire genomes were duplicated through two rounds of duplications (the 'one-to-two-to-four' rule). The first genome duplication in chordate evolution might predate the Cambrian explosion. The second genome duplication possibly dates back to the early Devonian. Recent data suggest that later in the Devonian, the fish genome was duplicated for a third time to produce up to eight copies of the original deuterostome genome. This last duplication took place after the two major radiations of jawed vertebrate life, the ray-finned fish (Actinopterygia) and the sarcopterygian lineage, diverged. Therefore the sarcopterygian fish, which includes the coelacanth, lungfish and all land vertebrates such as amphibians, reptiles, birds and mammals, tend to have only half the number of genes compared with actinopterygian fish. Although many duplicated genes turned into pseudogenes, or even 'junk' DNA, many others evolved new functions particularly during development. The increased genetic complexity of fish might reflect their evolutionary success and diversity.  相似文献   

20.
Zebrafish Hox genes are arranged in at least seven clusters, rather than the four clusters typical of vertebrates. This suggests that an additional genome duplication occurred on the fish lineage and explains why many gene families are typically about half the size in land vertebrates than they are in fish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号