首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
Summary Hydroxylamine, a potent oxidizing agent used to reverse carbethoxylation of histidine by diethylpyrocarbonate, activated Cl-dependent K flux (KCl cotransport) of low K sheep red blood cells almost sixfold. When KCl cotransport was already stimulated by N-ethylmaleimide, hydroxylamine caused an additional twofold activation suggesting modification of sites different from those thiol alkylated. This conclusion was supported by the finding that hydroxylamine additively augmented also the diamide-induced KCl flux (Lauf, P.K. 1988.J. Membrane Biol. 101:179–188) with dithiothreitol fully reversing the diamide but not the hydroxylamine effect. Stimulation of KCl cotransport by hydroxylamine was completely inhibited by treatment with diethylpyrocarbonate also known to prevent KCl cotransport stimulation by N-ethylmaleimide, both effects being independent of the order of addition. Hence, although the effect of carbethoxy modification on KCl flux cannot be reversed by hydroxylamine and thus excludes histidine as the target for diethylpyrocarbonate, our finding reveals an important chemical determinant of KCl cotransport stimulation by both hydroxylamine oxidation and thiol group alkylation.  相似文献   

2.
Summary A membrane protein that is immunochemically similar to the red cell anion exchange protein, band 3, has been identified on the basolateral face of the outer medullary collecting duct (MCD) cells in rabbit kidney. In freshly prepared separated rabbit MCD cells, M.L. Zeidel, P. Silva and J.L. Seifter (J. Clin. Invest. 77:1682–1688, 1986) found that Cl/HCO 3 - exchange was inhibited by the stilbene anion exchange inhibitor, DIDS (4,4-diisothiocyano-2,2-disulfonic stilbene), with aK 1 similar to that for the red cell. We have measured the binding affinities of a fluorescent stilbene inhibitor, DBDS (4,4-dibenzamido-2,2-disulfonic stilbene), to MCD cells in 28.5 mM citrate and have characterized both a high-affinity site (K 1 s =93±24 mM) and a lower affinity site (K 2 s =430±260 nM), which are closely similar to values for the red cell of 110±51 nM for the high-affinity site and 980±200 nM for the lower affinity site (A.S. Verkman, J.A. Dix & A.K. Solomon,J. Gen. Physiol. 81:421–449, 1983). When Cl replaces citrate in the buffer, the two sites collapse into a single one withK 1 s =1500±400 nM, similar to the singleK 1 s =1200±200 nM in the red cell (J.A. Dix, A.S. Verkman & A.K. Solomon,J. Membrane Biol. 89:211–223, 1986). The kinetics of DBDS binding to MCD cells at 0.25 M–1 are characterized by a fast process, =0.14±0.03 sec, similar to =0.12±0.03 sec in the red cell. These similarities show that the physical chemical characteristics of stilbene inhibitor binding to MCD cell band 3 closely resemble those for red cell band 3, which suggests that the molecular structure is highly conserved.  相似文献   

3.
Summary 86Rb uptake into LLC-PK1 cells (an established renal epithelial cell line) was found to be comprised of an active ouabain-sensitive component, a loop diuretic-sensitive component which was passive and strictly dependent upon the presence of extracellular Na+ and Cl for activity, and a leak component. The diuretic-sensitive component of influx was investigated further in apical membrane vesicles derived from these cells. A large fraction of86Rb,22Na and36Cl flux into these vesicles was sensitive to inhibition by furosemide and dependent upon the presence of the other two co-ions, in keeping with the presence of a loop diuretic-sensitive Na+K+Cl cotransport system. The kinetic parameters for Na+ and K+ interaction have been analyzed under initial linear zerotrans conditions. The following values were obtained:K mNa+=0.42±0.05 mmol/liter,V max=303±24 pmol/mg/6 sec;K mK+=11.9±1.0 mmol/liter,V maxK+=307±27 pmol/mg/6 sec. For Cl interaction evidence for two cooperative binding sites with different affinities and different specificities were obtained. Thus, a stoichiometry of 1Na+1K+2Cl can be calculated. It is concluded that the apical membrane of LLC-PK1 cells contains a Na+K+2Cl cotransport system with properties similar to those described for the thick ascending limb of the loop of Henle.  相似文献   

4.
The regulation of total creatine content in a myoblast cell line   总被引:5,自引:0,他引:5  
Total cellular creatine content is an important bioenergetic parameter in skeletal muscle. To understand its regulation we investigated creatine transport and accumulation in the G8 cultured skeletal myoblast line. Like other cell types, these contain a creatine transporter, whose activity, measured using a radiolabelling technique, was saturable (Km = 110 ± 25 M) and largely dependent on extracellular [Na+]. To study sustained influences on steady state creatine concentration we measured total cellular creatine content using a fluorimetric method in 48 h incubations. We found that the total cellular creatine content was relatively independent of extracellular creatine concentration, consistent with high affinity sodium-dependent uptake balanced by slow passive efflux. Accordingly, in creatine-free incubations net creatine efflux was slow ( 5 ± 1 % of basal creatine content per day over 6 days), while creatine content in 48 h incubations was reduced by 28 ± 13% of control by the Na+,K+-ATPase inhibitor ouabain. Creatine accumulation after 48 h was stimulated by treatment with the mixed - and -adrenergic agonist noradrenaline, the -adrenergic agonist isoproterenol, the 2-agonist clenbuterol and the cAMP analogue N6,2-O-dibutyryladenosine 3,5-cyclic monophosphate, but was unaffected by the 1 adrenergic agonist methoxamine. The noradrenaline enhancement of creatine accumulation at 48 h was inhibited by the mixed - and -antagonist labetalol and by the -antagonist propranolol, but was unaffected by the 2 antagonist phentolamine; greater inhibition was caused by the 2 antagonist butoxamine than the 1 antagonist atenolol. Creatine accumulation at 48 h was increased to 230 ± 6% of control by insulin and by 140 ± 13% by IGF-I (both at 3 nM). Creatine accumulation at 48 h was also increased to 280 ± 40% of control by 3,3,5-triiodothyronine (at 70 M) and to 220 ± 35% of control by amylin (60 nM). As 3,3,5-triiodothyronine, amylin and isoproterenol all stimulate the Na+,K+-ATPase, we suggest that they stimulate Na+-creatine cotransport indirectly by increasing the transmembrane [Na+] concentration gradient and membrane potential.Abbreviations IGF-I insulin-like growth factor I - IGF-II insulin-like growth factor II - T3 3,3,5-triiodothyronine - CGRP calcitonin gene-related peptide  相似文献   

5.
Summary The bumetanide-sensitive uptake of Na+, K(Rb) and Cl has been measured at 21°C in ferrent red cells treated with (SITS+DIDS) to minimize anion flux via capnophorin (Band 3). During the time course of the influx experiments tracer uptake was a first-order rate process. At normal levels of external Na+ (150mm) the bumetanide-sensitive uptake of K+ was dependent on Cl and represented almost all of the K+ uptake, the residual flux demonstrating linear concentration dependence. The uptake of Na+ and Cl was only partially inhibited by bumetanide indicating that pathways other than (Na+K+Cl) cotransport participate in these fluxes. The diuretic-sensitive uptake of Na+ or Cl was, however, abolished by the removal of K+ or the complementary ion indicating that bumetanide-sensitive fluxes of Na+, K+ and Cl are closely coupled. At very low levels of [Na] o (<5mm) K+ influx demonstrated complex kinetics, and there was evidence of the unmasking of a bumetanide-sensitive Na+-independent K+ transport pathway. The stoichiometry of bumetanide-sensitive tracer uptake was 2Na1K3Cl both in cells suspended in a low and a high K+-containing medium. The bumetanide-sensitive flux was markedly reduced by ATP depletion. We conclude that a bumetanide-sensitive cotransport of (2Na1K3Cl) occurs as an electroneutral complex across the ferret red cell membrane.  相似文献   

6.
The turgor-homeostat model of assimilate efflux from coats of developing seed of Phaseolus vulgaris L. was further characterised. The turgor pressure (P), the volumetric elastic modulus () and hydraulic conductivity (Lp) of the seed coat cells responsible for assimilate efflux and cotyledon storage parenchyma cells were determined with a pressure probe. In addition, turgor of the seed coat and cotyledons was estimated by measuring the osmolalities of symplastic and apoplastic fluids extracted by centrifugation. Osmolality of symplastic and apoplastic saps collected from the seed coat declined significantly over the period of seed development from a cotyledon water content of 80% to 50%. However, the difference in osmolalities of the apoplastic and symplastic saps remained relatively constant. For cotyledons, osmolality of the apoplastic sap exhibited a significant decline during seed development, while the osmolality of symplastic sap did not change significantly. Hence cotyledon P increased as the water content dropped from 80% to 50%. For both detached and attached empty seed coats, a small decrease (ca. 40mOsmol·kg–1) in the osmolality of the bathing solution, led to a rapid increase in P of cells involved in assimilate efflux (efflux cells) by about 0.07 MPa. Thereafter, cell P exhibited a rapid decline to the original value within some 20–30 min. When P of the efflux cells was reduced by increasing the osmolality of the bathing solution, P exhibited a comparable rate of recovery for attached empty seed coats but there was no P recovery to its original value in the case of detached seed coats. In contrast, the cotyledon storage parenchyma cells did not exhibit P regulation when the osmolality of the bathing solution was changed. The observations that the efflux cells of P. vulgaris seed coats can rapidly adjust their P homeostatically in response to small changes in apoplastic osmolality are consistent with the operation of a turgor-homeostat mechanism. The volumetric elastic modulus () of the seed coat efflux cells exhibited a mean value of 7.3±0.8 MPa at P=0.15 MPa and was found to be linearly dependent on cell P. The e of the cotyledon storage parenchyma cells was estimated to be 6.1±1.0 MPa at P=0.41 MPa. Hydraulic conductivity (Lp) of the seed coat cells and the cotyledon cells was (8.2±1.5) × 10–8m·s–1·MPa–1and (12.8±1.0) × 10–8 m·s–1·MPa–1, respectively. The relatively high , i.e., low elasticity, for the seed coat cell walls would ensure that small changes in water potential of the seed apoplast will be reflected in large changes in cell P. The high Lp values for both the seed coat and the cotyledon cells is consistent with the rapid changes in P in response to changes in water potential of the seed apoplast.Abbreviations LYCH Lucifer Yellow CH - volumetric elastic modulus - Lp hydraulic conductivity - P turgor pressure - osmotic pressure - t1/2 half-time for water exchange The investigation was supported by funds from the Australian Research Council. We are grateful to Louise Hetherington for competent technical assistance and to Kevin Stokes for raising the plant material.  相似文献   

7.
Summary The sulfhydryl (SH) oxidant diamide activated in a concentration-dependent manner ouabain-resistant (OR), Cl-dependent K flux in both low potassium (LK) and high potassium (HK) sheep red cells as determined from the rate of zero-trans K efflux into media with Cl or Cl replaced by NO3 or methane sulfonate (CH3SO3). Diamide did not alter the OR Na efflux into choline Cl. The diamide effect on K efflux appeared after 80% of cellular glutathione (GSH) was oxidized to GSSG, its disulfide. The stimulation of K efflux was completely reversed during metabolic restitution of GSH, a process that depended on the length of exposure to and the concentration of diamide. The action of diamide on both the KCl transporter and GSH was also fully reversed by the reducing agent dithiothreitol (DTT). Diamide apparently oxidized the same SH groups alkylated by N-ethylmaleimide (NEM) (Lauf, P.K. 1983.J. Membrane Biol..73:237–246). Like NEM, diamide activated KCl transport several-fold more in LK cells than in HK cells, and the effect on LK cells was partially inhibited by anti-L1, the allo-antibody known to inhibit OR K fluxes.  相似文献   

8.
Summary The photoreceptive microvilli in the visual cells of the leech protrude into a large intracellular vacuole which is but an extracellular compartment (ionic composition unknown), because it communicates with the extracellular space by narrow ( 20 nm) clefts (septate junctions) of unknown permeability properties. Application of Thiéry's cytochemical silver proteinate method reveals that the vacuole contains carbohydrate-rich material. We used electron probe microanalysis of dry, ultrathin cryosections to determine quantitatively the elemental (K, Na, Cl, Mg, Ca, P, S) composition of the cytoplasm, vacuole and extracellular space.The composition of the vacuole is similar to that of the extracellular space, as shown by the comparable Na/K (11 to 13) and K/Ca (1.8 to 2.2) ratios in these two compartments. There are neglible concentration gradients for Na, K and Cl between vacuole and extracellular space. The vacuole has a high S content and a relatively large deficit of Cl compared to [Na]+[K]+2 [Ca]. Thus the data indicate that the vacuole is in ionic communication with the extracellular space and contains sulfonated glycoprotein(s) that can partially exclude Cl; electroneutrality is maintained in part by these organic anions. The cytoplasmic K concentration (393±30 mmol/kg dry wt) is comparable to that in other nerve cells. The cytoplasmic Cl concentration (216±14 mmol/kg dry wt) is relatively high: significantly (P<0.001) higher than the cytoplasmic Na (130±15 mmol/kg dry wt). The high cytoplasmic Cl content is in excess of that predicted by passive distribution, and suggests the operation of a Cl pump.  相似文献   

9.
Summary Amounts and temporal changes of the release of the tracer ions K+ (86Rb+),22Na+, and36Cl as well as of H+ in the course of action potentials inAcetabularia have been recorded. New results and model calculations confirm in quantitative terms the involvement of three major ion transport systemsX in the plasmalemma: Cl pumps, K+ channels, and Cl channels (which are marked in the following by the prefixes,P, K andC) with their equilibrium voltages X V e and voltage/time-dependent conductances, which can be described by the following, first approximation. Let the maximum (ohmic) conductance of each of the three populations of transporter species be about the same (P L, KL,C L=1) but voltage gating be different: the pump ( p V e about –200 mV) being inactivated (open,oclosed,c) at positive going transmembrane voltages,V m; the K+ channels (K V e about –100 mV) are inactivated at negative goingV m; and the Cl channels (C V e: around 0 mV), which are normally closed (c) at a restingV m (nearPVe) go through an intermediate open (o) state at more positiveV m before they enter a third shut state (s) in series. Model calculations, in which voltage sensitivities are expressed by the factorf=exp(V mF/(2RT)), simulate, the action potential fairly well with the following parameters (PKco10/f ks–1,PKoc1000·f ks–1,KKco200·f ks–1,Kkoc2/f ks–1,cKco500·f ks–1,CKoc5/f ks–1,CKso0.1/f ks–1,Ckos20·f ks–1). It is also shown that the charge balance for the huge transient Cl efflux, which frequently occurs during an action potential, can be accounted for by the observation of a corresponding release of Na+.  相似文献   

10.
Summary Self-exchange of chloride and sulfate in dog and cat red cells has been measured under equilibrium conditions. The rates of efflux for these anions are approximately twofold higher in dog compared to cat red blood cells. Although the rates differ, the anion exchange systems of these two red cell types exhibit many common properties. The dependence of35SO4 efflux on the intracellular SO4 concentration, the pH dependence and the inhibition of35SO4 efflux by Cl and SITS are almost identical in dog and cat red cells. Nystatin treatment was used to study the dependence of36Cl efflux on internal Cl. Chloride efflux exhibits saturation in both cell types with dog red cells possessing a higherV max andK 1/2 than cat red cells. The number of anion transport sites was estimated by extrapolation to the number of molecules of dihydro DIDS (H2DIDS, where DIDS is 4,4-diisothiocyano-2,2 stilbene-disulfonic acid) which were bound at 100% inhibition of transport. The results indicate that either the turnover numbers for anion transport differ in dog, cat, and human red cells or that there is heterogeneity in the function of the membrane components which bind H2DIDS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号