首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A versatile methodology for electron microscopy (EM) grid preparation enabling total content sample analysis is presented. A microfluidic-dialysis conditioning module to desalt or mix samples with negative stain solution is used, combined with a robotic writing table to micro-pattern the EM grids. The method allows heterogeneous samples of minute volumes to be processed at physiological pH for structure and mass analysis, and allows the preparation characteristics to be finely tuned.  相似文献   

2.
The conformational dynamics of the histidine ABC transporter HisQMP2 from Salmonella enterica serovar Typhimurium, reconstituted into liposomes, is studied by site-directed spin labeling and double electron–electron resonance spectroscopy in the absence of nucleotides, in the ATP-bound, and in the post-hydrolysis state. The results show that the inter-dimer distances as measured between the Q-loops of HisP2 in the intact transporter resemble those determined for the maltose transporter in all three states of the hydrolysis cycle. Only in the presence of liganded HisJ the closed conformation of the nucleotide binding sites is achieved revealing the transmembrane communication of the presence of substrate. Two conformational states can be distinguished for the periplasmic moiety of HisQMP2 as detected by differences in distributions of interspin distances between positions 86 and 96 or 104 and 197. The observed conformational changes are correlated to proposed open, semi-open and closed conformations of the nucleotide binding domains HisP2. Our results are in line with a rearrangement of transmembrane helices 4 and 4′ of HisQM during the closed to the semi-open transition of HisP2 driven by the reorientation of the coupled helices 3a and 3b to occur upon hydrolysis.  相似文献   

3.
Here, we report novel methods to measure rate constants for homodimer subunit exchange using double electron–electron resonance (DEER) electron paramagnetic resonance spectroscopy measurements and nuclear magnetic resonance spectroscopy based paramagnetic relaxation enhancement (PRE) measurements. The techniques were demonstrated using the homodimeric protein Dsy0195 from the strictly anaerobic bacterium Desulfitobacterium hafniense Y51. At specific times following mixing site-specific MTSL-labeled Dsy0195 with uniformly 15N-labeled Dsy0195, the extent of exchange was determined either by monitoring the decrease of MTSL-labeled homodimer from the decay of the DEER modulation depth or by quantifying the increase of MTSL-labeled/15N-labeled heterodimer using PREs. Repeated measurements at several time points following mixing enabled determination of the homodimer subunit dissociation rate constant, k ?1, which was 0.037 ± 0.005 min?1 derived from DEER experiments with a corresponding half-life time of 18.7 min. These numbers agreed with independent measurements obtained from PRE experiments. These methods can be broadly applied to protein–protein and protein-DNA complex studies.  相似文献   

4.
The different possible dispositions of the electron transfer components in electron transfer chains are discussed: (a) random distribution of complexes and ubiquinone with diffusion-controlled collisions of ubiquinone with the complexes, (b) random distribution as above, but with ubiquinone diffusion not rate-limiting, (c) diffusion and collision of protein complexes carrying bound ubiquinone, and (d) solid-state assembly. Discrimination among these possibilities requires knowledge of the mobility of the electron transfer chain components. The collisional frequency of ubiquinone-10 with the fluorescent probe 12-(9-anthroyl)stearate, investigated by fluorescence quenching, is 2.3 × 109 M–1 sec–1 corresponding to a diffusion coefficient in the range of 10–6 cm2/sec (Fato, R., Battino, M., Degli Esposti, M., Parenti Castelli, G., and Lenaz, G.,Biochemistry,25, 3378–3390, 1986); the long-range diffusion of a short-chain polar Q derivative measured by fluorescence photobleaching recovery (FRAP) (Gupte, S., Wu, E. S., Höchli, L., Höchli, M., Jacobson, K., Sowers, A. E., and Hackenbrock, C. R.,Proc. Natl. Acad. Sci. USA 81, 2606–2610, 1984) is 3×10–9 cm2/sec. The discrepancy between these results is carefully scrutinized, and is mainly ascribed to the differences in diffusion ranges measured by the two techniques; it is proposed that short-range diffusion, measured by fluorescence quenching, is more meaningful for electron transfer than long-range diffusion measured by FRAP, or microcollisions, which are not sensed by either method. Calculation of the distances traveled by random walk of ubiquinone in the membrane allows a large excess of collisions per turnover of the respiratory chain. Moreover, the second-order rate constants of NADH-ubiquinone reductase and ubiquinol-cytochromec reductase are at least three orders of magnitude lower than the second-order collisional constant calculated from the diffusion of ubiquinone. The activation energies of either the above activities or integrated electron transfer (NADH-cytochromec reductase) are well above that for diffusion (found to be ca. 1 kcal/mol). Cholesterol incorporation in liposomes, increasing bilayer viscosity, lowers the diffusion coefficients of ubiquinone but not ubiquinol-cytochromec reductase or succinate-cytochromec reductase activities. The decrease of activity by ubiquinone dilution in the membrane is explained by its concentration falling below theK m of the partner enzymes. It is calculated that ubiquinone diffusion is not rate-limiting, favoring a random model of the respiratory chain organization. It is not possible, however, to exclude solid-state assemblies if the rate of dissociation and association of ubiquinone is faster than the turnover of electron transfer.  相似文献   

5.
Photosynthetic electron flow, driven by photosystem I and II, provides chemical energy for carbon fixation. In addition to a linear mode a second cyclic route exists, which only involves photosystem I. The exact contributions of linear and cyclic transport are still a matter of debate. Here, we describe the development of a method that allows quantification of electron flow in absolute terms through photosystem I in a photosynthetic organism for the first time. Specific in-vivo protocols allowed to discern the redox states of plastocyanin, P700 and the FeS-clusters including ferredoxin at the acceptor site of PSI in the cyanobacterium Synechocystis sp. PCC 6803 with the near-infrared spectrometer Dual-KLAS/NIR. P700 absorbance changes determined with the Dual-KLAS/NIR correlated linearly with direct determinations of PSI concentrations using EPR. Dark-interval relaxation kinetics measurements (DIRKPSI) were applied to determine electron flow through PSI. Counting electrons from hydrogen oxidation as electron donor to photosystem I in parallel to DIRKPSI measurements confirmed the validity of the method. Electron flow determination by classical PSI yield measurements overestimates electron flow at low light intensities and saturates earlier compared to DIRKPSI. Combination of DIRKPSI with oxygen evolution measurements yielded a proportion of 35% of surplus electrons passing PSI compared to PSII. We attribute these electrons to cyclic electron transport, which is twice as high as assumed for plants. Counting electrons flowing through the photosystems allowed determination of the number of quanta required for photosynthesis to 11 per oxygen produced, which is close to published values.  相似文献   

6.
Bud formation in yeasts with bipolar budding was studied by electron microscopy of thin sections.Budding in yeasts of the speciesSaccharomycodes ludwigii, Hanseniaspora valbyensis andWickerhamia fluorescens resulted in concentric rings of scar ridges on the wall of the mother cell. The wall between the ridges consisted of the scar plug left by the former budding and opened up in the formation of the next bud. The wall of the bud arose from under the wall of the mother cell.In the yeasts of the speciesNadsonia elongata more than one bud might be formed from the same plug.InSchizoblastosporion starkeyi-henricii the scar ridges were close together and apparently not separated by the entire plug.In all species a cross wall was formed between mother cell and bud which consisted of an electron-light layer between two layers of more electron-dense material. The cells separated along the light layer.The authors wish to thank Dr J. A. Barnett for corrections of the English text, and Mr J. Cappon for drawing Fig. 1.  相似文献   

7.
Ehrlich HL 《Geobiology》2008,6(3):220-224
The extensive contributions by Terry Beveridge to our understanding of the differences in cell wall organization with respect to structure, chemistry and compartmentalization between gram-positive and gram-negative bacteria are summarized. These contributions greatly aided in conceptualization of recent discoveries concerning electron export and import across cell walls of some gram-negative bacteria. Although electron export and import across the cell wall by any gram-positive has not been documented so far, Beveridge's observations and concepts concerning cell walls of gram-positive bacteria suggest potential mechanisms by which such electron transfer may occur.  相似文献   

8.
9.
10.
M?ssbauer spectroscopy has indicated significant differences in the iron-containing cores of various haemosiderins. In the present study, haemosiderin was isolated from a number of animal species including man. In addition, haemosiderin was isolated from patients with primary idiopathic haemochromatosis or with secondary (transfusional) iron-overload. The iron cores of the animal and normal human haemosiderin appear to be very similar by M?ssbauer spectroscopy, and the electron diffraction data indicate a ferrihydrite structure similar to that of ferritin cores. The haemosiderin isolated from secondary iron-overload shows anomalous behaviour in its temperature-dependent M?ssbauer spectra. This can be understood in terms of the microcrystalline goethite structure of the cores as indicated by electron diffraction. The haemosiderin cores obtained in the case of primary haemochromatosis have an amorphous Fe(III) oxide structure and show M?ssbauer spectra characteristic of a magnetically disordered material, which only orders at very low temperatures.  相似文献   

11.
 We report on the application of a pyrogallol red-vanadium complex (PR-V) for ultracytochemical staining of proteinaceous structures in animal tissues and cell cultures. This dye may be used as a general purpose stain in electron microscopy. In contrast to osmium tetroxide, the price of the material is low and no toxic vapors are produced. The PR-V complex was prepared by addition of vanadium (IV) oxide sulfate to pyrogallol red dissolved in acetate buffer (pH 5.6). The formation of the complex was indicated by a color change from purple-red (λmax=520 nm) to violet (λmax=539 nm) which occurred at equimolar concentrations of the dye and the metal salt. Under these conditions PR-V was stable for several days. The mechanism of PR-V binding was checked in dot blots using different proteins as well as heparin for control. While heparin remained unstained, proteins were stained in a dose-dependent manner. Deamination of proteins with nitric oxide strongly reduced PR-V staining in dot blots as well as in cell cultures. Optimal staining results of animal cells and tissues were obtained in specimens that had been mildly fixed for at least 1 h or longer with a mixture of 0.1% glutaraldehyde and 1.0% paraformaldehyde dissolved in phosphate-buffered saline, pH 7.2, washed with acetate buffer, pH 5.6, and subsequently treated with PR-V in the presence of 50% ethanol at room temperature. Control specimens without PR-V but treated en bloc with uranyl acetate or sodium molybdate showed similar contrast but less details in the ultrastructure of the tissue. All specimens were embedded in epoxy resin and ultrathin sections were stained conventionally with uranyl and lead salt solutions. In electron micrographs, membrane-associated particles, stress fibers and filaments of the cell cortex, collagen fibrils, tight junctions and desmosomes, and other proteinaceous components were clearly visualized only in the PR-V-treated specimens. In conclusion, the ability to bind selectively and specifically to proteinaceous structures makes PR-V a versatile stain to study the localization and distribution of these structures in cells and tissues at the ultrastructural level. Accepted: 14 June 1996  相似文献   

12.
Is defective electron transport at the hub of aging?   总被引:2,自引:1,他引:1  
The bulwark of the mitochondrial theory of aging is that a defective respiratory chain initiates the death cascade. The increased production of superoxide is suggested to result in progressive oxidant damage to cellular components and particularly to mtDNA that encodes subunits assembled in respiratory complexes. Earlier studies of respiration in muscle mitochondria obtained from large cohorts of patients supported this notion by showing that either singly or in combinations, the respiratory complexes exhibited decreased activity in the elderly. The following critique of the most cited publications over the past decade points out the systematic errors that put earlier work at odds with recent findings. These later investigations indicate that aging has no overt effect on either the electron transport system or oxidative phosphorylation.  相似文献   

13.
Cytochrome b6f (cytb6f) lies at the heart of the light-dependent reactions of oxygenic photosynthesis, where it serves as a link between photosystem II (PSII) and photosystem I (PSI) through the oxidation and reduction of the electron carriers plastoquinol (PQH2) and plastocyanin (Pc). A mechanism of electron bifurcation, known as the Q-cycle, couples electron transfer to the generation of a transmembrane proton gradient for ATP synthesis. Cytb6f catalyses the rate-limiting step in linear electron transfer (LET), is pivotal for cyclic electron transfer (CET) and plays a key role as a redox-sensing hub involved in the regulation of light-harvesting, electron transfer and photosynthetic gene expression. Together, these characteristics make cytb6f a judicious target for genetic manipulation to enhance photosynthetic yield, a strategy which already shows promise. In this review we will outline the structure and function of cytb6f with a particular focus on new insights provided by the recent high-resolution map of the complex from Spinach.  相似文献   

14.
In muscle, excitation-contraction coupling is defined as the process linking depolarization of the surface membrane with Ca2+ release from cytoplasmic stores, which activates contraction of striated muscle. This process is primarily controlled by interplay between two Ca2+ channels—the voltage-gated L-type Ca2+ channel (dihydropyridine receptor, DHPR) localized in the t-tubule membrane and the Ca2+-release channel (ryanodine receptor, RyR) of the sarcoplasmic reticulum membrane. The structures of both channels have been extensively studied by several groups using electron cryomicroscopy and single particle reconstruction techniques. The structures of RyR, determined at resolutions of 22–30 Å, reveal a characteristic mushroom shape with a bulky cytoplasmic region and the membrane-spanning stem. While the cytoplasmic region exhibits a complex structure comprising a multitude of distinctive domains with numerous intervening cavities, at this resolution no definitive statement can be made about the location of the actual pore within the transmembrane region. Conformational changes associated with functional transitions of the Ca2+ release channel from closed to open states have been characterized. Further experiments determined localization of binding sites for various channel ligands. The structural studies of the DHPR are less developed. Although four 3D maps of the DHPR were reported recently at 24–30 Å resolution from studies of frozen-hydrated and negatively stained receptors, there are some discrepancies between reported structures with respect to the overall appearance and dimensions of the channel structure. Future structural studies at higher resolution are needed to refine the structures of both channels and to substantiate a proposed molecular model for their interaction.Translated from Biokhimiya, Vol. 69, No. 11, 2004, pp. 1506–1514.Original Russian Text Copyright © 2004 by Serysheva.  相似文献   

15.
16.
17.
Cytochrome b??? (Cyt b???), β-carotene (Car), and chlorophyll (Chl) cofactors participate in the secondary electron-transfer pathways in photosystem II (PSII), which are believed to protect PSII from photodamage under conditions in which the primary electron-donation pathway leading to water oxidation is inhibited. Among these cofactors, Cyt b??? is preferentially photooxidized under conditions in which the primary electron-donation pathway is blocked. When Cyt b??? is preoxidized, the photooxidation of several of the 11 Car and 35 Chl molecules present per PSII is observed. In this review, the discovery of the secondary electron donors, their structures and electron-transfer properties, and progress in the characterization of the secondary electron-transfer pathways are discussed. This article is part of a Special Issue entitled: Photosystem II.  相似文献   

18.
Golding AJ  Finazzi G  Johnson GN 《Planta》2004,220(2):356-363
The reduction of P700+, the primary electron donor of photosystem I (PSI), following a saturating flash of white light in the presence of the photosystem II (PSII) inhibitor 3-(3.4-dichlorophenyl)-1,1-dimethylurea (DCMU), was examined in barley plants exposed to a variety of conditions. The decay kinetic fitted to a double exponential decay curve, implying the presence of two distinct pools of PSI. A fast component, with a rate constant for decay of around 0.03–0.04 ms–1 was observed to be sensitive to the duration of illumination. This rate constant was slower than, but comparable to, that observed in non-inhibited samples (i.e. where linear flow was active). It was substantially faster than values typically reported for experiments where PSII activity is inhibited. The magnitude of this component rose in leaves that were dark-adapted or exposed to drought. This component was assigned to PSI centres involved in cyclic electron transport. The remaining slowly decaying P700+ population (rate constant of around 0.001–0.002 ms–1) was assigned to centres normally involved in linear electron transport (but inhibited here because of the presence of DCMU), or inactivated centres involved in the cyclic pathway. Processes that might regulate the relative flux through cyclic electron transport are discussed.  相似文献   

19.
In purple nonsulfur bacteria and cyanobacteria, there is close interaction between the photosynthetic and respiratory electron transport chains, which share identical redox proteins. Recent findings that the thylakoid membranes of eukaryotic chloroplasts may have respiratory functions suggest that the interaction of photosynthesis and respiration may be a common feature of all photosynthetic cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号