首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cellular distribution, membrane orientation, and biochemical properties of the two major NaOH-insoluble (integral) plasma membrane proteins of Euglena are detailed. We present evidence which suggests that these two polypeptides (Mr 68 and 39 kD) are dimer and monomer of the same protein: (a) Antibodies directed against either the 68- or the 39-kD polypeptide bind to both 68- and 39-kD bands in Western blots. (b) Trypsin digests of the 68- and 39-kD polypeptides yield similar peptide fragments. (c) The 68- and 39-kD polypeptides interconvert during successive electrophoresis runs in the presence of SDS and beta- mercaptoethanol. (d) The 39-kD band is the only major integral membrane protein evident after isoelectric focusing in acrylamide gels. The apparent shift from 68 to 39 kD in focusing gels has been duplicated in denaturing SDS gels by adding ampholyte solutions directly to the protein samples. The membrane orientation of the 39-kD protein and its 68-kD dimer has been assessed by radioiodination in situ using intact cells or purified plasma membranes. Putative monomers and dimers are labeled only when the cytoplasmic side of the membrane is exposed. These results together with trypsin digestion data suggest that the 39- kD protein and its dimer have an asymmetric membrane orientation with a substantial cytoplasmic domain but with no detectable extracellular region. Immunolabeling of sectioned cells indicates that the plasma membrane is the only cellular membrane with significant amounts of 39- kD protein. No major 68- or 39-kD polypeptide bands are evident in SDS acrylamide gels or immunoblots of electrophoresed whole flagella or preparations enriched in flagellar membrane vesicles, nor is there a detectable shift in any flagellar polypeptide in the presence of ampholyte solutions. These findings are considered with respect to the well-known internal crystalline organization of the euglenoid plasma membrane and to the potential for these proteins to serve as anchors for membrane skeletal proteins.  相似文献   

2.
《The Journal of cell biology》1987,105(6):2589-2601
The plasma membrane and disk membranes of bovine retinal rod outer segments (ROS) have been purified by a novel density-gradient perturbation method for analysis of their protein compositions. Purified ROS were treated with neuraminidase to expose galactose residues on plasma membrane-specific glycoproteins and labeled with ricin-gold-dextran particles. After the ROS were lysed in hypotonic buffer, the plasma membrane was dissociated from the disks by either mild trypsin digestion or prolonged exposure to low ionic strength buffer. The dense ricin-gold-dextran-labeled plasma membrane was separated from disks by sucrose gradient centrifugation. Electron microscopy was used to follow this fractionation procedure. The dense red pellet primarily consisted of inverted plasma membrane vesicles containing gold particles; the membrane fraction of density 1.13 g/cc consisted of unlabeled intact disks and vesicles. Ricin-binding studies indicated that the plasma membrane from trypsin-treated ROS was purified between 10-15-fold. The protein composition of plasma membranes and disks was significantly different as analyzed by SDS gels and Western blots labeled with lectins and monoclonal antibodies. ROS plasma membrane exhibited three major proteins of 36 (rhodopsin), 38, and 52 kD, three ricin-binding glycoproteins of 230, 160, and 110 kD, and numerous minor proteins in the range of 14-270 kD. In disk membranes rhodopsin appeared as the only major protein. A 220-kD concanavalin A-binding glycoprotein and peripherin, a rim-specific protein, were also present along with minor proteins of 43 and 57-63 kD. Radioimmune assays indicated that the ROS plasma membrane contained about half as much rhodopsin as disk membranes.  相似文献   

3.
Genomic and cDNA clones that code for a protein with structural and biochemical properties similar to the receptor protein kinases from animals were obtained from Arabidopsis. Structural features of the predicted polypeptide include an amino-terminal membrane targeting signal sequence, a region containing blocks of leucine-rich repeat elements, a single putative membrane spanning domain, and a characteristic serine/threonine-specific protein kinase domain. The gene coding for this receptor-like transmembrane kinase was designated TMK1. Portions of the TMK1 gene were expressed in Escherichia coli, and antibodies were raised against the recombinant polypeptides. These antibodies immunodecorated a 120-kD polypeptide present in crude extracts and membrane preparations. The immunodetectable band was present in extracts from leaf, stem, root, and floral tissues. The kinase domain of TMK1 was expressed as a fusion protein in E. coli, and the purified fusion protein was found capable of autophosphorylation on serine and threonine residues. The possible role of the TMK1 gene product in transmembrane signaling is discussed.  相似文献   

4.
Glycoproteins of the lysosomal membrane   总被引:51,自引:30,他引:21       下载免费PDF全文
Three glycoprotein antigens (120, 100, and 80 kD) were detected by mono- and/or polyclonal antibodies generated by immunization with highly purified rat liver lysosomal membranes. All of the antigens were judged to be integral membrane proteins based on the binding of Triton X-114. By immunofluorescence on normal rat kidney cells, a mouse monoclonal antibody to the 120-kD antigen co-stained with a polyclonal rabbit antibody that detected the 100- and 80-kD antigens as well as with antibodies to acid phosphatase, indicating that these antigens are preferentially localized in lysosomes. Few 120-kD-positive structures were found to be negative for acid phosphatase, suggesting that the antigen was not concentrated in organelles such as endosomes, which lack acid phosphatase. Immunoperoxidase cytochemistry also showed little reactivity in Golgi cisternae, coated vesicles, or on the plasma membrane. Digestion with endo-beta-N-acetylglucosaminidase H (Endo H) and endo-beta-N-acetylglucosaminidase F (Endo F) demonstrated that each of the antigens contained multiple N-linked oligosaccharide chains, most of which were of the complex (Endo H-resistant) type. The 120-kD protein was very heavily glycosylated, having at least 18 N-linked chains. It was also rich in sialic acid, since neuraminidase digestion increased the pI of the 120-kD protein from less than 4 to greater than 8. Taken together, these results strongly suggest that the glycoprotein components of the lysosomal membrane are synthesized in the rough endoplasmic reticulum and terminally glycosylated in the Golgi before delivery to lysosomes. We have provisionally designated these antigens lysosomal membrane glycoproteins lgp120, lgp100, lgp80.  相似文献   

5.
I Johansson  C Larsson  B Ek    P Kjellbom 《The Plant cell》1996,8(7):1181-1191
We show that homologs of the major intrinsic protein (MIP) family are major integral proteins of the spinach leaf plasma membrane and constitute approximately 20% of integral plasma membrane protein. By using oligonucleotide primers based on partial amino acid sequences for polymerase chain reaction and screening of a spinach leaf cDNA library, we obtained two full-length clones of MIP homologs (pm28a and pm28b). One of these clones, pm28a, was sequenced, and it encodes a protein (PM28A) of 281 amino acids with a molecular mass of 29.9 kD. DNA gel blots indicated that PM28A is the product of a single gene, and RNA gel blots showed that pm28a is ubiquitously expressed in the plant. In vivo phosphorylation of the 28-kD polypeptide(s), corresponding to PM28A and PM28B, was dependent on apoplastic water potential, suggesting a role in regulation of cell turgor for these putative aquaporins. In vitro, only one of the homologs, PM28A, was phosphorylated. Phosphorylation of PM28A occurred on Ser-274, seven amino acids from the C terminus of the protein, within a consensus phosphorylation site (Ser-X-Arg) for vertebrate protein kinase C. In vitro phosphorylation of PM28A was due to a plasma membrane-associated protein kinase and was strictly dependent on submicromolar concentrations of Ca2+.  相似文献   

6.
Acetylcholine receptor-rich membranes from the electric organ of Torpedo californica are enriched in the four different subunits of the acetylcholine receptor and in two peripheral membrane proteins at 43 and 300 kD. We produced monoclonal antibodies against the 300-kD protein and have used these antibodies to determine the location of the protein, both in the electric organ and in skeletal muscle. Antibodies to the 300-kD protein were characterized by Western blots, binding assays to isolated membranes, and immunofluorescence on tissue. In Torpedo electric organ, antibodies to the 300-kD protein stain only the innervated face of the electrocytes. The 300-kD protein is on the intracellular surface of the postsynaptic membrane, since antibodies to the 300-kD protein bind more efficiently to saponin-permeabilized, right side out membranes than to intact membranes. Some antibodies against the Torpedo 300-kD protein cross-react with amphibian and mammalian neuromuscular synapses, and the cross-reacting protein is also highly concentrated on the intracellular surface of the post-synaptic membrane.  相似文献   

7.
Polyclonal antibodies raised against rat vesicle associated membrane protein-2 (VAMP-2) recognized, in carrot (Daucus carota) microsomes, two major polypeptides of 18 and 30 kD, respectively. A biochemical separation of intracellular membranes by a sucrose density gradient co-localized the two polypeptides as resident in light, dense microsomes, corresponding to the endoplasmic reticulum-enriched fractions. Purification of coated vesicles allowed us to distinguish the subcellular location of the 18-kD polypeptide from that of 30 kD. The 18-kD polypeptide is present in the non-clathrin-coated vesicle peak. Like other VAMPs, the carrot 18-kD polypeptide is proteolyzed by tetanus toxin after separation of coatomers. Amino acid sequence analysis of peptides obtained by digestion of the 18-kD carrot polypeptide with the endoproteinase Asp-N confirms it to be a member of the VAMP family, as is suggested by its molecular weight, vesicular localization, and toxin-induced cleavage.  相似文献   

8.
We have used the homobifunctional cross-linking reagent disuccinimidyl suberate (DSS) to identify proteins that are adjacent to nascent polypeptides undergoing translocations across mammalian rough ER. Translocation intermediates were assembled by supplementing cell free translations of truncated mRNAs with the signal recognition particle (SRP) and microsomal membrane vesicles. Two prominent cross-linked products of 45 and 64 kD were detected. The 64-kD product was obtained when the cell free translation contained SRP, while formation of the 45-kD product required both SRP and translocation competent microsomal membrane vesicles. In agreement with previous investigators, we suggest that the 64-kD product arises by cross-linking of the nascent polypeptide to the 54-kD subunit of SRP. The 45-kD product resists alkaline extraction from the membrane, so we conclude that the 11-kD nascent polypeptide has been crosslinked to an integral membrane protein of approximately 34 kD (imp34). The cross-linked product does not bind to ConA Sepharose, nor is it sensitive to endoglycosidase H digestion; hence imp34 is not identical to the alpha or beta subunits of the signal sequence receptor (SSR). We propose that imp34 functions in concert with SSR to form a translocation site through which nascent polypeptides pass in traversing the membrane bilayer of the rough endoplasmic reticulum.  相似文献   

9.
10.
Two major EHS-laminin-binding membrane glycoproteins—with apparent molecular masses of 50kD and 18kD—were shown by protein blotting in membrane fractions of porcine neutrophils. These galectin-like glycoproteins (binding probably via the N-acetyllactosamine sequences to laminin) could also be detected by labelled F-actin in protein blots. Following 35min adhesion to the plastic surface, the relative amount of the 18kD protein increased considerably in the light (plasma membrane) and in the dense (intracellular) membrane fractions of the attached cells; the 50kD polypeptide (identified as a CD14-like protein) seemed to accumulate characteristically in the dense membrane fraction. These observations imply that direct connections could be formed between membrane glycoproteins and microfilaments during cell—substrate adhesion which may be preceded by enhanced cell surface targeting of certain adhesion receptors.  相似文献   

11.
A light-dependent tyrosine kinase activity is present in soluble extracts from the cyanobacterium Prochlorothrix hollandica. The substrate of this tyrosine kinase activity is a soluble 88-kD protein that is phosphorylated when cultures of P. hollandica are adapted to high-light conditions. This phosphoprotein was identified by probing western blots of 32P-labeled soluble proteins from P. hollandica with an antibody specific for phosphotyrosine. This specificity was confirmed by competition experiments in which the antibody binding was abolished completely in the presence of excess phosphotyrosine but not phosphoserine and phosphothreonine. The kinetics of phosphorylation in vivo were determined by probing western blots with this antibody. Within 1 h following a switch from extended darkness to high light (200 [mu]mol photons m-2 s-1), the 88-kD protein was detectable upon India ink staining of western blots. After 3 h, the antibody recognized the phosphorylated form of this polypeptide. Within 6 h of a downshift from high to low light, the 88-kD protein was dephosphorylated. In vitro phosphorylation studies also showed that cell extracts can phosphorylate a tyrosine-containing artificial substrate; acid hydrolysis of both the artificial substrate and the 88-kD protein showed that phosphorylation occurred exclusively on tyrosine residues. Finally, experiments with high-light-adapted Synechococcus sp. PCC7942 suggest that a similar tyrosine phosphorylation event occurs in a phycobilisome-containing cyanobacterium.  相似文献   

12.
Several phytochrome-controlled processes have been examined in etiolated and light-grown seedlings of a normal genotype and the elongated internode (ein/ein) mutant of rapid-cycling Brassica rapa. Although etiolated ein seedlings displayed normal sensitivity to prolonged far-red light with respect to inhibition of hypocotyl elongation, expansion of cotyledons, and synthesis of anthocyanin, they displayed reduced sensitivity to prolonged red light for all three of these deetiolation responses. In contrast to normal seedlings, light-grown ein seedlings did not show a growth promotion in response to end-of-day far-red irradiation. Additionally, whereas the first internode of light-grown normal seedlings showed a marked increase in elongation in response to reduced ratio of red to far-red light, ein seedlings showed only a small elongation response. When blots of protein extracts from etiolated and light-treated ein and normal seedlings were probed with monoclonal antibody to phytochrome A, an immunostaining band at about 120 kD was observed for both extracts. The immunostaining intensity of this band was substantially reduced for extracts of light-treated normal and ein seedlings. A mixture of three monoclonal antibodies directed against phytochrome B from Arabidopsis thaliana immunostained a band at about 120 kD for extracts of etiolated and light-treated normal seedlings. This band was undetectable in extracts of ein seedlings. We propose that ein is a photoreceptor mutant that is deficient in a light-stable phytochrome B-like species.  相似文献   

13.
A collection of 17 monoclonal antibodies elicited against the light-harvesting chlorophyll a/b protein complex which serves photosystem II (LHC-II) of Pisum sativum shows six classes of binding specificity. Antibodies of two of the classes recognize a single polypeptide (the 28- or the 26- kD polypeptides), thereby suggesting that the two proteins are not derived from a common precursor. Other classes of antibodies cross-react with several polypeptides of LHC-II or with polypeptides of both LHC-II and the light-harvesting chlorophyll a/b polypeptides of photosystem I (LHC-I), indicating that there are structural similarities among the polypeptides of LHC-II and LHC-I. The evidence for protein processing by which the 26-, 25.5-, and 24.5-kD polypeptides are derived from a common precursor polypeptide is discussed. Binding studies using antibodies specific for individual LHC-II polypeptides were used to quantify the number of antigenic polypeptides in the thylakoid membrane. 27 copies of the 26-kD polypeptide and two copies of the 28-kD polypeptide were found per 400 chlorophylls. In the chlorina f2 mutant of barley, and in intermittent light-treated barley seedlings, the amount of the 26-kD polypeptide in the thylakoid membranes was greatly reduced, while the amount of 28-kD polypeptide was apparently not affected. We propose that stable insertion and assembly of the 28-kD polypeptide, unlike the 26-kD polypeptide, is not regulated by the presence of chlorophyll b.  相似文献   

14.
《The Journal of cell biology》1993,123(6):1587-1595
We have used a transfection based approach to analyze the role of neural cell adhesion molecule (NCAM) in myogenesis at the stage of myoblast fusion to form multinucleate myotubes. Stable cell lines of myogenic C2 cells were isolated that express the transmembrane 140- or 180-kD NCAM isoforms or the glycosylphosphatidylinositol (GPI) linked isoforms of 120 or 125 kD. We found that expression of the 140-kD transmembrane isoform led to a potent enhancement of myoblast fusion. The 125-kD GPI-linked NCAM also enhanced the rate of fusion but less so when a direct comparison of cell surface levels of the 140-kD transmembrane form was carried out. While the 180-kD transmembrane NCAM isoform was effective in promoting C2 cell fusion similar to the 140-kD isoform, the 120-kD isoform did not have an effect on fusion parameters. It is possible that these alterations in cell fusion are associated with cis NCAM interactions in the plane of the membrane. While all of the transfected human NCAMs (the transmembrane 140- and 180-kD isoforms and the 125- and 120-kD GPI isoforms) could be clustered in the plane of the plasma membrane by species-specific antibodies there was a concomitant clustering of the endogenous mouse NCAM protein in all cases except with the 120-kD human isoform. These studies show that different isoforms of NCAM can undergo specific interactions in the plasma membrane which are likely to be important in fusion. While the transmembrane and the 125-kD GPI-anchored NCAMs are capable of enhancing fusion the 120-kD GPI NCAM is not. Thus it is likely that interactions associated with NCAM intracellular domains and also the muscle specific domain (MSD) region in the extracellular domain of the GPI-linked 125-kD NCAM are important. In particular this is the first role ascribed to the O-linked carbohydrate containing MSD region which is specifically expressed in skeletal muscle.  相似文献   

15.
Plasma membranes were detached from ejaculated bull spermatozoa by a brief sonication in a moderately hypotonic medium, and the released plasma membranes were partially purified by differential centrifugation. The resulting fraction was enriched 8- and 15-fold in alkaline phosphatase and 5' nucleotidase activities, respectively, compared with the starting sonicated spermatozoa. This total plasma membrane fraction was separated into two distinct fractions by equilibrium density centrifugation on a continuous linear sucrose gradient. Two peaks of light scattering material were formed at densities of 1.117 and 1.148 g/ml. The denser peak contained most of the protein of the plasma membrane fraction, whereas nearly all the concanavalin A binding activity was found in the lighter peak. The two bands had distinctly different polypeptide compositions when analyzed by SDS PAGE. Polyclonal antibodies were raised in rabbits against a major integral membrane glycoprotein of each fraction (Mr of 92,000 in the light peak and 98,000 in the dense peak). The two antigens were detected on the surface of intact spermatozoa by indirect immunofluorescence microscopy. The 92-kD protein (present in the lighter band) was detected only on the plasma membrane of the acrosomal and anterior postacrosomal regions of the head. The 98-kD antigen, present in the heavier band, was localized to the surface of the postacrosomal region of the head, to the principal piece of the tail, and to the connecting piece between the head and tail. The exclusive localization of the 92-kD polypeptide to the surface of the anterior portion of the head was confirmed by immunoelectron microscopy. These data show that the two fractions isolated on the sucrose gradient originate from different regions of the sperm cell plasma membrane.  相似文献   

16.
Affinity chromatography and immunolocalization techniques were used to investigate the mechanism(s) by which endothelial cells interact with the basement membrane component laminin. Bovine aortic endothelial cells (BAEC) membranes were solubilized and incubated with a laminin-Sepharose affinity column. SDS-PAGE analysis of the eluted proteins identified a 69-kD band as the major binding protein, along with minor components migrating at 125, 110, 92, 85, 75, 55, and 30 kD. Polyclonal antibodies directed against a peptide sequence of the 69-kD laminin-binding protein isolated from human tumor cells identified this protein in BAEC lysates. In frozen sections, these polyclonal antibodies and monoclonal antibodies raised against human tumor 69-kD stained the endothelium of bovine aorta and the medial smooth muscle cells, but not surrounding connective tissue or elastin fibers. When nonpermeabilized BAEC were stained in an in vitro migration assay, there appeared to be apical patches of 69 kD staining in stationary cells. However, when released from contact inhibition, 69 kD was localized to ruffling membranes on cells at the migrating front. Permeabilized BAEC stained for 69 kD diffusely, with a granular perinuclear distribution and in linear arrays throughout the cell. During migration a redistribution from diffuse to predominanately linear arrays that co-distributed with actin microfilaments was noted in double-label experiments. The 69-kD laminin-binding protein colocalized with actin filaments in permeabilized cultured microvascular endothelial cells in a continuous staining pattern at 6 h postplating which redistributed to punctate patches along the length of the filaments at confluence (96 h). In addition, 69 kD co-distribution with laminin could also be demonstrated in cultured subconfluent cells actively synthesizing matrix. Endothelial cells express a 69-kD laminin-binding protein that is membrane associated and appears to colocalize with actin microfilaments. The topological distribution of 69 kD and its cytoskeletal associations can be modulated by the cell during cell migration and growth suggesting that 69 kD may be a candidate for a membrane protein involved in signal transduction from extracellular matrix to cell via cytoskeletal connections.  相似文献   

17.
Leech neurons in culture sprout rapidly when attached to extracts from connective tissue surrounding the nervous system. Laminin-like molecules that promote sprouting have now been isolated from this extracellular matrix. Two mAbs have been prepared that react on immunoblots with a approximately equal to 220- and a approximately equal to 340-kD polypeptide, respectively. These antibodies have been used to purify molecules with cross-shaped structures in the electron microscope. The molecules, of approximately equal to 10(3) kD on nonreducing SDS gels, have subunits of approximately equal to 340, 220, and 160-180 kD. Attachment to the laminin-like molecules was sufficient to initiate sprouting by single isolated leech neurons in defined medium. This demonstrates directly a function for a laminin-related invertebrate protein. The mAbs directed against the approximately equal to 220-kD chains of the laminin-like leech molecule labeled basement membrane extracellular matrix in leech ganglia and nerves. A polyclonal antiserum against the approximately equal to 220-kD polypeptide inhibited neurite outgrowth. Vertebrate laminin did not mediate the sprouting of leech neurons; similarly, the leech molecule was an inert substrate for vertebrate neurons. Although some traits of structure, function, and distribution are conserved between vertebrate laminin and the invertebrate molecule, our results suggest that the functional domains differ.  相似文献   

18.
Two Triton-insoluble fractions were isolated from Acanthamoeba castellanii. The major non-membrane proteins in both fractions were actin (30-40%), myosin II (4-9%), myosin I (1-5%), and a 55-kD polypeptide (10%). The 55-kD polypeptide did not react with antibodies against tubulins from turkey brain, paramecium, or yeast. All of these proteins were much more concentrated in the Triton-insoluble fractions than in the whole homogenate or soluble supernatant. The 55-kD polypeptide was extracted with 0.3 M NaCl, fractionated by ammonium sulfate, and purified to near homogeneity by DEAE-cellulose and hydroxyapatite chromatography. The purified protein had a molecular mass of 110 kD and appeared to be a homodimer by isoelectric focusing. The 110-kD dimer bound to F-actin with a maximal binding stoichiometry of 0.5 mol/mol of actin (1 mol of 55-kD subunit/mol of actin). Although the 110-kD protein enhanced the sedimentation of F-actin, it did not affect the low shear viscosity of F-actin solutions nor was bundling of F-actin observed by electron microscopy. The 110-kD dimer protein inhibited the actin-activated Mg2+-ATPase activities of Acanthamoeba myosin I and myosin II in a concentration-dependent manner. By indirect immunofluorescence, the 110-kD protein was found to be localized in the peripheral cytoplasm near the plasma membrane which is also enriched in F-actin filaments and myosin I.  相似文献   

19.
The major integral plasma membrane protein (IP39) of Euglena gracilis was radiolabeled, peptide mapped, and dissected with proteases to identify cytoplasmic domains that bind and anchor proteins of the cell surface. When plasma membranes were radioiodinated and extracted with octyl glucoside, 98% of the extracted label was found in IP39 or the 68- and 110-kD oligomers of IP39. The octyl glucoside extracts were incubated with unlabeled cell surface proteins immobilized on nitrocellulose (overlays). Radiolabel from the membrane extract bound one (80 kD) of the two (80 and 86 kD) major membrane skeletal protein bands. Resolubilization of the bound label yielded a radiolabeled polypeptide identical in Mr to IP39. Intact plasma membranes were also digested with papain before or after radioiodination, thereby producing a cytoplasmically truncated IP39. The octyl glucoside extract of truncated IP39 no longer bound to the 80-kD membrane skeletal protein in the nitrocellulose overlays. EM of intact or trypsin digested plasma membranes incubated with membrane skeletal proteins under stringent conditions similar to those used in the nitrocellulose overlays revealed a partially reformed membrane skeletal layer. Little evidence of a membrane skeletal layer was found, however, when plasma membranes were predigested with papain before reassociation. A candidate 80-kD binding domain of IP39 has been tentatively identified as a peptide fragment that was present after trypsin digestion of plasma membranes, but was absent after papain digestion in two-dimensional peptide maps of IP39. Together, these data suggest that the unique peripheral membrane skeleton of Euglena binds to the plasma membrane through noncovalent interactions between the major 80-kD membrane skeletal protein and a small, papain sensitive cytoplasmic domain of IP39. Other (62, 51, and 25 kD) quantitatively minor peripheral proteins also interact with IP39 on the nitrocellulose overlays, and the possible significance of this binding is discussed.  相似文献   

20.
Preparative free-flow electrophoresis and aqueous two-phase polymer partition were used to obtain a plasma membrane-enriched fraction of adipocytes isolated from epididymal fat pads of the rat together with a fraction enriched in small vesicles with plasma membrane characteristics (thick membranes, clear dark-light-dark pattern). The electrophoretic mobility of the small vesicles was much less than that of the plasma membrane consistent with an inside-out orientation whereby charged molecules normally directed to the cell surface were on the inside. When plasma membranes and the small vesicle fraction were isolated from fat cells treated or not treated with 100 μU/ml insulin and the resident proteins of the two fractions analyzed by SDS-PAGE, the two fractions exhibited characteristics responses involving specific protein bands. Insulin treatment for 2 min resulted in the loss of a 90 kDa band from the plasma membrane. At the same time, a ca. 55-kDa peptide band that was enhanced in the plasma membrane was lost from the small vesicle fraction. The latter corresponded on Western blots to the GLUT-4 glucose transporter. Thus, we suggest that the small vesicle fraction with characteristics of inside-out plasma membrane vesicles may represent the internal vesicular pool of plasma membrane subject to modulation by treatment of adipocytes with insulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号