首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Males and females of Copidosoma koehleri were kept separately in desiccators producing relative humidities of 20, 40 and 70% at 24 and 28°C and found to be very susceptible to low relative humidity. They lived less than 1 day at 20%, about 2 and 4 days at 40% and about six times longer than these respectively at 70% r.h. When kept at 26°C and 70% r.h. females of C. koehleri parasitised 98.8 hosts. The number of parasites that emerged from a male brood was 21.2 and from a female brood 33.2. Mated females produced 3026 progeny and unmated 2289. The sex ratio of broods produced by mated females was 1:1 and the female percentage among progeny was 59. It is known that C. koehleri is rare at the beginning of the potato-growing season and becomes the predominant parasite later on. It is known also that in potato crops when the plants are small at the beginning of the season the air within the crop is less humid but as the canopy of foliage develops, relative humidity rises and becomes higher than at 1.2 m above ground. It is suggested that relative humidity in the potato crop is the major factor affecting the relative abundance of C. koehleri and Apanteles subandinus in South Africa.  相似文献   

2.
In this work, we study the suitability of using dead medfly Ceratitis capitata pupae, killed by heat- or cold-shock, for the mass rearing of Spalangia cameroni, a pupal parasitoid of key pests. 100% mortality of medfly pupae could be accomplished with cold-shock at –20°C for 60 min or with heat-shock at 55°C for 30 min. Neither parasitism percentage nor sex ratio of the offspring differed significantly among heat-shocked, cold-shocked and untreated pupae. In addition, there was no significant difference in the percentage of parasitoids that aborted (♂♂ or ♀♀) among pupal treatments. Some of the pupae were covered with peat because the third larval instar of the medfly buries itself before pupation. However, the buried pupae were not parasitised at a greater or lesser rate than those not covered with peat. The percentage of parasitism was also unaffected by whether the pupae had been killed recently or had been stored at between 4°C and 6°C over 15 or 30 days. The use of dead hosts and later storage permitted the following: (a) the use of hosts over long periods of time; (b) a rapid increase in parasitoid numbers and (c) the availability of pupae killed at the most suitable postpupation times for the production of parasitoids. Furthermore, in biological control projects, the use of dead parasitised pupae in the field avoids the risk of enhancing the pest and allows an increase in parasitism in the field through the use of pupae treated with cold- or heat-shock.  相似文献   

3.
Trichogramma evanescens West. (Hymenoptera: Trichogrammatidae) and Copidosoma desantisi Annecke & Mynhardt (Hymenoptera: Encyrtidae) are potential parasitoids of the potato tuber moth (PTM), Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae) in Egypt. Discrimination of a parasitized host from an unparasitized host would prevent wasting of time, eggs and reduce competition with conspecifics or heterospecifics. Therefore, we evaluated interspecific host discrimination, multiparasitism and intrinsic competition between the two wasp species. In a choice test, females of T. evanescens showed high interspecific host discrimination only when they were offered 2-day-old C. desantisi parasitized and unparasitized PTM eggs. In contrast, C. desantisi showed high host discrimination and preferred unparasitized eggs to PTM eggs harboring 2-h- or 2-day-old T. evanescens’ eggs. We also evaluated the effect of different introduction sequences on the efficacy of the two wasps. Dissection data indicated that the two parasitoids had a negative impact on each other. There was a significant reduction in the total number of deposited eggs as well as total number of parasitized hosts by each parasitoid. Regarding the rearing experiment, the total number of T. evanescens-induced black eggs or C. desantisi formed mummies in combined treatments was significantly lower than in single parasitoid treatments (control). Moreover, C. desantisi was inferior and did not develop from any multiparasitized host regardless of oviposition order. It was suggested that combined release of the two wasps would not elevate rate of parasitism over that of single parasitoid treatments and competition between them would reduce their efficacy.  相似文献   

4.
Plants respond to grazing by herbivorous insects by emitting a range of volatile organic compounds, which attract parasitoids to their insect hosts. However, a positive outcome for the host plant is a necessary precondition for making the attraction beneficial or even adaptive. Parasitoids benefit plants by killing herbivorous insects, thus reducing future herbivore pressure, but also by curtailing the feeding intensity of the still living, parasitised host. In this study, the effect of parasitism on food consumption of the 5th instar larvae of the autumnal moth (Epirrita autumnata) was examined under laboratory conditions. Daily food consumption, as well as the duration of the 5th instar, was measured for both parasitised and non-parasitised larvae. The results showed that parasitism by the solitary endoparasitoid Zele deceptor not only reduced leaf consumption significantly but also hastened the onset of pupation in autumnal moth larvae. On the basis of the results, an empirical model was derived to assess the affects on the scale of the whole tree. The model suggests that parasitoids might protect the tree from total defoliation at least at intermediate larval densities. Consequently, a potential for plant–parasitoid chemical signalling appears to exist, which seems to benefit the mountain birch (Betula pubescens ssp. czerepanovii) by reducing the overall intensity of herbivore defoliation due to parasitism by this hymenopteran parasitoid.  相似文献   

5.
Most attention to size‐time trade‐offs of insects has focused on herbivore risk, with considerably less attention paid to parasitoids. Here, we focus on parasitoid risk, comparing the fates of unparasitised herbivore hosts and parasitised hosts that protect the parasitoids. Success of a koinobiont parasitoid (host grows after parasitisation) depends on maintaining a delicate balance with its host, thereby ensuring its own survival while the host grows. To evaluate growth rate–mortality rate relationships of host and parasitoid, we compared several aspects of the growth, phenology, and behaviour of unparasitised fern moth [Herpetogramma theseusalis (Walker) (Lepidoptera: Crambidae)] larvae and larvae parasitised by Alabagrus texanus (Cresson) (Hymenoptera: Braconidae), a solitary koinobiont (one parasitoid per host) wasp. Host larvae feed and construct shelters on sensitive fern, Onoclea sensibilis L. (Dryopteridaceae). Alabagrus texanus parasitise early‐instar moths in late summer, which overwinter in their host, emerging in mid‐summer to pupate and eclose. During the autumn following hatching and the immediately following spring, parasitised and unparasitised moth larvae did not differ in size, took similar time to choose between satisfactory and unsatisfactory foods, and built similar shelters. Prior to any other changes noted, more parasitised than unparasitised larvae also died when severely starved. Parasitised larvae subsequently grew less and pupated later than unparasitised ones (small size, slow growth), but consumed similar amounts of food. Although the numerically dominant parasitoid of fern moths, we concluded that Atexanus do not efficiently exploit their hosts.  相似文献   

6.
  • 1 Parasitoids may often lack access to sugar (e.g. floral nectar) in agricultural settings. Strategically timed spraying of host plants with sugar solution may provide one means of enhancing parasitism at the same time as minimizing nontarget effects (e.g. benefiting the pest itself).
  • 2 Sucrose was sprayed in wheat fields of northern Utah (U.S.A.) to assess the effects on parasitism of the cereal leaf beetle Oulema melanopus by the larval parasitoid Tetrastichus julis.
  • 3 Early‐season sugar provisioning, when larvae of the pest were first hatching and parasitoid adults were newly emerged, did not affect the numbers of cereal leaf beetle larvae that matured in treated plots but increased parasitism rates of beetle larvae by four‐fold in 2006 and by seven‐fold in 2007.
  • 4 No net influx of adult parasitoids into plots was detected after the application of sugar. Locally‐emerging parasitoids may have spent less time searching for their own food needs versus hosts. A laboratory experiment also confirmed that access to sucrose significantly increased parasitoid longevity.
  • 5 The field experimental results obtained demonstrate that applications of sugar, implemented to target a key time of the growing season when benefits are maximized for parasitoids and minimized for their hosts, can strongly promote parasitism of the cereal leaf beetle in wheat fields.
  相似文献   

7.
Abstract
  • 1 The horse‐chestnut leaf miner, Cameraria ohridella, is a moth of unknown origin that has recently invaded Europe and severely defoliates the European horse‐chestnut, an important ornamental tree.
  • 2 Several indigenous parasitoids have colonized this new host, but parasitism remains low. One of the hypotheses suggested to explain the low parasitism is that candidate parasitoids emerge too early in spring to attack the first host generation and, thus, need early‐occurring leaf miners as alternate hosts. This hypothesis was tested by observing the synchronization between the phenology of the moth and that of its main parasitoids, and by comparing parasitism rates and parasitoid richness in different environments with various levels of biological diversity.
  • 3 In spring, the bulk of the parasitoids emerge at least 5 weeks before the occurrence of the first suitable larvae of C. ohridella whereas most parasitoid adults reared outdoors die within 5 weeks after emergence.
  • 4 Parasitism rates and parasitoid richness do not increase with biological diversity, suggesting that most parasitoids attacking the first generation of C. ohridella do not come from alternate hosts. Parasitism does not increase later in the year in the subsequent generations, when host‐parasitoid synchronization becomes less critical.
  • 5 We conclude that, although the spring emergence of parasitoids is not synchronized with the phenology of C. ohridella, the parasitoids attacking the first generation are probably old or late‐emerging adults of the overwintering generation. The lack of synchronization is probably not the only reason for the poor recruitment of native parasitoids by C. ohridella.
  相似文献   

8.
The effect of expressing the gene encoding snowdrop lectin (Galanthus nivalis agglutinin, GNA) in transgenic potato plants, on parasitism of the phytophagous insect pest Lacanobia oleracea by the gregarious ectoparasitoid Eulophus pennicornis, was investigated in glasshouse trials. Expression of GNA (approx. 1.0% total soluble protein) by transgenic plants significantly reduced the level of pest damage, thus confirming previous studies. Furthermore, the presence of the parasitoid significantly reduced the levels of damage incurred either by the transgenic or control plants when compared to those plants grown in the absence of the parasitoid. For the GNA expressing plants the presence of the parasitoid resulted in further reductions (ca. 21%) in the level of damage caused by the pest species. The ability of the wasp to parasitise and subsequently develop on the pest larvae was not altered by the presence of GNA in the diet of the host. E. pennicornis progeny that developed on L. oleracea reared on GNA expressing plants showed no significant alteration in fecundity when compared with wasps that had developed on hosts fed on control potato plants, although mean size and longevity of female parasitoids was significantly reduced. The number of F 2 progeny produced by parasitoids derived from hosts fed on GNA-expressing plants was not significantly different to those produced by parasitoids from hosts fed control plants. Results from the present study demonstrate that the use of transgenic plants expressing insecticidal proteins can be compatible with the deployment of beneficial insects and that the two factors may interact in a positive manner.  相似文献   

9.
Codling moth, Cydia pomonella Linnaeus (Lepidoptera: Tortricidae), is a serious pest of apples worldwide. This study aimed to evaluate the mortality rate of codling moth eggs, larvae and pupae in the field in commercial and neglected apple and walnut orchards over two years, and to investigate the biodiversity and intensity of parasitoids associated with codling moth in the orchards. Five patches of wax paper containing 1-day-old codling moth eggs were placed in a neglected orchard in order to evaluate parasitism rates. Corrugated cardboard bands were placed around the trunk of 15 trees during late spring and the beginning of summer through to fruiting season to capture and measure parasitism of codling moth larvae. 5285 larvae in total were collected during this study. Mortality rate (egg?+?larvae?+?pupae) varied between the commercial and neglected orchards, reaching a maximum of (42.89% and 66.67%) in neglected apple orchards and (61.03% and 74.76%) in the neglected walnut orchard in 2003 and 2004, respectively. Trichogramma cacoeciae (Hymenoptera: Tichogrammatidae) was the only egg parasitoid recorded. Eight hymenopteran larval and pupal parasitoids belonging to several subfamilies were recorded: Cheloninae, Agathidinae, Cremastinae, Haltichellinae, Chalcidinae, Anomalinae, and Pteromalinae and one dipteran belonging to Tachininae. In conclusion, mortality factors, mainly by parasitoids, are contributing to a general reduction in codling moth larvae populations particularly in neglected orchards. The hymenopteran Ascogaster quadridentata and the dipteran Neoplectops pomonellae can contribute to biological control programmes against codling moth in the coastal region and other regions.  相似文献   

10.
To optimise the production of Asecodes hispinarum Bou?ek (Hymenoptera: Eulophidae), a parasitoid of coconut leaf beetle, Brontispa longissima (Gestro) (Coleoptera: Chrysomelidae), some of the factors affecting rates of parasitism, number of offspring produced per host and sex ratio of A. hispinarum were investigated. The numbers and sex ratio of A. hispinarum offspring per host reduced significantly at extreme low humidity (30% relative humidity [RH]), but there was no significant effect on parasitism. Photoperiod had no significant effects on any of the life traits tested. A. hispinarum was able to reproduce via arrhenotoky, and while increasing the proportion of female parents increased the number of parasitoids produced, the proportion of female offspring decreased. Older females showed a lower rate of parasitism than young females, however, maternal age did not affect the number or the sex ratio of offspring. Increasing the number of hosts offered to a pair of parasitoids significantly increased the number of parasitised hosts but decreased the parasitism rate while the sex ratio of progeny was not affected. Present work showed that to maximise the production of female parasitoids, a parasitoid/host ratio of 1:1, using one-day old A. hispinarum at a female/male ratio of 3:1 and RH of at least 55% is recommended.  相似文献   

11.
The apple ermine moth, Yponomeuta malinellus Zeller (Lepidoptera: Yponomeutidae), is a tent caterpillar that feeds on Malus spp. in Korea. Populations of the moth in native areas appeared to be regulated by the assemblage of parasitoids. Phenological associations between host stages and parasitoids, susceptible stage(s) of the host for each parasitoid, and stage‐specific parasitism were studied. The egg larval parasitoid Ageniaspis fuscicollis (Dalman) had highest parasitism of first instar larvae (24%), with 14% parasitism of other larval stages. Dolichogenidea delecta (Haliday) was recovered from all larval instars with the highest parasitism rate of second instar larvae (20.1%), followed by 19.9% parasitism of mid‐larval hosts. Herpestomus brunicornis Gravenhorst was reared from second instar larvae through to pupal collection, and had the highest parasitism rate (29.9%) at the pupal stage. The larval pupal parasitoid Zenillia dolosa (Meigen) was recovered from mid‐larval to pupal stages with the highest parasitism rate (5.5%) occurring in third to fourth instar larvae. The host stages for developing A. fuscicollis completely overlap with those of D. delecta, and with those of H. brunicornis to some degree. A statistically significant negative correlation exists between A. fuscicollis and these dominant parasitoids, indicating competitive interaction within the host.  相似文献   

12.
1. Plant defensive chemistry is predicted to have a more negative effect on generalist herbivores and their parasitoids than on specialist herbivores and their parasitoids. 2. This prediction was examined by comparing the effects of the wild parsnip (Pastinaca sativa L.) toxin, xanthotoxin, on a generalist herbivore–parasitoid association [the cabbage looper, Trichoplusia ni Hübner, and its polyembryonic parasitoid, Copidosoma floridanum (Ashmead)] and a specialist herbivore–parasitoid association [the parsnip webworm, Depressaria pastinacella (Duponchel), and its polyembryonic parasitoid, Copidosoma sosares (Walker)]. 3. Copidosoma floridanum brood sizes were smaller and experienced lower survivorship when reared in a host feeding on an artificial diet containing a low concentration of xanthotoxin. No T. ni hosts, parasitised or unparasitised, survived on a diet high in xanthotoxin. In contrast, C. sosares brood size and survivorship were unaffected by the presence of low levels of xanthotoxin in the host diet. Copidosoma sosares experienced reduced brood size and survivorship only when its host consumed a diet containing 15 times the level of xanthotoxin as the diet adversely affecting its congener. 4. The differences in response to xanthotoxin exhibited by C. floridanum and C. sosares are explained partly by a differential reduction in host quality and partly by differential exposure to xanthotoxin in host haemolymph. Unlike D. pastinacella, T. ni experienced reduced pupal weight and survivorship and prolonged developmental time on a low‐xanthotoxin diet. More xanthotoxin passed unmetabolised into the haemolymph of T. ni than into the haemolymph of D. pastinacella.  相似文献   

13.
To locate hosts, egg parasitoids rely on infochemicals of the adult host stage, e.g. pheromones, rather than cues emitted by the inconspicuous egg themselves. Here, we show that three different egg parasitoid species the scelionids Telenomus busseolae Gahan and Telenomus isis Polaszek and the trichogrammatid Trichogramma bournieri Pintureau & Babault were attracted to both calling and non-calling females of the noctuids Busseola fusca (Fuller), Sesamia calamistis (Hampson) and Sesamia nonagrioides (Lefebvre). In Y-tube olfactometer experiments this study revealed a preference of all three parasitoids for non-calling (general odors of virgin females) and calling moth (sex pheromone) over the control (clean air), and for calling over the non-calling moth. However, the three parasitoids were equally attracted to calling moth of B. fusca and S. calamistis indicating low host specificity. The findings indicated that all three parasitoids used the pheromones released by the calling moth in host finding. It is suggested that the low host specificity may affect egg parasitism of the target pest in crop fields.  相似文献   

14.
Two parasitoids,Pteromalus cerealellae (Ashmead) andAnisopteromalus calandrae (Howard) (Hymenoptera: Pteromalidae), were compared for their ability to parasitize two important internally-developing insect pests of stored maize (Zea mays L.). Parasitism byP. cerealellae was greater on Angoumois grain moth,Sitotroga cerealella (Olivier), than on maize weevil,Sitophilus zeamais Motschulsky, in no-choice experiments.Anisopteromalus calandrae parasitized more maize weevils than didP. cerealellae. The former parasitoid parasitized only a few Angoumois grain moths successfully in maize, but parasitized many in wheat if the hosts were younger than 3 weeks old. Thus, both host age and type of grain affect suitability for parasitism. The effects of parental host (species on which the female developed) and experimental host (species exposed to parasitism) on parasitism rate ofP. cerealellae were tested in a host-switching experiment. Parasitism by parasitoids reared on maize weevils was 23% lower than that of parasitoids reared on Angoumois grain moth. This effect was independent of which host the filial generation of parasitoids was tested on. However, the experimental host species had a much greater effect on parasitoid fecundity than the parental host species. Female progeny had smaller body sizes when emerging from maize weevil than from Angoumois grain moth, which may explain the parental host effect on fecundity. There was also a slight intergenerational effect of host species on parasitoid body size.  相似文献   

15.
Oomyzus sokolowskii is alarval-pupal parasitoid of diamondback moth, Plutella xylostella. In a host stage preference test, the parasitoid parasitised all larval and pupal stages, but exhibited a strong preference for larvaeover prepupae or pupae, and did not show a preference among the larval instars. At 25°C, the developmental time, number and sex ratio of offspring per host pupa, and successful parasitism did not differ significantly among parasitoids reared from host larvae of different instars, indicating similar host suitability between larvae of different instars. Mean developmental times from egg to adult at 20, 22.5, 25, 30, 32.5, and 35°C were 26.5,21.0, 16.0, 12.7, 11.9 and 13.4 days, respectively. The favourable temperature range for development, survival, and reproduction of the parasitoid was 20--30°C. However, wasps that developed and emerged at a favourable temperature could parasitise effectively at 32--35°C for 24 hours. Life-fertility table studies at 20, 25, and 30°C showed that each female wasp on average parasitised 3.1, 13.2, 6.8 larvae of diamondback moth and produced 20.5, 92.1, 50.4 offspring, respectively, during her lifetime. The highest intrinsic rate of natural increase (r m) of 0.263 female/day was reached at 30°C as a result of the short mean generation time at this temperature compared to that at 20 and 25°C, suggesting that the parasitoid had the highest potential for population growth at relatively high temperatures. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
Abstract 1. As species shift their geographic distributions, new feeding interactions with natural enemies such as parasitoids, and resources such as host plants, may be established, and existing interactions may be severed. 2. The leaf mining moth Phyllonorycter leucographella (Zeller, 1850) (Lep.: Gracillariidae) first colonised the southern United Kingdom in the mid 1980s associated with its ancestral host plant Pyracantha coccinea M. Roem. (Rosaceae), which is widely cultivated in the U.K. The moth has since spread northwards to central Scotland and has been recorded feeding on a novel host plant, Crataegus monogyna L. 3. The combined effects of latitude and time since colonisation on parasitoid community responses to the arrival of this novel host were investigated across its U.K. range. The response of parasitoids to colonisation of C. monogyna was also investigated. 4. Both the observed richness of parasitoid species associated with P. leucographella, and the proportion of P. leucographella parasitised declined with latitude and towards the current range margin. A combination of a latitudinal gradient in parasitoid and alternative host species richness is likely to lead to the trends in species richness and parasitism observed. 5. Experimental host patches exposed to parasitism beyond the current range margin of P. leucographella experienced low levels of parasitism consistent with range‐margin populations, indicating an instantaneous response by native parasitoids to availability of the novel host. Parasitism levels and numbers of associated species in the U.K. were similar to those observed in the species’ native range in Turkey. 6. The host plant switch to C. monogyna was not associated with an altered parasitoid assemblage, but rates of parasitism were significantly higher on the novel host plant. 7. Alterations in the incidence and frequency of victim‐enemy interactions as species shift their geographic ranges may be key in determining rates of range expansion and the impact invading species have on ecological communities.  相似文献   

17.
Successful parasitism of a host partly depends on a female's assessment of its quality, including whether the host has already been parasitised or not. We conducted experiments to elucidate host discrimination by Dolichogenidea tasmanica (Hymenoptera: Braconidae). It is the most commonly collected parasitoid of light brown apple moth, Epiphyas postvittana (Lepidoptera: Tortricidae). To assess the rate of superparasitism avoidance by D. tasmanica, female wasps were given choices between (1) unparasitised hosts versus freshly self-parasitised hosts, (2) unparasitised hosts versus hosts at 24 h post-self-parasitisation and (3) freshly self-parasitised hosts versus hosts freshly parasitised by a conspecific female. Results confirm that host discrimination occurs in D. tasmanica. Females avoid laying eggs in hosts that have been parasitised by themselves or conspecifics, even though the frequency of first encounter with either an unparasitised or a parasitised host was the same for all choices. Thus, it appears that females are not able to discriminate the host parasitisation status prior to contacting a host, but host acceptance is not random. Host discrimination is time-dependent, with greater avoidance of superparasitism after 24 h. The ability of female D. tasmanica to distinguish healthy from parasitised hosts suggests that it could be an effective biological control agent in regulation of host populations. It should also ensure production efficiency in parasitoid mass-rearing.  相似文献   

18.
A study on the dispersal of the exotic larval endoparasitoid, Cotesia flavipes Cameron (Hymenoptera: Braconidae), was conducted in a maize field in the northern Kilifi District in the coastal area of Kenya. Because C. flavipes did not previously occur in the release area, it was possible to use a unique indirect method to estimate dispersal by examining the distribution of parasitised hosts. Parasitoids released in the centre of the field moved as far as 64 meters during their life span, and dispersal was dependent on wind direction. The level of parasitism was influenced by the location of hosts in plants. The majority of parasitised stemborers (88.4%) were found inside the plant (stems and tassel stems), where 74.3% of the suitable hosts were found, which indicates that female parasitoids were not searching randomly for hosts. Aggregation of parasitoids in response to plants with different host densities was not detected. Implications of the release of C. flavipes on stemborers population in the agroecosystem of East Africa are discussed.  相似文献   

19.
Parasitoids are important natural enemies of many pest species and are used extensively in biological and integrated control programmes. Crop plants transformed to express toxin genes derived from Bacillus thuringiensis (Bt) provide high levels of resistance to certain pest species, which is likely to have consequent effects on parasitoids specialising on such pests. A better understanding of the interaction between transgenic plants, pests and parasitoids is important to limit disruption of biological control and to provide background knowledge essential for implementing measures for the conservation of parasitoid populations. It is also essential for investigations into the potential role of parasitoids in delaying the build-up of Bt-resistant pest populations. The diamondback moth (Plutella xylostella), a major pest of brassica crops, is normally highly susceptible to a range of Bt toxins. However, extensive use of microbial Bt sprays has led to the selection of resistance to Bt toxins in P. xylostella. Cotesia plutellae is an important endoparasitoid of P. xylostella larvae. Although unable to survive in Bt-susceptible P. xylostella larvae on highly resistant Bt oilseed rape plants due to premature host mortality, C. plutellae is able to complete its larval development in Bt-resistant P. xylostella larvae. Experiments of parasitoid flight and foraging behaviour presented in this paper showed that adult C. plutellae females do not distinguish between Bt and wildtype oilseed rape plants, and are more attracted to Bt plants damaged by Bt-resistant hosts than by susceptible hosts. This stronger attraction to Bt plants damaged by resistant hosts was due to more extensive feeding damage. Population scale experiments with mixtures of Bt and wildtype plants demonstrated that the parasitoid is as effective in controlling Bt-resistant P. xylostella larvae on Bt plants as on wildtype plants. In these experiments equal or higher numbers of parasitoid adults emerged per transgenic as per wildtype plant. The implications for integrated pest management and the evolution of resistance to Bt in P. xylostella are discussed.  相似文献   

20.
Even for parasitoids with a wide host range, not all host species are equally suitable, and host quality often depends on the plant the host feeds on. We compared oviposition choice and offspring performance of a generalist pupal parasitoid, Pteromalus apum (Retzius) (Hymenoptera: Pteromalidae), on two congeneric hosts reared on two plant species under field and laboratory conditions. The plants contain defensive iridoid glycosides that are sequestered by the hosts. Sequestration at the pupal stage differed little between host species and, although the concentrations of iridoid glycosides in the two plant species differ, there was no effect of diet on the sequestration by host pupae. The rate of successful parasitism differed between host species, depending on the conditions they were presented in. In the field, where plant‐associated cues are present, the parasitoid used Melitaea cinxia (L.) over Melitaea athalia (Rottemburg) (Lepidoptera: Nymphalidae), whereas more M. athalia were parasitised in simplified laboratory conditions. In the field, brood size, which is partially determined by rate of superparasitism, depended on both host and plant species. There was little variation in other aspects of offspring performance related to host or plant species, indicating that the two host plants are of equal quality for the hosts, and the hosts are of equal quality for the parasitoids. Corresponding to this, we found no evidence for associative learning by the parasitoid based on their natal host, so with respect to these host species they are truly generalist in their foraging behaviour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号