首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Takydromus Daudin is a group of Lacertidae lizards with slender bodies and long tails. Half of the Takydromus spp. are endemic to islands of eastern Asia aligned along the Pacific margin of the East Asian continent. This feature offers a good opportunity to study the effects of glaciations and land connections on the speciation of East Asian fauna. We reconstructed the molecular phylogeny of Takydromus species via the mitochondrial 12S rRNA gene. Phylogenetic analyses using maximum-parsimony, neighbor-joining, and maximum-likelihood options do not support a two-subgenera scheme of Takydromus and Platyplacopus proposed earlier. In contrast, the phylogeny of Takydromus species on islands fits the sequential separation of island groups influenced by changes in sea level. The hypothesis in our prediction supports the process of vicariant speciation and multicolonization of grass lizards on eastern Asian islands. At least two obvious colonization events were followed by vicariance events. Because the molecular clock of the 12 rRNA gene was not rejected in our model test, it is possible to estimate times of speciation events. As the most isolated and basal species compared to other temperate and subtropical species of Takydromus, the separation period of T. smaragdinus in the central Ryukyus is the crucial point in estimating the evolutionary rate. Quaternary-origin or Tertiary-origin models are proposed and discussed.  相似文献   

2.
Historical relationships were inferred for the oriental lizards of the genus Takydromus Daudin 1802 (Lacertidae) on the basis of DNA sequences. Of the 17 species currently recognized for the genus, 13 species represented by 42 specimens from 29 localities were examined. Maximum-likelihood and maximum-parsimony analyses of data for 829 aligned sites from parts of the mitochondrial 12S and 16S rRNA genes yielded relationships that, while showing no substantial discrepancy with each other, were strikingly different from a currently prevailing phylogenetic hypothesis from a parsimony analysis of morphological characters. Based on the results of these molecular analyses, supplemented by results of the morphological analysis that offered robust evidence for positions of two additional species ( T. khasiensis and T. sylvaticus ), the following interrelationships were hypothesized as the most preferred phylogeny: ( kuehnei ( sexlineatus khasiensis ))( tachydromoides (( smaragdinus ( sauteri ( dorsalis sylvaticus ))) ( amurensis ((( formosanus wolteri ) hsuehshanensis )( toyamai ( septentrionalis stejnegeri )))))). These interrelationships indicate: (1) invalidity of Platyplacopus Boulenger 1917 , which was recently resurrected as a subgenus of Takydromus on the basis of the morphological analysis; (2) homoplasy in states of some morphological characters, such as green dorsal coloration, that were considered as synapomorphs of certain nodes in the morphological analysis; and (3) involvement of the genus in a series of vicariances in both the continental and insular parts of eastern Eurasia. Due to the paucity of available samples, phylogenetic status of T. intermedius and T. haughtonianus remain to be examined in future studies.  © 2002 The Linnean Society of London, Biological Journal of the Linnean Society , 76 , 493–509.  相似文献   

3.
Aim Optimal body size theories predict that large clades have a single, optimal, body size that serves as an evolutionary attractor, with the full body size spectrum of a clade resulting from interspecific competition. Because interspecific competition is believed to be reduced on islands, such theories predict that insular animals should be closer to the optimal size than mainland animals. We test the resulting prediction that insular clade members should therefore have narrower body size ranges than their mainland relatives. Location World‐wide. Methods We used body sizes and a phylogenetic tree of 4004 mammal species, including more than 200 species that went extinct since the last ice age. We tested, in a phylogenetically explicit framework, whether insular taxa converge on an optimal size and whether insular clades have narrow size ranges. Results We found no support for any of the predictions of the optimal size theory. No specific size serves as an evolutionary attractor. We did find consistent evidence that large (> 10 kg) mammals grow smaller on islands. Smaller species, however, show no consistent tendency to either dwarf or grow larger on islands. Size ranges of insular taxa are not narrower than expected by chance given the number of species in their clades, nor are they narrower than the size ranges of their mainland sister clades – despite insular clade members showing strong phylogenetic clustering. Main conclusions The concept of a single optimal body size is not supported by the data that were thought most likely to show it. We reject the notion that inclusive clades evolve towards a body‐plan‐specific optimum.  相似文献   

4.
Polychaetes in the Southern Ocean are often thought to have wide distribution ranges on a horizontal and vertical scale. Here, this theory is tested for specimens commonly identified as the widely distributed glycerid Glycera kerguelensis using two molecular markers, the mitochondrial cytochrome oxidase c subunit I (COI) and the nuclear 28S rDNA. Identical morphospecies of three “populations” from three different habitats and two depth zones (abyssal plain 5,300 m, continental slope 2,000 m, sea mountain plateau 2,000 m) are compared. High genetic distances suggest the existence of three clades representing distinct species, identifying the investigated specimens as a complex comprising cryptic species with vertically restricted distribution. Two clades were found in sympatry on the Atka Bay slope in 2,000 m depth, one of these also found in similar depth on the plateau of the sea mountain Maud Rise. The third clade was limited to the abyssal plains (5,300 m) indicating the strong role of depth in the distribution of clades, possibly in conjunction with prevailing current systems. Evolution of the different clades is suggested to have resulted from a single emergence event with the origin of clades lying in the abyss.  相似文献   

5.
A seemingly obvious but sometimes overlooked premise of any evolutionary analysis is delineating the group of taxa under study. This is especially problematic in some bryophyte groups because of morphological simplicity and convergence. This research applies information from nucleotide sequences for eight plastid and nuclear loci to delineate a group of northern hemisphere peat moss species, the so-called Sphagnum subsecundum complex, which includes species known to be gametophytically haploid or diploid (i.e., sporophytically diploid-tetraploid). Despite the fact that S. subsecundum and several species in the complex have been attributed disjunct ranges that include all major continents, phylogenetic analyses suggest that the group is actually restricted to Europe and eastern North America. Plants from western North America, from California to Alaska, which are morphologically similar to species of the S. subsecundum complex in eastern N. America and Europe, actually belong to a different deep clade within Sphagnum section Subsecunda. One species often considered part of the S. subsecundum complex, S. contortum, likely has a reticulate history involving species in the two deepest clades within section Subsecunda. Nucleotide sequences have a strong geographic structure across the section Subsecunda, but shallow tip clades suggest repeated long-distance dispersal in the section as well.  相似文献   

6.
The Andes are a cradle of orchid evolution, but most phylogenetic studies of Orchidaceae in this biodiversity hotspot have dealt with epiphytic epidendroid lineages. Here we present a study on neotropical, terrestrial, orchidoid taxa of Prescottiinae s.l. (8 genera, ~100 species), which are adapted to some of the highest elevation habitats on earth that support orchids. They are currently included within an expanded concept of Cranichidinae in the tribe Cranichideae, but DNA sequence data show that neither Prescottiinae s.l. nor Cranichidinae s.s. are monophyletic. Prescottiinae s.l. consist of two strongly supported lineages: the Altensteinia and Prescottia clades, which have closer affinities to Spiranthinae than to Cranichidinae. The Prescottia clade comprises two well-supported subclades, one including most sampled species of Prescottia and a second one with Pseudocranichis thysanochila sister to Prescottia tubulosa. As a group, they are sister to Spiranthinae. Sister to this pair is the Altensteinia clade comprised of six genera, whose intergeneric relationships are well resolved. Finally, Cranichidinae s.s. is sister to all three of these clades. Morphological and ecological features distinguishing the major groups are discussed, as are potential synapomorphies to define them. The reconstructed phylogeny indicates that the classification of Cranichideae needs to be reexamined.  相似文献   

7.
8.
Although environmental DNA surveys improve our understanding of biodiversity, interpretation of unidentified lineages is limited by the absence of associated morphological traits and living cultures. Unidentified lineages of marine stramenopiles are called “MAST clades”. Twenty‐five MAST clades have been recognized: MAST‐1 through MAST‐25; seven of these have been subsequently discarded because the sequences representing those clades were found to either (1) be chimeric or (2) affiliate within previously described taxonomic groups. Eighteen MAST clades remain without a cellular identity. Moreover, the discarded “MAST‐13” has been used in different studies to refer to two different environmental sequence clades. After establishing four cultures representing two different species of heterotrophic stramenopiles and then characterizing their morphology and molecular phylogenetic positions, we determined that the two different species represented the two different MAST‐13 clades: (1) a lorica‐bearing Bicosoeca kenaiensis and (2) a microaerophilic flagellate previously named “Cafeteria marsupialis”. Both species were previously described with only light microscopy; no cultures, ultrastructural data or DNA sequences were available from these species prior to this study. The molecular phylogenetic position of three different “C. marsupialis” isolates was not closely related to the type species of Cafeteria; therefore, we established a new genus for these isolates, Cantina gen. nov.  相似文献   

9.
Parmelioid lichens comprise about 1500 species and have a worldwide distribution. Numerous species are widely distributed and well known, including important bioindicators for atmospheric pollution. The phylogeny and classification of parmelioid lichens has been a matter of debate for several decades. Previous studies using molecular data have helped to establish hypotheses of the phylogeny of certain clades within this group. In this study, we infer the phylogeny of major clades of parmelioid lichens using DNA sequence data from two nuclear loci and one mitochondrial locus from 145 specimens (117 species) that represent the morphological and chemical diversity in these taxa. Parmelioid lichens are not monophyletic; however, a core group is strongly supported as monophyletic, excluding Arctoparmelia and Melanelia s. str., and including Parmeliopsis and Parmelaria. Within this group, seven well-supported clades are found, but the relationships among them remain unresolved. Stochastic mapping on a MC/MCMC tree sampling was employed to infer the evolution of two morphological and two chemical traits believed to be important for the evolutionary success of these lichens, and have also been used as major characters for classification. The results suggest that these characters have been gained and lost multiple times during the diversification of parmelioid lichens.  相似文献   

10.
The European common lizard (Zootoca vivipara) is a widely distributed species across Europe and Asia exhibiting two reproductive modes (oviparity/viviparity), six major lineages and several sublineages. It has been used to tackle a large variety of research questions, nevertheless, few nuclear DNA sequence markers have been developed for this species. Here we developed 79 new nuclear DNA sequence markers using a clonation protocol. These markers were amplified in several oviparous and viviparous specimens including samples of all extant clades, to test the amplification success and their diversity. 49.4% of the markers were polymorphic and of those, 51.3% amplified in all and 94.9% amplified in 5–7 of the extant Z. vivipara clades. These new markers will be very useful for the study of the population structure, population dynamics, and micro/macro evolution of Z. vivipara. Cross-species amplification in four lizard species (Psammodromus edwardsianus, Podarcis muralis, Lacerta bilineata, and Takydromus sexlineatus) was positive in several of the markers, and six makers amplified in all five species. The large genetic distance between P. edwardsianus and Z. vivipara further suggests that these markers may as well be employed in many other species.  相似文献   

11.
Carex sect. Confertiflorae s.l. is a medium-sized species group (ca. 40 species) with its center of diversity in E Asia (China and Japan). According to morphological traits, the section has been proposed to split into two sections (sects. Confertiflorae sensu Ohwi and Molliculae Ohwi) up to five different ones (sects. Confertiflorae s.s., Molliculae, Dispalatae Ohwi, Ischnostachyae Ohwi, and Alliiformes Akiyama). Recent phylogenetic reconstructions showed Confertiflorae s.l. not to be monophyletic, as species traditionally considered part of it were found to belong to other clades, whereas species traditionally ascribed to other sections were nested within it. In this study, we investigated the phylogenetic structure, morphological affinities, and biogeographic history of sect. Confertiflorae s.l. We employed a taxon-based approach to explore the morphological affinities of the species considered in sect. Confertiflorae and compared the micromorphology of the nutlets of almost all the taxa using SEM. We included 40 samples representing 31 species/subspecies of sect. Confertiflorae s.l. and used two nuclear (ETS and ITS) and three plastid (trnL-F, matK, and rpl32-trnL UAG) molecular markers to reconstruct the phylogeny of the group. The phylogenetic analyses confirmed the polyphyly of sect. Confertiflorae s.l., whose representatives were found within five distinct clades. From these, two clades, sect. Confertiflorae and sect. Molliculae, were found to be closely related and contained the majority of the species. The composition of the two clades agreed with the morphological structure of the group, and we confirmed an exclusive combination of features (namely color of basal sheaths, presence of bract sheath, peduncle of lowest spike, inflorescence sex distribution, shape of pistillate glume apex, and color and veins of utricle, among others) characterizing each of the two clades. The origin of the two clades was found to be in the early Pliocene; however, the majority of the diversification events within each clade took place during the Pleistocene. This illustrates that although Asia has been regarded as having little potential ecological space for Carex to diversify due to its climate stability, groups of sedges sub-endemic from that area may have a fairly recent origin related to glaciations. We proposed the rearrangement of sect. Confertiflorae as previously conceived as three independent sections: the monotypic Alliiformes, sect. Molliculae, and sect. Paludosae.  相似文献   

12.
If climate change during the Quaternary shaped the macroevolutionary dynamics of a taxon, we expect to see three features in its history: elevated speciation or extinction rates should date to this time, more northerly distributed clades should show greater discontinuities in these rates, and similar signatures of those effects should be evident in the phylogenetic and phylodemographic histories of multiple clades. In accordance with the role of glacial cycles, speciation rates increased in the Holarctic Enallagma damselflies during the Quaternary, with a 4.25x greater increase in a more northerly distributed clade as compared with a more southern clade. Finer-scale phylogenetic analyses of three radiating clades within the northern clade show similar, complex recent histories over the past 250,000 years to produce 17 Nearctic and four Palearctic extant species. All three are marked by nearly synchronous deep splits that date to approximately 250,000 years ago, resulting in speciation in two. This was soon followed by significant demographic expansions in at least two of the three clades. In two, these expansions seem to have preceded the radiations that have given rise to most of the current biodiversity. Each also produced species at the periphery of the clade's range. In spite of clear genetic support for reproductive isolation among almost all species, mtDNA signals of past asymmetric hybridization between species in different clades also suggest a role for the evolution of mate choice in generating reproductive isolation as species recolonized the landscape following deglaciation. These analyses suggest that recent climate fluctuations resulted in radiations driven by similar combinations of speciation processes acting in different lineages.  相似文献   

13.
A major goal of evolutionary biology is to identify the causes of diversification and to ascertain why some evolutionary lineages are especially diverse. Evolutionary biologists have long speculated that polyphenism—where a single genome produces alternative phenotypes in response to different environmental stimuli—facilitates speciation, especially when these alternative phenotypes differ in resource or habitat use, i.e. resource polyphenism. Here, we present a series of replicated sister-group comparisons showing that fishes and amphibian clades in which resource polyphenism has evolved are more species rich, and have broader geographical ranges, than closely related clades lacking resource polyphenism. Resource polyphenism may promote diversification by facilitating each of the different stages of the speciation process (isolation, divergence, reproductive isolation) and/or by reducing a lineage''s risk of extinction. Generally, resource polyphenism may play a key role in fostering diversity, and species in which resource polyphenism has evolved may be predisposed to diversify.  相似文献   

14.
? Premise of the study: The recognition of monophyletic genera for groups that have high levels of homoplastic morphological characters and/or conflicting results obtained by different studies can be difficult. Such is the case in the grammitid ferns, a clade within the Polypodiaceae. In this study, we aim to resolve relationships among four clades of grammitid ferns, which have been previously recovered either as a polytomy or with conflicting topologies, with the goal of circumscribing monophyletic genera. ? Methods: The sampling included 89 specimens representing 61 species, and sequences were obtained for two genes (atpB and rbcL) and four intergenic spacers (atpB-rbcL, rps4-trnS, trnG-trnR, and trnL-trnF), resulting in a matrix of 5091 characters. The combined data set was analyzed using parsimony, likelihood, and Bayesian methods. Ninety-six morphological characters were optimized onto the generated trees, using the parsimony method. ? Key results: Lellingeria is composed of two main clades, the L. myosuroides and the Lellingeria s.s. clades, which together are sister to Melpomene. Sister to all three of these is a clade with two species of the polyphyletic genus Terpsichore. In the L. myosuroides clade, several dispersal events occurred between the neotropics, Africa, and the Pacific Islands, whereas Lellingeria s.s. is restricted to the neotropics, with about 60% of its diversity in the Andes. ? Conclusions: Overall, our results suggest that Lellingeria is monophyletic, with two clades that are easily characterized morphologically and biogeographically. Morphological characters describing the indument are the most important to define the clades within the ingroup. A small clade, previously considered in Terpsichore, should be recognized as a new genus.  相似文献   

15.
Understanding how species attain their geographical distributions and identifying traits correlated with range size are important objectives in biogeography, evolutionary biology and biodiversity conservation. Despite much effort, results have been varied and general trends have been slow to emerge. Studying species pools that occupy specific habitats, rather than clades or large groupings of species occupying diverse habitats, may better identify ranges size correlates and be more informative for conservation programmes in a rapidly changing world. We evaluated correlations between a set of organismal traits and range size in bird species from Amazonian white-sand ecosystems. We assessed if results are consistent when using different data sources for phylogenetic and range hypotheses. We found that dispersal ability, as measured by the hand-wing index, was correlated with range size in both white-sand birds and their non-white-sand sister taxa. White-sand birds had smaller ranges on average than their sister taxa. The results were similar and robust to the different data sources. Our results suggest that the patchiness of white-sand ecosystems limits species’ ability to reach new habitat islands and establish new populations.  相似文献   

16.
Marine species with ranges that span the Indo-Australian Archipelago (IAA) exhibit a range of phylogeographical patterns, most of which are interpreted in the context of vicariance between Indian and Pacific Ocean populations during Pliocene and Pleistocene low sea-level stands. However, patterns often vary among ecologically similar taxa, sometimes even within genera. This study compares phylogeographical patterns in two species of highly dispersive neritid gastropod, Nerita albicilla and Nerita plicata, with nearly sympatric ranges that span the Indo-Pacific. Mitochondrial COI sequences from >1000 individuals from 97 sites reveal similar phylogenies in both species (two divergent clades differing by 3.2% and 2.3%, for N. albicilla and N. plicata, respectively). However, despite ecological similarity and congeneric status, the two species exhibit phylogeographical discordance. N. albicilla has maintained reciprocal monophyly of Indian and Pacific Ocean populations, while N. plicata is panmictic between oceans, but displays a genetic cline in the Central Pacific. Although this difference might be explained by qualitatively different demographic histories, parameter estimates from three coalescent models indicate that both species have high levels of gene flow between demes (2Nem>75), and share a common history of population expansion that is likely associated with cyclical flooding of continental shelves and island lagoons following low sea-level stands. Results indicate that ecologically similar, codistributed species may respond very differently to shared environmental processes, suggesting that relatively minor differences in traits such as pelagic larval duration or microhabitat association may profoundly impact phylogeographical structure.  相似文献   

17.
Andira comprises 29 species distributed throughout tropical America, with two subspecies in Africa. Its fruits are unusual for a papilionoid legume because they are drupes. The majority of species have fruits dispersed by bats, but eight species have larger fruits dispersed by-rodents. Some fruits of both dispersal types are secondarily dispersed by water. Cladistic analysis of chloroplast DNA (cpDNA) restriction site characters discovered four well-supported clades of Andira species. None of these 'cryptic' clades had been recognized by previous workers, because they are not apparently marked by any known morphological innovations. This prompted a search for new characters that might support these groupings. An anatomical study of fruit walls of 25 Andira species revealed the presence of three principal endocarp types, dominated by (1) parenchyma, (2) fibres, or (3) stone cells. These features arc best coded as a single unordered multistate character. When incorporated into a simultaneous cladistic analysis of previously gathered molecular and morphological data, states of this endocarp character are shown to be apomorphies for two of the well-supported clades evident in the cpDNA restriction site data. The most likely plesiomorphic state for the endocarp is parenchyma-dominated. Thicker, stronger endocarps of fibres and stone cells may have evolved in response to the need to protect the seed from predators.  相似文献   

18.
Ober K  Matthews B  Ferrieri A  Kuhn S 《ZooKeys》2011,(147):183-197
Populations of the ground beetle Scaphinotus petersi are isolated in subalpine conifer forest habitats on mountain ranges or Sky Islands in southeastern Arizona. Previous work on this species has suggested these populations have been isolated since the last post-glacial maximum times as warming caused this cool adapted species to retreat to high elevations. To test this hypothesis, we inferred the phylogeny from mitochondrial DNA sequence data from several Arizona Sky Island populations of Scaphinotus petersi and estimated the divergence time of the currently isolated populations. We found two major clades of Scaphinotus petersi, an eastern clade and a western group. Our results indicated most mountain ranges form clades except the Huachucas, which are polyphyletic and the Santa Catalinas, which are paraphyletic. We estimated the Pinaleño population is much older than the last glacial maximum, but the Huachuca and Pinal populations may have been fragmented from the Santa Catalina population since the post-glacial maximum times.  相似文献   

19.
The processes involved in shaping latitudinal‐diversity gradients (LDGs) have been a longstanding source of debate and research. Climatic, historical and evolutionary factors have all been shown to contribute to the formation of LDGs. However, meta‐analyses have shown that different clades have LDG slopes that may vary in more than one order of magnitude. Such large variation cannot be explained solely by climatic or historical factors (e.g. difference in surface area between temperate and tropical zones) given that all clades within a geographic region are subject to the same conditions. Therefore, biotic processes intrinsic to each taxonomic group could be relevant in explaining rate differences in diversity decline across latitudinal gradients among groups. In this study, we developed a model simulating multiple competing species subjected (or not) to a demographic Allee effect. We simulated the range expansion of these species across an environmental gradient to show how these two overlooked factors (competition and Allee effects) are capable of modulating LDGs. Allee effects resulted in a steeper LDG given a higher probability of local extinction and lower colonization capacity compared to species without Allee effects. Likewise, stronger competition also led to a steeper decline in species diversity compared to scenarios with weaker species antagonistic interactions. This pattern occurred mostly due to the strength of priority effects, wherein scenarios with strong competition, species that dispersed earlier in the landscape were able to secure many patches whereas late‐arriving species were progressively precluded from expanding their ranges. Overall, our results suggest that the effect of biotic processes in shaping macroecological patterns could be more important than it is currently appreciated.  相似文献   

20.
In the last decade, several studies have shown that subterranean aquatic habitats harbor cryptic species with restricted geographic ranges, frequently occurring as isolated populations. Previous studies on aquatic subterranean species have implied that habitat heterogeneity can promote speciation and that speciation events can be predicted from species’ distributions. We tested the prediction that species distributed across different drainage systems and karst sectors comprise sets of distinct species. Amphipods from the genus Niphargus from 11 caves distributed along the Western Carpathians (Romania) were investigated using three independent molecular markers (COI, H3 and 28S). The results showed that: 1) the studied populations belong to eight different species that derive from two phylogenetically unrelated Niphargus clades; 2) narrow endemic species in fact comprise complexes of morphologically similar species that are indistinguishable without using a molecular approach. The concept of monophyly, concordance between mitochondrial and nuclear DNA, and the value of patristic distances were used as species delimitation criteria. The concept of cryptic species is discussed within the framework of the present work and the contribution of these species to regional biodiversity is also addressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号