首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The optimal allocation theory predicts that growth is allocated between the shoot and the roots so that the uptake of the most limiting resource is increased. Allocation is dynamic due to resource depletion, interaction with competitors, and the allometry of growth. We assessed the effects of intra- and inter-specific competition on growth and resource allocation of the meadow species Ranunculus acris and Agrostis capillaris, grown in environments with high (+) or low (−) availability of light (L) and nutrients (N). We took samples twice a week over the 7 weeks experiment, to follow the changes in root-to-shoot ratios in plants of different sizes, and carried out a larger scale harvest at the end of the experiment. Of all the tested factors, availability of nutrients had the largest effect on the growth rate and shoot-to-root allocation in both species, although both competition and light had significant effects as well. The highest root-to-shoot ratios were measured from the L+N− treatment, and the lowest from the L−N+ treatment, as predicted by the optimal allocation theory. Competition changed resource allocation, but not always toward acquiring the resource that is most limiting to growth. We thus conclude that the greatest variation in shoot-to-root allocation was due to the resource availability and the effects of competition were small, probably due to low density of plants in the experiment.  相似文献   

2.
3.
Xinqiang Xi  John N. Griffin  Shucun Sun 《Oikos》2013,122(7):1049-1057
Amensalism may be common between non‐trophically linked animals in natural ecosystems, where variation among species in body sizes and foraging modes may give rise to one‐sided interference. However, species and ecosystem‐level consequences of animal–animal amensalism are largely unknown. In a Tibetan alpine meadow, dominant herbivorous grasshoppers trigger a death feigning anti‐predator response of co‐occurring grassland caterpillars despite posing no consumptive threat. We hypothesized that: 1) grasshoppers reduce the performance of caterpillars while incurring no cost to themselves; and 2) this amensalism reduces top–down control of plant composition and biomass. We tested these hypotheses by factorial manipulation of both herbivores within replicate field enclosures. Grasshoppers significantly suppressed caterpillar feeding, growth rate, survival, reproductive effort and delayed metamorphosis. In contrast, grasshopper performance was unaffected by the caterpillars. Suppression of caterpillar feeding decreased overall herbivore suppression of plant biomass by 58% and shifted the functional composition of the plant community (i.e. increased sedge: forb ratio). These results suggest that consideration of non‐trophic interactions such as amensalism will help predict the consequences of species losses for the structure and functioning of ecosystems.  相似文献   

4.
Cai L  Liu XL  He F  Fan H  Pan HL  Pan YZ 《应用生态学报》2011,22(11):2822-2828
采用野外调查方法,研究卧龙巴郎山高山及亚高山草甸不同海拔梯度下花卉植物生物量的变化格局,并进行土壤因子分析,结果表明:花卉植物地上生物量随海拔的升高呈单峰曲线变化,在3500 m处达到峰值,花-果、茎、叶生物量的变化趋势与地上生物量一致;地下生物量随海拔的升高呈U型曲线变化.随海拔的升高,土壤酸性增强,水解氮和全钾含量显著升高,土壤有机质、全氮和有效磷的含量显著降低,花卉植物地上生物量随土壤pH值及全氮、速效钾含量的升高显著增大;地下生物量随土壤有机质、有效磷含量的升高显著增大,随全钾、水解氮含量的升高显著减小.  相似文献   

5.
The paper sums up the first knowledge obtained from the study of seasonal changes in the growth and decomposition rate of underground plant biomass in a grassland community (Polygalo-Nardetum) in the highland ?eskomoravská vrchovina. The maximum increment of underground organs per day was recorded in late summer (14.04 g. m?2.d?1). The period of May to July was characterized by the highest rate of decomposition of underground parts per day (up to 27 g.m?2.d?1). The estimated annual net production of underground plant organs was 0.81 kg.m?2.  相似文献   

6.
氮是陆地生态系统生产力的首要限制性养分,利用自然丰度δ15N(15N/14N)可以有效指示生态系统氮循环过程。本试验研究了内蒙古草甸草原土壤与植物系统自然丰度δ15N、土壤净氮矿化潜势的年际变化。结果表明: 2017—2020年,土壤NO3--N含量(9.83~14.79 mg·kg-1)均显著高于NH4+-N含量(3.92~5.00 mg·kg-1);土壤NH4+的δ15N值(13.3‰~18.3‰)显著高于NO3-的δ15N值(3.76‰~6.14‰),土壤NO3-的δ15N值与土壤NO3-含量呈显著负相关;干旱年NH4+的δ15N值相对较高,降水较高或较低年NO3-的δ15N值显著降低。干旱年土壤净氮矿化速率、净氨化速率显著高于湿润年,而土壤硝化速率与年降水量无显著相关性。植物δ15N值与土壤δ15N值无显著相关性,但与植物N含量呈显著负相关;豆科植物与非豆科植物δ15N值、N含量均呈显著正相关,在一定程度上表明豆科植物对非豆科植物的N吸收具有促进作用。研究结果可为草原土壤-植物系统氮循环过程及其对降水变化的响应提供数据支撑。  相似文献   

7.
Plant traits and individual plant biomass allocation of 57 perennial herbaceous species, belonging to three common functional groups (forbs, grasses and sedges) at subalpine (3700 m ASL), alpine (4300 m ASL) and subnival (⩾5000 m ASL) sites were examined to test the hypothesis that at high altitudes, plants reduce the proportion of aboveground parts and allocate more biomass to belowground parts, especially storage organs, as altitude increases, so as to geminate and resist environmental stress. However, results indicate that some divergence in biomass allocation exists among organs. With increasing altitude, the mean fractions of total biomass allocated to aboveground parts decreased. The mean fractions of total biomass allocation to storage organs at the subalpine site (7%±2% S.E.) were distinct from those at the alpine (23%±6%) and subnival (21%±6%) sites, while the proportions of green leaves at all altitudes remained almost constant. At 4300 m and 5000 m, the mean fractions of flower stems decreased by 45% and 41%, respectively, while fine roots increased by 86% and 102%, respectively. Specific leaf areas and leaf areas of forbs and grasses deceased with rising elevation, while sedges showed opposite trends. For all three functional groups, leaf area ratio and leaf area root mass ratio decreased, while fine root biomass increased at higher altitudes. Biomass allocation patterns of alpine plants were characterized by a reduction in aboveground reproductive organs and enlargement of fine roots, while the proportion of leaves remained stable. It was beneficial for high altitude plants to compensate carbon gain and nutrient uptake under low temperature and limited nutrients by stabilizing biomass investment to photosynthetic structures and increasing the absorption surface area of fine roots. In contrast to forbs and grasses that had high mycorrhizal infection, sedges had higher single leaf area and more root fraction, especially fine roots.  相似文献   

8.
Characterizing the spatial variation in the CO2 flux at both large and small scales is essential for precise estimation of an ecosystem’s CO2 sink strength. However, little is known about small-scale CO2 flux variations in an ecosystem. We explored these variations in a Kobresia meadow ecosystem on the Qinghai-Tibetan plateau in relation to spatial variability in species composition and biomass. We established 14 points and measured net ecosystem production (NEP), gross primary production (GPP), and ecosystem respiration (Re) in relation to vegetation biomass, species richness, and environmental variables at each point, using an automated chamber system during the 2005 growing season. Mean light-saturated NEP and GPP were 30.3 and 40.5 μmol CO2 m−2 s−1 [coefficient of variation (CV), 42.7 and 29.4], respectively. Mean Re at 20°C soil temperature, Re20, was −10.9 μmol CO2 m−2 s−1 (CV, 27.3). Re20 was positively correlated with vegetation biomass. GPPmax was positively correlated with species richness, but 2 of the 14 points were outliers. Vegetation biomass was the main determinant of spatial variation of Re, whereas species richness mainly affected that of GPP, probably reflecting the complexity of canopy structure and light partitioning in this small grassland patch.  相似文献   

9.
赵彬彬  牛克昌  杜国祯 《生态学报》2009,29(3):1596-1606
通过对比研究青藏高原高寒草甸27种植物群落组分种在放牧和长期排除放牧生境中的生物量分配差异,试图揭示长期放牧干扰对植物生活史对策的影响.结果表明:(1)放牧对群落物种个体生物量大小和生物量分配有着显著的影响;(2)总体来看:多数物种(24)放牧生境中的平均个体生物量明显小于禁牧地中的平均个体生物量;而多数物种在放牧后(23种)繁殖分配明显增加;茎分配有增有减(15减小12种增加);叶分配呈减小趋势(20种减小7增加).(3)放牧的影响在不同物种间和功能群间都存在着明显的差异.放牧使毒草茎分配减小叶分配增加,繁殖分配几乎不受影响;豆科和杂草繁殖分配增加,茎分配和叶分配减小,其中豆科两个种的生物量分配变化都不显著;禾草叶分配减小,繁殖分配和茎分配增加; (4)在群落水平上,放牧使繁殖分配和叶分配增加,茎分配减少.  相似文献   

10.
青藏高原正经历着明显的温暖化过程, 由此引起的土壤温度的升高促进了土壤中微生物的活性, 同时青藏高原东缘地区大气氮沉降十分明显, 并呈逐年增加的趋势, 这些环境变化均促使土壤中可利用营养元素增加, 因此深入了解青藏高原高寒草甸植物生物量对可利用营养元素增加的响应, 是准确预测未来全球变化背景下青藏高原高寒草甸碳循环过程的重要基础。该研究基于在青藏高原高寒草甸连续4年(2009-2012年)氮、磷添加后对不同功能群植物地上生物量、群落地上和地下生物量的测定, 探讨高寒草甸生态系统碳输入对氮、磷添加的响应。结果表明: (1)氮、磷添加均极显著增加了禾草的地上绝对生物量及其在群落总生物量中所占的比例, 同时均显著降低了杂类草在群落总生物量中的比例, 此外磷添加极显著降低了莎草地上绝对生物量及其在群落总生物量中所占的比例。(2)氮、磷添加均显著促进了青藏高原高寒草甸的地上生物量增加, 分别增加了24%和52%。(3)氮添加对高寒草甸地下生物量无显著影响, 而磷添加后地下生物量有增加的趋势。(4)氮添加对高寒草甸植物总生物量无显著影响, 而磷添加后植物总生物量显著增加。研究表明, 氮、磷添加可缓解青藏高原高寒草甸植物生长的营养限制, 促进植物地上部分的生长, 然而高寒草甸植物的生长极有可能更受土壤中可利用磷含量的限制。  相似文献   

11.
割草频率对土壤微生物数量和植物地下生物量的影响   总被引:1,自引:0,他引:1  
以内蒙古锡林郭勒羊草(Leymuschinensis)草原为对象,研究了割草频率对土壤微生物数量和植物地下生物量的影响。结果表明,经过17年的割草,土壤微生物的数量和植物地下生物量均随割草频率的增加而降低。根据割草频率的土壤微生物数量和植物地下生物量的变化,提出较为合理的割草频率是割1年休1年,其次是割2年休1年。但是,多年围封不割草,不仅造成大量牧草资源的浪费,也削弱了微生物在土壤养分转化过程中的作用。  相似文献   

12.
任强  艾鷖  胡健  田黎明  陈仕勇  泽让东科 《生态学报》2021,41(17):6862-6870
放牧作为家畜饲养方式之一,是草地最简单、有效的利用方式,放牧中的家畜对草地生态系统的影响是全球畜牧生态学研究的焦点。过度放牧导致草地退化严重,虽然在青藏高原地区已有较多放牧对草地影响的研究,但探究连续4年放牧对高寒草地生态系统影响的定位实验却鲜见报道。本研究在青藏高原东缘选取典型高寒草地,使用高原特有且分布最广的牦牛作为大型草食放牧家畜,设置了4个牦牛放牧强度(禁牧:无放牧、轻牧:1头/hm2、中牧:2头/hm2和重牧:3头/hm2)以研究其对高寒草地土壤和植物功能的影响。开展4年试验后的结果表明:放牧条件下土壤含水率显著增加;而土壤容重、全磷和有机质含量对放牧强度均无显著性响应;土壤全氮和pH的响应主要在表层0-20 cm,其中全氮为轻牧和重牧处理分别显著高于中牧,中牧处理下的土壤pH为显著高于轻牧;土壤全钾含量在禁牧处理中显著高于放牧处理;而土壤有效氮和速效钾均为中牧处理显著高于禁牧;放牧可以显著降低植物地上生物量。牦牛放牧强度显著影响土壤含水率、有效养分和植物地上生物量,而对其它土壤理化性质影响较弱。本研究结果揭示放牧对高寒草地土壤理化性质和植物地上生物量的影响,为青藏高原高寒草甸生态系统保护、可持续管理和合理放牧率提供理论依据。  相似文献   

13.
We examined the long-term dynamics of plant biomass of Filifolium sibiricum steppe, Stipa baicalensis steppe and Leymus chinense (syn. Aneurolepidium chinense) steppe relative to interannual variation of precipitation and temperature during 1981–1990 in the Tumugi, Xingan League, eastern Inner Mongolia of China. On the average, annual precipitation was 41.1 cm. Peak live aboveground biomass (PLAB) was 152 g m-2 for F. sibiricum steppe and S. baicalensis steppe and 162 g m-2 for L. chinense steppe. Peak live belowground biomass (PLBB) varied between 968 g m-2 for F. sibiricum steppe and 1022 g m-2 for L. chinense steppe. The coefficient of variation (CV) in annual precipitation (25%) was lower than the CV in PLAB (35% to 37%) but larger than the CV in PLBB (10%) of the three meadow steppe sites. Rain use efficiency was 3.6 gDM m-2 cm-1 yr-1 for F. sibiricum steppe and S. baicalensis steppe, and 3.9 gDM m-2 cm-1 yr-1 for L. chinense steppe, respectively.Using the CENTURY ecosystem model, simulation results agreed reasonably well with the observed soil organic matter, seasonal dynamics and interannual variation of plant biomass of these three steppe sites during 1981–1990. The CENTURY model is slightly more successful than the empirical regression models that use annual precipitation to estimate PLAB of these meadow steppe over time. Both seasonal distribution and interannal variation in precipitation and temperature are the important controls of temporal dynamics of plant biomass, rain use efficiency, carbon flux and storage of these meadow steppe ecosystems over time.  相似文献   

14.
采用样带与样地结合的方法在三江源自然保护区的核心区沿海拔梯度在阴坡、阳坡分别进行草本植被调查,通过因子分析和偏相关分析研究丰富度指数、多样性指数与环境梯度(包括海拔梯度、裸斑面积、坡度、土壤总碳、总氮含量、土壤pH值、土壤总可溶性盐含量)和干扰强度(鼠类干扰强度、放牧强度)之间的关系。研究结果表明:杂类草丰富度指数(DMa杂)与总物种丰富度指数(DMa总)极显著相关(P<0.01);阳坡DMa杂和DMa总均呈现“中海拔膨胀”现象,阴坡DMa杂和DMa总与海拔梯度呈正相关,莎草科和禾本科的丰富度指数(DMa莎和DMa禾)随海拔升高并无明显规律;通过主成分分析,及偏相关分析,第一主成分(裸斑面积、鼠类干扰和放牧强度)与除莎草科Margalef丰富度指数、禾本科Simpson指数和禾本科Pielou均匀度指数外的其他草地多样性指数均显著相关,是影响阳坡草地植物多样性的主要因子,土壤总碳、总氮含量对阳坡禾本科类群的多样性指数和均匀度指数有极显著影响,土壤pH值、TDS含量和坡度对阳坡莎草科类群的丰富度有显著影响;海拔梯度、土壤总碳、总氮以及pH值对阴坡草本植物群落的多样性影响较大。研究结论认为,植物群落生物多样性的空间分异特征是地理环境、土壤环境以及干扰强度等因素综合作用的结果。无干扰或干扰较弱时,物种多样性主要受土壤环境状况所影响;而在强干扰存在条件下,干扰强度对物种丰富度和多样性的影响比环境因子更显著;遏制高寒草甸植物多样性降低应首先控制放牧及鼠类等强干扰活动。  相似文献   

15.
Disappearance of dead plant material in a mixed grass prairie   总被引:1,自引:0,他引:1  
Summary Disappearance of dead plant material was studied in ungrazed mixed grass prairie in Western North Dakota. Disappearance rates varied both within and between years as well as with method used. The highest rates (2.07 to 3.15 g/m2/day) were recorded early in the season and disappearance continued during the winter but at a slower rate (0.99 g/m2/day). Some differences were found in rates of disappearance of dead material of different species during the first two months. Annual decomposition rates ranged from 400 g/m2 to 526 g/m2. The ash content of dead material showed generally increasing values with advancing decomposition. The turnover time of above-ground biomass appeared to be approximately three years.Financial support was provided by the North Dakota Agriculture Exp. StationThis research work is part of a thesis submitted by the senior author for the degree of M. Sc.  相似文献   

16.
植物地下生物量研究进展   总被引:4,自引:0,他引:4  
在生物量的研究过程中,地下部分生物量十分重要却又多被忽视本文首先比较了当前地下生物量研究中较为常用的4种研究方法:挖土块法、钻土芯法、内生长土芯法和微根区管法.然后总结了地下生物量在空间和时间上变化规律的研究成果.最后又讨论了环境因素诸如水分、温度和开垦、放牧对地下生物量的影响以及地下生物量的周转.  相似文献   

17.
Angst  Šárka  Cajthaml  Tomáš  Angst  Gerrit  Šimáčková  Hana  Brus  Jiří  Frouz  Jan 《Plant and Soil》2017,418(1-2):571-579
Plant and Soil - We evaluated the impact of retaining dead standing biomass (marcescence) on subsequent litter decomposition in the soil organic layer. Litter of plants that naturally keep dead...  相似文献   

18.
The mass ratio of live to dead roots (L/D root ratio) in grassland stands treated with cutting, mineral fertilization and recultivation varied between 0.48 and 4.19. The highest values of this ratio, i.e., a substantially higher amount of live roots, were found in unfertilized experimental stands. The application of mineral fertilizers resulted in a decrease in the L/D ratio, above all in recultivated stands. The differences in the biomass of live roots between natural and recultivated stands, both fertilized with 100kg. ha?1 of nitrogen, reached up to 1kg. m?2 of dry mass.  相似文献   

19.
Caenorhabditis elegans has been used for studying host-pathogen interactions since long, and many virulence genes of pathogens have been successfully identified. In several studies, fluorescent pathogens were fed to C. elegans and fluorescence observed in the gut was considered an indicator for bacterial colonization. However, the grinder in the pharynx of these nematodes supposedly crushes the bacterial cells, and the ground material is delivered to the intestine for nutrient absorption. Therefore, it remains unclear whether intact bacteria pass through the grinder and colonize in the intestine. Here we investigated whether the appearance of fluorescence is indicative of intact bacteria in the gut using both fluorescence microscopy and transmission electron microscopy. In wild-type N2 C. elegans, Escherichia coli DH5α, and Vibrio vulnificus 93U204, both of which express the green fluorescence protein, were found intact only proximal to the grinder, while crushed bacterial debris was found in the post-pharyngeal lumen. Nevertheless, the fluorescence was evident throughout the lumen of worm intestines irrespective of whether the bacteria were intact or not. We further investigated the interaction of the bacteria with C. elegans phm-2 mutant, which has a dysfunctional grinder. Both strains of bacteria were found to be intact and accumulated in the pharynx and intestine owing to the defective grinder. The fluorescence intensity of intact bacteria in phm-2 worms was indistinguishable from that of crushed bacterial debris in N2 worms. Therefore, appearance of fluorescence in the C. elegans intestine should not be directly interpreted as successful bacterial colonization in the intestine.  相似文献   

20.
Question: Landscape models of fire occurrence in ecosystems assume that the time since the last fire determines vegetation flammability by enabling the accumulation of dead biomass. In this study we ask if Mediterranean basin shrublands respond to these models or, on the contrary, if initial successional stages in these ecosystems could be more flammable than later stages. Location: Mediterranean shrubland in the Valencia region, eastern Spain. Methods: Using different stages of vegetation development (5, 9, 14 and 26 years since the last fire), we first study the structural comiosition of the above‐ground biomass in 375 individuals of nine woody species. Then, we measure how the standing dead biomass varies during succession, taking into account the surface cover of each species and the quantity of total dead biomass accumulated in different successional stages (3, 9, 14 and 26 years since the last fire). Results: The largest amount of standing dead biomass at the plant community level is observed in the middle stages of the succession. Early successional species, such as Cistus spp., Ulex parviflorus and Pinus halepensis, have a higher percentage of standing dead biomass at earlier stages in the succession than species typical of later successional stages, e.g. Juniperus oxycedrus, Quercus coccifera and Quercus ilex. Conclusions: The results suggest that monotonic increase in fire hazard with increasing stand age is not necessarily the rule in Mediterranean basin shrublands, since early successional species may accumulate large amounts of standing dead biomass and thus promote fire at early successional stages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号