首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
Hugh R. Brodie 《CMAJ》1963,89(11):533
One hundred and fifty children who had no measurable serum measles antibody were vaccinated with live measles virus. All showed post-vaccinal serum antibody levels generally considered sufficient to prevent measles.One hundred and thirty-nine (93%) of the infants and children demonstrated one or more symptoms following vaccination. In view of their generally mild and limited nature, and of the protection subsequently afforded, this procedure would seem to be a real advance in preventive medicine.  相似文献   

7.
8.
Electron Microscopy of Measles Virus Replication   总被引:15,自引:5,他引:10       下载免费PDF全文
Replication of measles virus in HeLa cells was examined by electron microscopy with ultrathin sectioning and phosphotungstic acid negative staining methods. The cytoplasmic inclusion bodies consisted of masses of helical nucleocapsid which was similar in structure to the nucleocapsid found in measles virions. The cytoplasmic helical nucleocapsid appeared to align near the HeLa cell membrane, and the membrane differentiated into the internal membrane of the viral envelope and the outer layer of the short projections. The viral particles were released by a budding process involving incorporation into the viral envelope of membrane which was contiguous to but morphologically altered from the membrane of the HeLa cells. The intranuclear inclusion bodies were composed of tubular structures similar to those found in the cytoplasmic inclusion bodies. These structures aggregated to crystalline arrangement. The relationship between nuclear inclusion body and replication of measles virus was not clear.  相似文献   

9.
10.
The interplay between autophagy and intracellular pathogens is intricate as autophagy is an essential cellular response to fight against infections, whereas numerous microbes have developed strategies to escape this process or even exploit it to their own benefit. The fine tuned timing and/or selective molecular pathways involved in the induction of autophagy upon infections could be the cornerstone allowing cells to either control intracellular pathogens, or be invaded by them. We report here that measles virus infection induces successive autophagy signallings in permissive cells, via distinct and uncoupled molecular pathways. Immediately upon infection, attenuated measles virus induces a first transient wave of autophagy, via a pathway involving its cellular receptor CD46 and the scaffold protein GOPC. Soon after infection, a new autophagy signalling is initiated which requires viral replication and the expression of the non-structural measles virus protein C. Strikingly, this second autophagy signalling can be sustained overtime within infected cells, independently of the expression of C, but via a third autophagy input resulting from cell-cell fusion and the formation of syncytia. Whereas this sustained autophagy signalling leads to the autophagy degradation of cellular contents, viral proteins escape from degradation. Furthermore, this autophagy flux is ultimately exploited by measles virus to limit the death of infected cells and to improve viral particle formation. Whereas CD150 dependent virulent strains of measles virus are unable to induce the early CD46/GOPC dependent autophagy wave, they induce and exploit the late and sustained autophagy. Overall, our work describes distinct molecular pathways for an induction of self-beneficial sustained autophagy by measles virus.  相似文献   

11.
Latency of Human Measles Virus in Hamster Cells   总被引:14,自引:9,他引:5       下载免费PDF全文
A latent system employing measles virus (Schwarz strain) was developed in hamster embryo fibroblasts (HEF). Measles virus-specific antigen was detected by immunofluorescence in 30 to 50% of HEF cells, and these cells released infectious virus when co-cultivated with a susceptible monkey cell line, BSC-1 cells. No infectious virus could be detected in the cells when measures were taken to exclude passage of viable latent cells onto the indicator BSC-1 cells. Infectious center assays demonstrated that about 1 in 10 of the latently infected cells in the population could release infectious virus. Infectious virus appeared within 6 hr after co-cultivation of the HEF cells with BSC-1 cells, as compared to 24 hr required for normal replication of measles virus in the BSC-1 cells. Furthermore, labeling of progeny virus ribonucleic acid (RNA) by using tritiated uridine, and inhibition of RNA or protein synthesis by 5-azacytidine or cycloheximide suggested that neither additional RNA nor protein synthesis is required after co-cultivation of the cells to effect early virus release. It can therefore be postulated that there is a block at a late step in virus replication in the latently infected hamster cells. The most obvious site would concern maturation of infectious virions at the cell membrane.  相似文献   

12.
Measles has a host range restricted to humans and monkeys in captivity. Fresh measles virus (MV) isolates replicate readily in several human and simian B-cell lines but need a period of adaptation to other types of cells. The identification of CD46 and CD150 (SLAM) as cellular receptors for MV has helped to clarify certain aspects of the immunobiology of MV infections. We have examined the properties of an MV wild-type strain grown in the epithelial cell line Vero. After adaptation, this virus expressed high levels of both the viral glycoproteins (hemagglutinin and fusion protein) but did not induce fusion (syncytia). No changes in the amino acid sequence were found in either of the viral glycoproteins. Using several approaches, the Vero-adapted virus could not be shown to interact with CD46 either in the initiation or during the course of infection. The presence of human SLAM expressed in the Vero cells rapidly gave rise to fusion and lower yields of infectious virus.  相似文献   

13.
14.
Nipah virus (NiV) is a member of the genus Henipavirus, which emerged in Malaysia in 1998. In pigs, infection resulted in a predominantly non-lethal respiratory disease; however, infection in humans resulted in over 100 deaths. Nipah virus has continued to re-emerge in Bangladesh and India, and person-to-person transmission appeared in the outbreak. Although a number of NiV vaccine studies have been reported, there are currently no vaccines or treatments licensed for human use. In this study, we have developed a recombinant measles virus (rMV) vaccine expressing NiV envelope glycoproteins (rMV-HL-G and rMV-Ed-G). Vaccinated hamsters were completely protected against NiV challenge, while the mortality of unvaccinated control hamsters was 90%. We trialed our vaccine in a non-human primate model, African green monkeys. Upon intraperitoneal infection with NiV, monkeys showed several clinical signs of disease including severe depression, reduced ability to move and decreased food ingestion and died at 7 days post infection (dpi). Intranasal and oral inoculation induced similar clinical illness in monkeys, evident around 9 dpi, and resulted in a moribund stage around 14 dpi. Two monkeys immunized subcutaneously with rMV-Ed-G showed no clinical illness prior to euthanasia after challenge with NiV. Viral RNA was not detected in any organ samples collected from vaccinated monkeys, and no pathological changes were found upon histopathological examination. From our findings, we propose that rMV-NiV-G is an appropriate NiV vaccine candidate for use in humans.  相似文献   

15.
J. Guy Gokiert  W. E. Beamish 《CMAJ》1970,103(7):724-727
In children vaccinated with killed measles vaccine, exposure to natural rubeola within two to four years can result in a clinical syndrome of altered measles reactivity.During a small epidemic of measles in Edmonton, Alberta, 51 children who had received their last killed measles vaccination 27 to 45 months before, were admitted to hospital with this syndrome.The syndrome consists of a prodromal cough and high fever followed by a maculopapular rash appearing on the extremities and progressing centrally. Pulmonary consolidations with or without pleural effusions were evident, but these cleared rapidly in four or five days. Initial WBC and ESR values suggested a bacterial etiology, but no pathogens could be isolated.Complement fixation titres for rubeola are present in acute and convalescent sera and indicate a definite measles infection.Previous killed measles vaccination excites a delayed hypersensitivity which is activated by the natural measles infection to account for this syndrome.It is recommended that killed measles vaccine be no longer used in routine vaccinations.  相似文献   

16.
Measles Virus Spread and Pathogenesis in Genetically Modified Mice   总被引:21,自引:9,他引:12       下载免费PDF全文
Attenuated Edmonston measles virus (MV-Edm) is not pathogenic in standard mice. We show here that MV-Edm inoculated via the natural respiratory route has a limited propagation in the lungs of mice with a targeted mutation inactivating the alpha/beta interferon receptor. A high dose of MV-Edm administered intracerebrally is lethal for about half of these mice. To study the consequences of the availability of a high-affinity receptor for MV propagation, we generated alpha/beta interferon-defective mice expressing human CD46 with human-like tissue specificity. Intranasal infection of these mice with MV-Edm resulted in enhanced spread to the lungs and more prominent inflammatory response. Virus replication was also detected in peripheral blood mononuclear cells, the spleen, and the liver. Moreover, intracerebral inoculation of adult animals with low MV-Edm doses caused encephalitis with almost inevitably lethal outcome. We conclude that in mice alpha/beta interferon controls MV infection and that a high-affinity receptor facilitates, but is not strictly required for, MV spread and pathogenesis.  相似文献   

17.
Ultrastructure of Measles Virus in Cultures of Hamster Cerebellum   总被引:15,自引:6,他引:9       下载免费PDF全文
Replication of Edmonston strain of measles virus in cultures of hamster central nervous system tissue was studied by electron microscopy of ultrathin sections. Infected cultures were fixed from 3 hr to 39 days postinoculation (PI). Measles nucleocapsid was first seen within the cytoplasm of giant cells, the latter appearing 5 to 6 days PI. Measles virus particles were most abundant at 10 days PI and appeared to bud off from areas of the cell membrane along which nucleocapsid was aligned. Intranuclear nucleocapsid was more abundant at later stages, and by 39 days PI entire nuclei were seen to be occupied. By this time, the cytoplasmic formations, which had been sequestered by membranes, appeared to lose their regular structure. Budding viral particles at 39 days PI were of a much simplified structure and did not involve the alignment of nucleocapsid about their periphery.  相似文献   

18.
19.
The atomic structure of the stable tetramerization domain of the measles virus phosphoprotein shows a tight four-stranded coiled coil. Although at first sight similar to the tetramerization domain of the Sendai virus phosphoprotein, which has a hydrophilic interface, the measles virus domain has kinked helices that have a strongly hydrophobic interface and it lacks the additional N-terminal three helical bundles linking the long helices.  相似文献   

20.
Cells which are infected with measles virus have been known for some time to contain inclusion material that is distinguishable from normal cellular components by application of traditional staining methods and observation in the light microscope. The fine structure of the inclusion material contained in HeLa cells infected with Edmonston strain of measles virus has been examined in the electron microscope. Two steps have been found necessary in this study: (1) the recognition by phase-contrast microscopy of the living cell of bodies that are defined as inclusion material when the cells are classically stained; and (2) the recognition in the electron microscope of inclusion-body material that had previously been identified in the living cell. The fine structure of the nuclear and cytoplasmic inclusion material in osmium-treated cells was found to consist mainly of randomly arrayed filaments of low electron density. Dense, highly ordered arrays of filaments were found near the center of the nuclear inclusions, sometimes as a two-dimensional, nearly orthogonal arrangement. If the size of the measles virus is taken to be around 100 mµ in diameter, the strands seen in the inclusions cannot be fully formed virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号