首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
The chemotactic peptide formyl-methionyl-leucyl-phenilalanine (fMLP) triggers intracellular protein tyrosine phosphorylation leading to neutrophil activation. Deficiency of the Src family kinases Hck and Fgr have previously been found to regulate fMLP-induced degranulation. In this study, we further investigate fMLP signaling in hck-/-fgr-/- neutrophils and find that they fail to activate a respiratory burst and display reduced F-actin polymerization in response to fMLP. Additionally, albeit migration of both hck-/-fgr-/-mouse neutrophils and human neutrophils incubated with the Src family kinase inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2) through 3-microm pore size Transwells was normal, deficiency, or inhibition, of Src kinases resulted in a failure of neutrophils to migrate through 1-microm pore size Transwells. Among MAPKs, phosphorylation of ERK1/2 was not different, phosphorylation of p38 was only partially affected, and phosphorylation of JNK was markedly decreased in fMLP-stimulated hck-/-fgr-/- neutrophils and in human neutrophils incubated with PP2. An increase in intracellular Ca(2+) concentration and phosphorylation of Akt/PKB occurred normally in fMLP-stimulated hck-/-fgr-/- neutrophils, indicating that activation of both phosphoinositide-specific phospholipase C and PI3K is independent of Hck and Fgr. In contrast, phosphorylation of the Rho/Rac guanine nucleotide exchange factor Vav1 and the Rac target p21-activated kinases were markedly reduced in both hck-/-fgr-/- neutrophils and human neutrophils incubated with a PP2. Consistent with these findings, PP2 inhibited Rac2 activation in human neutrophils. We suggest that Hck and Fgr act within a signaling pathway triggered by fMLP receptors that involves Vav1 and p21-activated kinases, leading to respiratory burst and F-actin polymerization.  相似文献   

2.
To determine the role of protein tyrosine phosphorylation in the activation of phospholipase D (PLD), electropermeabilized HL-60 cells labeled in [3H]alkyl-phosphatidylcholine were treated with vanadate derivatives. Micromolar concentrations of vanadyl hydroperoxide (V(4+)-OOH) induced accumulation of tyrosine-phosphorylated proteins. Concomitantly, V(4+)-OOH or a combination of vanadate and NADPH elicited a concentration- and time-dependent accumulation of phosphatidic acid (PtdOH). In the presence of ethanol a sustained formation of phosphatidylethanol was observed, indicating that a type D phospholipase was activated. A good correlation was found to exist between the accumulation of tyrosine-phosphorylated proteins and activation of PLD. The V(4+)-OOH concentration dependence of the two responses was nearly identical, and the time course of activation was similar, with tyrosine phosphorylation preceding PLD activation by approximately 1 min. The ability of V(4+)-OOH to induce both responses was found to be strictly dependent on the presence of ATP and/or Mg2+, suggesting that PLD activation involves phosphotransferase reactions. Accordingly, ST638, a tyrosine kinase inhibitor, reduced concomitantly tyrosine phosphorylation and PLD activation elicited by V(4+)-OOH. The mechanism of action of V(4+)-OOH was investigated. The diacylglycerol kinase inhibitors, dioctanoylethylene glycol and R59022 potentiated PLD stimulation by exogenous diacylglycerol but not by V(4+)-OOH. Moreover, stimulation by V(4+)-OOH and by phorbol esters was synergystic. Therefore, diacylglycerol-induced activation of protein kinase C is unlikely to mediate the effects of V(4+)-OOH. The response of PLD to V(4+)-OOH was larger than that to guanosine 5'-(gamma-thio)triphosphate. Moreover, the effects of GTP gamma S and V(4+)-OOH were additive. Hence, activation of G proteins cannot account for the stimulation of PLD by V(4+)-OOH. V(4+)-OOH also triggers a burst of O2 consumption by the NADPH oxidase. Inhibition of PtdOH accumulation by addition of ethanol or by ST638 abolished this respiratory burst. Together, the results establish a strong correlation between tyrosine phosphorylation, PLD activation, and stimulation of the NADPH oxidase in HL-60 cells, suggesting a causal relationship.  相似文献   

3.
A method of membrane permeabilization of T lymphocytes with the bacterial cytotoxin streptolysin O has allowed the effect of guanine nucleotide analogues on phosphatidylinositol metabolism and protein kinase C (PKC) activation to be investigated. The data demonstrate that, in permeabilized cells, phosphorylation of the gamma subunit of the CD3 antigen can be induced in response to the PKC activator phorbol 12,13-dibutyrate, the polyclonal mitogen phytohaemagglutinin (PHA) and the stimulatory guanine nucleotide analogue guanosine 5'-[gamma-thio]triphosphate (GTP[S]). Application of a pseudo-substrate inhibitor of PKC indicated that CD3gamma-chain phosphorylation induced in response to all three agonists was mediated by PKC. PHA and GTP[S] also stimulated inositol phospholipid turnover and inositol phosphate accumulation. The kinetics and concentration-dependence of PHA-induced inositol phospholipid hydrolysis correlated with PHA-induced CD3gamma phosphorylation, suggesting that PHA may regulate CD3gamma phosphorylation via diacylglycerol produced as a consequence of inositol phospholipid hydrolysis. However, there was an inconsistency in that PHA induced greater (greater than 200%) levels of inositol phospholipid turnover than did GTP[S], but much weaker (less than 50%) levels of CD3-antigen phosphorylation. There was also a discrepancy between GTP[S] effects on phosphatidylinositol turnover and PKC activation, in that the half-maximal GTP[S] concentration for inositol phosphate production and CD3gamma-chain phosphorylation was 0.75 microM and 75 microM respectively. Moreover, 10 microM-GTP[S] induced maximal inositol phosphate production, but only 10% of maximal CD3gamma-chain phosphorylation. The data are consistent with the idea that other signal-transduction pathways, in addition to those involving inositol phosphate production, exist for the regulation of PKC in T lymphocytes.  相似文献   

4.
Addition of a guanine nucleotide analog, guanosine 5'-O-(thiotriphosphate) (GTP gamma S)(1-100 microM) induced release of [3H]arachidonic acid from [3H]arachidonate-prelabeled rabbit neutrophils permeabilized with saponin. The chemotactic peptide N-formyl-methionyl-leucyl-phenylalanine (fMLP)-induced arachidonate release was enhanced by GTP gamma S, Ca2+, or their combination. Ca2+ alone (up to 100 microM) did not effectively stimulate lipid turnover. However, the combination of fMLP plus GTP gamma S elicited greater than additional effects in the presence of resting level of free Ca2+. The addition of 100 microM of GTP gamma S reduced the Ca2+ requirement for arachidonic acid liberation induced by fMLP. Pretreatment of neutrophils with pertussis toxin resulted in the abolition of arachidonate release and diacylglycerol formation. Neomycin (1 mM) caused no significant reduction of arachidonate release. In contrast, about 40% of GTP gamma S-induced arachidonate release was inhibited by a diacylglycerol lipase inhibitor, RHC 80267 (30 microM). These observations indicate that liberation of arachidonic acid is mediated by phospholipase A2 and also by phospholipase C/diacylglycerol lipase pathways. Fluoride, which bypasses the receptor and directly activates G proteins, induced arachidonic acid release and diacylglycerol formation. The fluoride-induced arachidonate release also appeared to be mediated by these two pathways. The loss of [3H]arachidonate was seen in phosphatidylinositol, phosphatidylcholine, and phosphatidylethanolamine. These data indicate that a G protein is involved between the binding of fMLP to its receptor and activation of phospholipase A2, and also that the arachidonic acid release is mediated by both phospholipase A2 and phospholipase C/diacylglycerol lipase.  相似文献   

5.
The guanine nucleotide binding properties of rap1 protein purified from human neutrophils were examined using both the protein kinase A-phosphorylated and the non-phosphorylated forms of the protein. Binding of GTP[S] (guanosine 5'-[gamma-thio]triphosphate) or GDP was found to be slow in the presence of free Mg2+, but very rapid in the absence of Mg2+. The binding of guanine nucleotides was found to correlate with the loss of endogenous nucleotide from the rap1 protein, which was rapid in the absence of Mg2+. The relative affinities of GTP and GDP for the binding site on rap1 were modulated by the presence of Mg2+, with a preferential affinity (approx. 15-fold) for GTP observed only in the absence of this bivalent cation. The dissociation of GDP from rap1 was not affected by the G-protein beta/gamma-subunit complex. Phosphorylation of rap1 in vitro by protein kinase A did not modify any of the observed nucleotide-binding parameters. Furthermore, the ability of a cytosolic rap1 GTPase-activating protein to stimulate neutrophil rap1 GTP hydrolysis was not modified by phosphorylation. These data suggest that the activation of rap in vivo may be regulated by the release of endogenous GDP, but that phosphorylation by protein kinase A does not affect guanine nucleotide binding or hydrolysis.  相似文献   

6.
In phagocytes, activation of the respiratory burst by chemoattractants requires ATP and involves a pertussis toxin-sensitive G protein. ATP is also required for the response elicited in permeabilized neutrophils by nonhydrolyzable GTP analogs, indicating that at least one of the ATP-dependent steps lies downstream of the receptor-coupled G protein(s). A respiratory burst can also be produced in a reconstituted cell-free system by addition of arachidonic acid. Most investigators find this response to be independent of ATP, yet stimulated by GTP analogs, implying that the ATP-dependent steps observed in the unbroken cells must precede the guanine nucleotide-requiring event. To resolve this apparent discrepancy, we studied the ATP and guanine nucleotide dependence of the oxidative response elicited by arachidonic acid in electrically permeabilized human neutrophils. Two components of the response were apparent: one was ATP-dependent, the other ATP-independent. The ATP-dependent component was partially inhibited by staurosporine, suggesting involvement of protein kinase C. This kinase signals activation of the NADPH oxidase without intervening G proteins, since stimulation by phorbol ester was unaffected by guanosine 5'-(beta-thio)diphosphate (GDP beta S). Although nonhydrolyzable GTP analogs failed to stimulate the oxidase in the absence of ATP, the ATP-independent response stimulated by arachidonic acid was found to require GTP or one of its analogs and to be inhibited by GDP beta S. The relative potency of the guanine nucleotides to support the arachidonic acid response in the absence of ATP (5'-guanylyl imidodiphosphate (GMP-PNP) greater than or equal to guanosine 5'-(gamma-thio)triphosphate GTP gamma S) greater than or equal to (GTP) differed from their efficacy to stimulate the burst in the presence of ATP (GTP gamma S greater than GMP-PNP much greater than GTP). These observations suggest the involvement of two distinct GTP-binding proteins in oxidase activation: a receptor-coupled, heterotrimeric, pertussis toxin-sensitive G protein, and a second GTP-binding protein(s) located downstream of the ATP-requiring steps, which may lie in close proximity to the NADPH oxidase. This secondary GTP-binding protein could be part of the pathway activated by chemoattractants, but does not mediate stimulation via protein kinase C. Therefore multiple parallel routes may exist for activation of the NADPH oxidase.  相似文献   

7.
Addition of the guanine nucleotide analogue guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) to [3H]inositol-labeled NRK cell homogenates resulted in rapid breakdown of cellular polyphosphoinositides. GTP gamma S stimulated phospholipase C, resulting in a more than 4-fold increase in the hydrolysis rates of phosphatidylinositol 4-phosphate (PIP) and phosphatidylinositol 4,5-bis(phosphate) (PIP2). No significant effect of GTP gamma S on direct phosphatidylinositol (PI) hydrolysis was detected. There was an increase in water-soluble inositols, with inositol tris(phosphate) (IP3) levels increasing at least 10 times over the decrease seen in PIP2, indicating that PIP kinase activity was also accelerated following GTP gamma S addition. Inositol 1,4,5-tris(phosphate) peaked rapidly after GTP gamma S addition (less than 2 min) while inositol 1,3,4-tris-(phosphate) was produced more slowly and leveled off after approximately 10 min. The differential equations describing conversion between intermediates in the PI turnover pathway were solved and fitted to data obtained from both [3H]inositol and [32P]phosphate fluxes by nonlinear least-squares analysis. GTP gamma S effects on the pseudo-first-order rate constants for the lipase, kinase, and phosphatase steps were determined from the analysis. From these measurements it can be estimated that, in the presence of GTP gamma S and calcium buffered to 130 nM, hydrolysis of PIP2 accounts for at least 10 times as much diacylglycerol as direct PI breakdown despite the 100-fold excess of PI over PIP2. From the kinetic model it is predicted that small changes in the activities of PI and PIP kinases can have large but different effects on the level of IP3 and diacylglycerol following GTP gamma S addition. These results argue that regulation of PI and PIP kinases may be important for determining both cellular IP3 and diacylglycerol levels.  相似文献   

8.
The zeta subunit of the T cell receptor (TCR) is a prominent substrate for a TCR-activated tyrosine kinase. Tyrosine phosphorylation of the zeta subunit in response to antibody-mediated receptor cross-linking was synergized in permeabilized T cells by either of two non-hydrolyzable GTP analogues, guanosine 5'-[gamma-thio]triphosphate (GTP gamma S) or guanosine 5'-[beta, gamma-imido]triphosphate Gpp(NH)p. ATP analogues did not significantly affect antibody-induced tyrosine phosphorylation. Unlike the GTP analogues, the GDP analogue guanosine 5'-[beta-thio]diphosphate (GDP beta S) did not enhance phosphorylation of zeta. The effect induced by the GTP analogues required TCR occupancy and was independent of protein kinase C. Taken together these observations implicate a GTP-binding protein in the modulation of TCR-induced tyrosine phosphorylation.  相似文献   

9.
Leucine rich repeat kinase 2 (LRRK2) is a Parkinson's disease (PD) gene that encodes a large multidomain protein including both a GTPase and a kinase domain. GTPases often regulate kinases within signal transduction cascades, where GTPases act as molecular switches cycling between a GTP bound "on" state and a GDP bound "off" state. It has been proposed that LRRK2 kinase activity may be increased upon GTP binding at the LRRK2 Ras of complex proteins (ROC) GTPase domain. Here we extensively test this hypothesis by measuring LRRK2 phosphorylation activity under influence of GDP, GTP or non-hydrolyzable GTP analogues GTPγS or GMPPCP. We show that autophosphorylation and lrrktide phosphorylation activity of recombinant LRRK2 protein is unaltered by guanine nucleotides, when co-incubated with LRRK2 during phosphorylation reactions. Also phosphorylation activity of LRRK2 is unchanged when the LRRK2 guanine nucleotide binding pocket is previously saturated with various nucleotides, in contrast to the greatly reduced activity measured for the guanine nucleotide binding site mutant T1348N. Interestingly, when nucleotides were incubated with cell lysates prior to purification of LRRK2, kinase activity was slightly enhanced by GTPγS or GMPPCP compared to GDP, pointing to an upstream guanine nucleotide binding protein that may activate LRRK2 in a GTP-dependent manner. Using metabolic labeling, we also found that cellular phosphorylation of LRRK2 was not significantly modulated by nucleotides, although labeling is significantly reduced by guanine nucleotide binding site mutants. We conclude that while kinase activity of LRRK2 requires an intact ROC-GTPase domain, it is independent of GDP or GTP binding to ROC.  相似文献   

10.
We previously reported that in rat duodenal cells (enterocytes), parathyroid hormone (PTH [1-34]: PTH) stimulates the hydrolysis of polyphosphoinositides by phospholipase C (PLC), generating the second messengers inositol trisphosphate (IP(3)) and diacylglycerol (DAG) and that this mechanism is severely altered in old animals. In the present study, we show that PTH [1-34]-dependent IP(3) release in young rats was blocked to a great extent by an antibody against guanine nucleotide binding protein Galphaq/11, indicating that the hormone activates a beta isoform of PLC coupled to the alpha subunit of Gq/11. In addition, PTH rapidly (within 30 s, with maximal effects at 1 min) stimulated tyrosine phosphorylation of PLCgamma in a dose-dependent fashion (10(-10)-10(-7) M). The hormone response was specific as PTH [7-34] was without effects. The tyrosine kinase inhibitors, genistein (100 microM) and herbimycin (2 microM), suppressed PTH-dependent PLCgamma tyrosine phosphorylation. Stimulation of PLCgamma tyrosine phosphorylation by PTH [1-34] greatly decreased with ageing. PP1 (10 microM), a specific inhibitor of the Src family of tyrosine kinases, completely abolished PLCgamma phosphorylation. The hormone-induced Src tyrosine dephosphorylation, a major mechanism of Src activation, an effect that was blunted in old animals. These results indicate that in rat enterocytes PTH generates IP(3) mainly through G-protein-coupled PLCbeta and stimulates PLCgamma phosphorylation via the nonreceptor tyrosine kinase Src. Impairment of PTH activation of both PLC isoforms upon ageing may result in abnormal hormone regulation of cell Ca(2+) and proliferation in the duodenum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号