首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Changes in Chromatin Structure Associated with Alzheimer's Disease   总被引:6,自引:5,他引:1  
Abstract— The enzyme micrococcal nuclease was used to examine the accessibility of chromatin extracted from brains of 13 patients with senile and presenile dementia of the Alzheimer type. Compared with chromatin extracted from brains of 8 patients without neurological signs or brain pathology and brains of 7 patients with nonAlzheimer dementia, Alzheimer chromatin was less accessible to this enzyme-. Reduced accessibility was reflected by a reduced yield of mononucleosomes in comparison with dinucleosomes and larger oligomers. Both neuronal and glial chromatin were found to be similarly affected. The reduced yield of mononucleosomes from Alzheimer chromatin is not due to their increased breakdown, but is probably related to protein associated with the internucleosomal linker region that retards nuclease action. Dinucleosomes isolated from control and Alzheimer nuclease digests were examined for their protein complement. Three perchloric acid-soluble proteins situated in the histone HI region of sodium dodecyl sulfate (SDS) gels were present in elevated levels in Alzheimer dinucleosomes. These results represent the first example of altered chromosomal proteins associated with a diseased state of the brain.  相似文献   

2.
Mononucleosomes released from Dictyostelium discoideum chromatin by micrococcal nuclease contained two distinctive DNA sizes (166-180 and 146 bp). Two dimensional gel electrophoresis suggested a lysine-rich protein protected the larger mononucleosomes from nuclease digestion. This was confirmed by stripping the protein from chromatin with Dowex resin. Subsequently, only the 146 bp mononucleosome was produced by nuclease digestion. Reconstitution of the stripped chromatin with the purified lysine-rich protein resulted in the reappearance of the larger mononucleosomes. Two-dimensional gel electrophoresis showed the protein was associated with mononucleosomes. Hence, the protein functions as an H1 histone in bringing the two DNA strands together at their exit point from the nucleosome. Trypsin digestion of the lysine-rich protein in nuclei resulted in a limiting peptide of approx. 10 kilodaltons. Trypsin concentrations which degraded the protein to peptides of 12-14 kilodaltons and partially degraded the core histones did not change the DNA digestion patterns obtained with micrococcal nuclease. Thus, the trypsin-resistant domain of the lysine-rich protein is able to maintain chromatosome structure.  相似文献   

3.
4.
The estrogen receptor of MCF-7 cells labeled with high specific activity estradiol was used to mark the chromatin binding sites for this regulatory molecule. Many of these sites are especially sensitive to nuclease, and produce on digestion a series of uniquely sedimenting products. Several of these have been examined in some detail in this paper. These include a form of receptor that sediments in trace digests at 9S but in more extensive digests at 7S, fast mononucleosomes of about 12.5S, and a species at 15S. Two components of digests, fast mononucleosomes and dinucleosomes were isolated and subjected to further digestion. Much of the hormone on these isolated particles was found to be sensitive to additional hydrolysis, although some was nuclease resistant. It appears that a major fraction of the hormone receptor complexes bound to MCF-7 cell chromatin occurs at nucleosome-free regions which can be detected as transient hydrolysis intermediates.  相似文献   

5.
6.
To examine the distribution of 5-methylcytosine in chromatin DNA, DNA of HeLa cells was labeled with [3H-methyl]methionine and [14C] thymidine and analyzed after extensive digestion of the nuclei with micrococcal nuclease. When the chromatin solubilized with the nuclease was fractionated on a sucrose density gradient, DNA in mononucleosomes was considerably depleted in 5-methylcytosine, as compared with polynucleosomes. Electrophoretic separation of DNA from the chromatin also revealed the depletion of 5-methylcytosine in the mononucleosomal size of DNA. This was confirmed by the chromatographic analysis of 5-methyldeoxycytidine after enzymatic digestion of the DNA to nucleosides. Thus the DNA in mononucleosomes solubilized by extensive micrococcal nuclease digestion is depleted in 5-methylcytosine, suggesting that 5-methylcytosine is preferentially missing from the DNA in the nucleosome core particles.  相似文献   

7.
Atlantic salmon was treated with 17-beta-estradiol to induce the process of vitellogenesis in liver. When the isolated liver nuclei were incubated with micrococcal nuclease at increasing enzyme/DNA ratios a 21 KDa protein appeared in the nuclease sensitive chromatin, the S-fraction. After HPLC gel filtration the 21 KDa protein resided with the oligo- and mononucleosomes. The S-fraction contained vitellogenin gene sequences at low nuclease/DNA ratios. The sequences were detectable also in the mononucleosomes derived from the S-fraction. After hormone treatment the vitellogenin gene exposed a higher sensitivity to micrococcal nuclease than the hormone-untreated controls. The results indicate that the 21 KDa protein took part in the hormone-mediated changes in gene expression by modulating the structure of estradiol responsive chromatin domains including the vitellogenin gene.  相似文献   

8.
The susceptibility of the DNA in chromatin to single strand-specific nucleases was examined using nuclease P1, mung bean nuclease, and venom phosphodiesterase. A stage in the reaction exists where the size range of the solubilized products is similar for each of the three nucleases and is nearly independent of incubation time. During this stage, the chromatin fragments sediment in the range of 30 to 100 S and contain duplex DNA ranging from 1 to 10 million daltons. Starting with chromatin depleted of histones H1 and H5 similar fragments are generated. In both cases these nucleoprotein fragments are reduced to nucleosomes and their multimers by micrococcal nuclease. Thus, chromatin contains a limited number of DNA sites which are susceptible to single strand-specific nucleases. These sites occur at intervals of 8 to 80 nucleosomes and are distributed throughout the chromatin. Nucleosome monomers, dimers, or trimers were not observed at any stage of single strand-specific nuclease digestion of nuclei, H1- and H5-depleted chromatin, or micrococcal nuclease-generated oligonucleosomes. Each of the three nucleases converted mononucleosomes (approximately 160 base pairs) to nucleosome cores (approximately 140 base pairs) probably by exonucleolytic action that was facilitated by the prior removal of H1 and H5. The minichromosome of SV40 is highly resistant to digestion by nuclease P1.  相似文献   

9.
10.
Nucleosomes and subnucleosomes: heterogeneity and composition   总被引:1,自引:0,他引:1  
Previous studies (Varshavsky, Bakayev and Georgiev, 1976a) have shown that chromatin subunits (mononucleosomes) and their oligomers in a mild staphylococcal nuclease digest of chromatin display a heterogeneous content of histone H1. We now report that a mild staphylococcal nuclease digest of either chromatin or nuclei from mouse Ehrlich tumor cells contains mononucleosomes of three discrete kinds. The smallest mononucleosome (MN1) contains all histones except H1 and a DNA fragment 140 base pairs (bp) long. The intermediate mononucleosome (MN2) contains all five histones and a DNA fragment 170 bp long. The third mononucleosome (MN3) also contains all five histones, but its DNA fragment is longer and more heterogeneous in size (180–200 bp). Most of the MN3 particles are rapidly converted by nuclease into mononucleosomes MN1 and MN2 There exists, however, a relatively nuclease-resistant subpopulation of the MN3 mononucleosomes. These 200 bp MN1 particles contain not only histones but also nonhistone proteins, and are significantly more resistant to nuclease than the bulk of MN3 particles and the smaller mononucleosomes MN1 and MN2.There are eight major kinds of staphylococcal nuclease-produced soluble subnucleosomes (SN). The SN1 is a set of naked double-stranded DNA fragments ~20 bp long. The SN2 is a complex of a specific basic nonhistone protein (molecular weight ~16,000 daltons) and a DNA fragment ~27 bp long. The SN3 contains histone H4, the above-mentioned specific nonhistone protein and a DNA fragment ~27 bp long. The SN4 contains histones H2a, H2b, H4 and a DNA fragment ~45 bp long. The SN5 contains histones H2a, H2b, H3 and a DNA fragment ~55 bp long. The SN6 is a complex of histone H1 and a DNA fragment ~35 bp long. Subnucleosomes SN7 and SN8 each contain all the histones except H1, and DNA fragments ~100 and ~120 bp long, respectively.Nuclease digestion of isolated mono- or dinucleosomes does not produce some of the subnucleosomes. These and related findings indicate that the cleavage required to generate these subnucleosomes result from some aspect of chromatin structure which is lost upon digestion to mono- and dinucleosomes.  相似文献   

11.
A previous study on the distribution of histone H1 subfractions in chromatin suggested that these proteins differ in the protection they confer to DNA. To elucidate further this suggestion, reconstitution experiments were carried out with purified H1 subfractions (H1-1, H1-2, H1o) and H1-depleted chromatin. We have studied the structural properties of H1o as compared to those of other H1 fractions by electrophoretic analysis of DNA and mononucleosomes obtained after micrococcal nuclease digestion, thermal denaturation, and electron microscopy. The three fractions studied reassociate to H1-depleted chromatin. However, differences in the extent of DNA protection are observed between H1o and the other fractions: H1o induces a more rapid degradation of long oligomers into mononucleosomes; these mononucleosomes bearing H1o only, have a greater electrophoretic mobility; furthermore, thermal denaturation shows that a small fraction of DNA is less efficiently protected by H1o than by the other fractions. Electron microscopy, on the other hand, shows that these differences are not due to areas of chromatin devoid of H1o in the reconstitute and that the reconstituted samples are able, under proper ionic conditions, to refold in a higher-order structure.  相似文献   

12.
We have compared mononucleosomes that were obtained by hydrolysis of chromatin micrococcal nuclease from a number of sources with the length of a nucleosomal repeat 185--245 b. p. long. For hydrolysis of chromatin isolated from nuclei, a series of nucleosomes was formed: MN145 (core particle), MN165, MN175...MN205, MN215, the lengths of their DNAs differing (by approximately 10.n b.p. where n = 1, 2, 3...) by a factor of 10. A feature of hydrolysis of chromatin in nuclei was the appearance of an additional H1-depleted MN155 particle. It is suggested that upon isolation of chromatin from nuclei, its partial decompactization takes place. This decompactization changes the character of nuclease splitting and seems to be connected with rearrangement of histone H1. These observations demonstrate that besides core particles MN145 and chromatosomes MN165, the major particles of digest of nuclei appear to be MN155, and for isolated chromatin--MN175. Unlike this standard picture, mainly MN145, MN155, MN235 and MN245 are formed upon hydrolysis of sea urchin sperm nuclei.  相似文献   

13.
We examined the chromatin organizations of approximately 3 kb of DNA in the 5'-end flanking region of the ovalbumin gene in chicken erythrocyte and oviduct cell nuclei. With specific DNA probes and an indirect end-labeling technique, we analysed the pattern of the DNA fragments obtained after micrococcal nuclease digestion and generated comparative maps of the nuclease cuts. This region of the chicken genome displays a "typical" chromatin arrangement in erythrocyte nuclei, with nucleosomes apparently positioned at random. In contrast, in oviduct nuclei, the same region has an "altered" chromatin structure, and lacks a typical nucleosomal array. The existence of specifically positioned proteins and of alterations in the DNA secondary structure in this region of the oviduct chromatin is suggested by comparison of the nuclease cleavage maps which reveals specific changes: disappearance of nuclease cuts present in "naked" and erythrocyte chromatin DNAs, and appearance of new cuts absent from these DNAs.  相似文献   

14.
Rat liver chromatin was digested by micrococcal nuclease. Chromatin subunits (or mononucleosomes) were isolated by sucrose density gradient and subsequently fractionated by 6% polyacrylamide gel electrophoresis into two major components. One component (MN1) of the mononucleosomes had a higher mobility, contained histones H2A, H2B, H3, H4, and shorter DNA fragments (140 base pairs) while the other (MN2) contained all five histones and longer DNA fragments (180 base pairs). Both submononucleosomes (MN1 and MN2) were found to contain nonhistone chromatin proteins (NHCP). By electrophoresis in 15% sodium dodecyl sulfate-polyacrylamide gel, 9 and 11 major fractions of NHCP were identified in the submononucleosomes MN1 and MN2, respectively. It was also observed that treatment of mononucleosomes with 0.6 M NaCl removes most of these NHCP and histone H1 except for two major NHCP which remain in the core particles.  相似文献   

15.
Atlantic salmon (Salmo salar) were treated with 17- estradiol to induce vitellogenin synthesis in liver. This led to an increase in liver wet weight and total DNA. After incubation with micrococcal nuclease (EC 3.1.31.1) less soluble chromatin was obtained from nuclei of the estradiol treated than the control fish, but active gene regions were solubilized by the nuclease. Thus, in the estradiol treated fish soluble mononucleosomes contained hybridizable vitellogenin gene sequences. As a result of estradiol treatment the content in total liver of putrescine rose 3-fold, that of spermidine 2-fold, while spermine was unchanged. In muscle no significant changes were observed. The regulatory functions of polyamines during gene expression were investigated by binding (14C)spermine to isolated liver nuclei depleted of endogenous polyamines. The number of binding sites was higher in nuclei of estradiol treated than control fish. (14C)spermine associated preferentially with micrococcal nuclease insensitive chromatin. Thus, the high content of putrescine and spermidine in liver supported the view of polyamine accumulation in proliferating tissues. The preferential binding to condensed chromatin indicated a stabilizing effect of polyamines on the organization of inactive chromatin structures.Abbreviations MNase micrococcal nuclease - PMSF phenylmethylsulfonylfluoride  相似文献   

16.
The nucleosomes released by the incubation (autodigestion) of rat-liver nuclei were fractionated by sucrose-density gradient centrifugation, and subjected to nuclease assay with heat-denatured 3H-DNA from Escherichia coli as an exogenous substrate. With increasing incubation time, the nuclease activity was enhanced and localized in the mono/tetra-, hexa/hepta-, and long-chain oligonucleosome fractions. In contrast, independent of the nucleosome size, the activities of 0.35 M NaCl-soluble fractions from them were found to be almost equal in terms of specific activity (dpm/nucleosomal DNA). Such nuclease activity was not detected in the sucrose gradient (top region) lacking nucleosomes and/or chromatin. When the chromatin was dialyzed against a 0.35 M NaCl buffer and then fractionated in a sucrose gradient containing 0.35 M NaCl, most of the nuclease activity was solubilized into the above top region. On gel filtration of the mononucleosome fraction in the 0.35 M NaCl buffer, the nuclease activity was eluted at the position of 36,000 daltons. This nuclease cleaved heat-denatured DNA more rapidly than the native DNA in the presence of Mg2+, and had the ability to make both single-strand nicks and double-strand cuts in pBR322 DNA; in other words, it had an endonucleolytic activity. Moreover, four different classes of mononucleosomes were fractionated by electrophoresis of the nucleosomes released by autodigestion of the nuclei. These mononucleosomes also showed nuclease activity with the heat-denatured DNA. Thus, the present studies suggest that an Mg2+-dependent endonuclease of about 36,000 daltons is associated with the nucleosome particle(s) in rat-liver nuclei.  相似文献   

17.
The chromatin structure of morphologically-similar, but increasingly-malignant erythroleukemia cells was investigated using milk micrococcal nuclease digestion of isolated nuclei. The maximum solubilization of chromatin was unique for each of the three cell types: the least malignant (our Stage II) released 61% of its chromatin DNA, the most malignant (Stage IV), 46%, and the intermediate (Stage III) released 36%. An analysis of the nucleosome oligomers liberated by digestion also demonstrated differences. After 15 minutes of digestion when release was reaching its maximum, a greater proportion of large nucleosomal oligomers (sizes > trinucleosome) was released from Stage II nuclei than from Stage III or IV nuclei. The cell types also differed in the relative amount of H1-depleted mononucleosomes released. Analysis of the size of the double-stranded DNA associated with mononucleosomal particles showed that Stage III mononucleosomes were smaller (148 bp) than Stage IV (167 bp) or Stage II (190 bp). In addition, while the DNA of mononucleosomes depleted in H1 was smaller than that in the H1-containing species, relative size differences among the different cell types were retained. These data suggested that the difference in the mononuocleosome particle size resistant to nuclease digestion was independent of histone H1. Differences in nucleosome repeat length were also noted among the cell types. These studies have demonstrated dramatic differences in chromatin structure associated with malignant potential of an otherwise morphologically identical cell type. These findings may reflect changes in the relative amounts of H2a variants which we have previously described among the different malignant cell types.  相似文献   

18.
The technique of nick translation of nuclei (Levitt, A., Axel, R., and Cedar, H. (1979) Dev. Biol. 69, 496-505) has been used in HeLa cells to label DNase I-sensitive regions. Micrococcal nuclease digestion of the nick translated nuclei was followed by a low ionic strength gel electrophoresis system which separates different types of mononucleosomes. The major label was observed in the vicinity of high mobility group protein containing mononucleosomes. However, further analysis revealed that the particle does not sediment in the position of mononucleosomes on a sucrose gradient. Two alternative explanations are discussed as the possible source of this particle. It is either a high mobility group protein containing nucleosome in some unfolded conformation or the labeled particle originates from discrete DNA fragments, wrapped around some nonhistone proteins, located in a highly DNase I-sensitive region, which is resistant to micrococcal nuclease digestion.  相似文献   

19.
A series of mono- and dinucleosomal DNAs characterized by an about ten-base periodicity in the size were revealed in the micrococcal nuclease digests of Drosophila chromatin which have 180 +/- 5 base pair (bp) nucleosomal repeat. 20, 30, and 40 bp spacers were found to be predominant in chromatin by trimming DNA in dinucleosomes to the core position. Among several identified mononucleosomes (MN), MN170, MN180 and MN190 were isolated from different sources (the figures indicate the DNA length in bp). The presence of the 10, 20, and 30 bp long spacers was shown in these mononucleosomes by crosslinking experiments. The interaction of histone H3 with the spacer in the Drosophila MN180 particle was also shown by the crosslinking /5/. We conclude from these results that the 10 n bp long intercore DNA (n = 2, 3 and 4) is organized by histone H3, in particular, and together with the core DNA forms a continuous superhelix. Taken together, these data suggest that Drosophila chromatin consists of the regularly aligned and tightly packed MN180, as a repeating unit, containing 10 and 20 bp spacers at the ends of 180 bp DNA. Within the asymmetric and randomly oriented in chromatin MN180, the cores occupy two alternative positions spaced by 10 bp.  相似文献   

20.
The organization of oligonucleosomes in yeast   总被引:9,自引:2,他引:7       下载免费PDF全文
We have developed a method of preparing yeast chromatin that facilitates the analysis of nucleoprotein organization. Yeast chromatin, isolated as an insoluble complex, is digested with micrococcal nuclease and fractionated into major insoluble and soluble fractions. No nucleosomal repeat is seen early in digestion for the insoluble fraction. Nucleosomal complexes of the soluble fraction are excised by nuclease in a distinctive non-random pattern; they are markedly depleted in mononucleosomes. When we analyze the soluble material by high resolution native electrophoresis, we find that the nucleoproteins resolve into two bands for each DNA multimer of the nucleosomal repeat. Our results suggest that there are structural similarities between bulk yeast chromatin and chromatin configurations found in transcribing genes of complex eukaryotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号