首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 271 毫秒
1.
Antimycin, 2-nonyl-4-hydroxyquinoline N-oxide and funiculosin induce O.2(-) generation by submitochondrial particles oxidizing succinate, whereas KCN, mucidin, myxothiazol or 2,3-dimercaptopropanol inhibit O.2(-) generation. Thenoyltrifluoroacetone does not induce superoxide production by itself but slightly stimulates the reaction initiated by antimycin. The results indicate that auto-oxidation of unstable ubisemiquinone formed in centre o of the Q-cycle generates most of the O.2(-) radicals in the cytochrome bc1-site of the mitochondrial respiratory chain.  相似文献   

2.
The reaction of hydroxylamine (1-hydroxy-2,2,6,6-tetramethyl-4-oxopiperidine) with O2-. resulting in the stable nitroxyl radical formation recorded by ESR-technique was applied to estimate quantitatively the rate of O2-. superoxide radical generation (VO2.-) by submitochondrial particles (SMP) of liver (of mice and rats). The VO2.- dependence on concentrations of NADH, succinate and protein of SMP was established. The method allows detecting VO2.- greater than 0.05 nmol.min-1.ml-1. It has been shown that in the NADH-dependent site of the chain VO2.- is 3-4 times that in the succinate-dependent site. In the presence of rhotenone and antimycin A VO2.- increases by 30-35%, while cyanide retards VO2.- by about 30%. The data comparison with regard to VO2.- and O2 absorption rate polarographically determined has indicated that about 2% of the absorbed O2 is consumed to form O2-.  相似文献   

3.
The free radical EPR signals of ubisemiquinone in mitochondria and submitochondrial particles (SMP) were investigated. One of the signals observed under the conditions of the respiratory chain highly oxidized and characterized by an unusually short time of the spin-lattice relaxation has previously been termed as SQ-2. The intensity of SQ-2 in SMP strongly depends on pH, the maximal concentration of QH. is reached at about 8.5. The signal is absent in the succinate dehydrogenase-depleted SMP and is highly sensitive to specific inhibitors of succinate: CoQ-oxidoreductase, such as alpha-thenoyltrifluoroacetone and carboxin. In SMP SQ-2 disappears in the presence of low concentrations of ferricyanide, while in mitochondria this non-penetrating oxidant provokes the appearance of SQ-2. The data obtained suggest that SQ-2 belongs to a stable ubisemiquinone which forms a complex with a FeS center of succinate dehydrogenase, is localized at the M-side of the membrane, and is kinetically isolated from the cytochrome chain. Oxidation of the terminal segment of the respiratory chain of mitochondria and SMP reduced by succinate in the presence of antimycin, is in some cases accompanied by an appearance of a strong free radical EPR signal which is stable at 77K but disappears rapidly in the frozen samples at -30- -40 degrees C. It is suggested that the signal is generated by an antimycin-insensitive oxidation of QH2 to QH. via the branch of the respiratory chain comprised of the Rieske FeS-protein and cytochrome c1. The mechanisms of how the two-electron oxidation-reduction of CoQ is coupled with the one-electron transfer through the cytochromes and FeS centers in the respiratory chain are discussed.  相似文献   

4.
Ikuma H  Bonner WD 《Plant physiology》1967,42(11):1535-1544
The effects of representative respiratory inhibitors were investigated on the coupled respiration of mung bean mitochondria using succinate and l-malate as substrates. The inhibitors studied were: (I) malonate, (II) amytal and rotenone, (III) antimycin A and 2-n-nonyl-4-hydroxyquinoline N-oxide (NOQNO), and (IV) cyanide and azide.  相似文献   

5.
The effect of antimycin, myxothiazol, 2-heptyl-4-hydroxyquinoline-N-oxide, stigmatellin and cyanide on respiration, ATP synthesis, cytochrome c reductase, and membrane potential in mitochondria isolated from dark-grown Euglena cells was determined. With L-lactate as substrate, ATP synthesis was partially inhibited by antimycin, but the other four inhibitors completely abolished the process. Cyanide also inhibited the antimycin-resistant ATP synthesis. Membrane potential was collapsed (<60 mV) by cyanide and stigmatellin. However, in the presence of antimycin, a H(+)60 mV) that sufficed to drive ATP synthesis remained. Cytochrome c reductase, with L-lactate as donor, was diminished by antimycin and myxothiazol. Cytochrome bc(1) complex activity was fully inhibited by antimycin, but it was resistant to myxothiazol. Stigmatellin inhibited both L-lactate-dependent cytochrome c reductase and cytochrome bc(1) complex activities. Respiration was partially inhibited by the five inhibitors. The cyanide-resistant respiration was strongly inhibited by diphenylamine, n-propyl-gallate, salicylhydroxamic acid and disulfiram. Based on these results, a model of the respiratory chain of Euglena mitochondria is proposed, in which a quinol-cytochrome c oxidoreductase resistant to antimycin, and a quinol oxidase resistant to antimycin and cyanide are included.  相似文献   

6.
In this report we show that ubiquinone cytochrome c reductase (complex III) from isolated rat heart mitochondria when inhibited with antimycin A, produces a large amount of superoxide as measured by the chemiluminescent probe coelenterazine. When mitochondria are inhibited with myxothiazol or stigmatellin, there is no detectable formation of superoxide. The antimycin A-sensitive free radical production can be dramatically reduced using either myxothiazol or stigmatellin. This suggests that the antimycin A-sensitive generation of superoxides originates primarily from the Q(o) semiubiquinone. When manganese superoxide dismutase depleted submitochondrial particles (SMP) were inhibited with myxothiazol or stigmatellin, a large superoxide signal was observed. These two inhibitors likely increase the concentration of the Q(i) semiquinone at the N center. The antimycin A-sensitive signal can, in the case of both the mitochondria and the SMP, be dissipated by the addition of copper zinc superoxide dismutase, suggesting that the measured coelenterazine signal was a result of superoxide production. Taken together, this data suggests that free radicals generated from the Q(i) species are more effectively eliminated by MnSOD in intact mitochondria.  相似文献   

7.
Much evidence indicates that superoxide is generated from O2 in a cyanide-sensitive reaction involving a reduced component of complex III of the mitochondrial respiratory chain, particularly when antimycin A is present. Although it is generally believed that ubisemiquinone is the electron donor to O2, little experimental evidence supporting this view has been reported. Experiments with succinate as electron donor in the presence of antimycin A in intact rat heart mitochondria, which contain much superoxide dismutase but little catalase, showed that myxothiazol, which inhibits reduction of the Rieske iron-sulfur center, prevented formation of hydrogen peroxide, determined spectrophotometrically as the H2O2-peroxidase complex. Similarly, depletion of the mitochondria of their cytochrome c also inhibited formation of H2O2, which was restored by addition of cytochrome c. These observations indicate that factors preventing the formation of ubisemiquinone also prevent H2O2 formation. They also exclude ubiquinol, which remains reduced under these conditions, as the reductant of O2. Since cytochrome b also remains fully reduced when myxothiazol is added to succinate- and antimycin A-supplemented mitochondria, reduced cytochrome b may also be excluded as the reductant of O2. These observations, which are consistent with the Q-cycle reactions, by exclusion of other possibilities leave ubisemiquinone as the only reduced electron carrier in complex III capable of reducing O2 to O2-.  相似文献   

8.
Studies on submitochondrial particles (SMP) preparation showed that in the sourse of the redox reactions at the octane-water interface, catalyzed by SMP enzymes, the charges are transferred from the aqueous to the octane phase. The effects were detected by a shift of the Volta potential, using the vibrating electrode method. In the presence of 2-N-methyl-amino-1,4-naphthoquinone in octane, acting as electron acceptor, the negative charges were transferred from water to octane following the oxidation of NADH, succinate and ascorbate. The charging of the octane phase was sensitive to the inhibitors of the respiratory chain, e. g. rotenone, antimycin and cyanide. In the presence of 2,4-DNP in octane, acting as a proton acceptor, the oxidation of NADH and succinate by ferricyanide, catalyzed by CMP in the presence of antimycin and cyanide correspondingly, was followed by a transfer of positive charges from water to octane. The positive charging of the octane phase, coupled with NADH oxidation, was found insensitive to rotenone, and that coupled with succinate oxidation, was completely inhibited by antimycin. The positive charging of the octane phase was also observed during the reverse transhydrogenase reaction, catalyzed by SMP at the division of the phases. The effect was inhibited by palmitoyl-CoA.  相似文献   

9.
Membranes from free-living Rhizobium japonicum were isolated to study electron transport components involved in H2 oxidation. The H2/O2 uptake rate ratio in membranes was approximately 2. The electron transport inhibitors antimycin A, cyanide, azide, hydroxylamine, and 2-n-heptyl-4-hydroxyquinoline-N-oxide (HQNO) inhibited H2 uptake and H2-dependent O2 uptake significantly. H2-reduced minus O2-oxidized absorption difference spectra revealed peaks at 551.5, 560, and 603 nm, indicating the involvement of cytochromes c, b, and a-a3, respectively. H2-dependent cytochrome reduction was completely inhibited in the presence of 0.15 mM HQNO. This inhibition was relieved by the addition of 0.1 mM menadione. Evidence is presented for the involvement of two b-type cytochromes in H2 oxidation. One b-type cytochrome was not reduced by ascorbate and had an absorption peak at 560 nm. The reduction of this cytochrome by H2 was not inhibited by cyanide. A second b-type cytochrome, cytochrome b', was not reduced by H2 in the presence of cyanide. This cytochrome had an absorption peak at 558 nm. Carbon monoxide difference spectra with H2 as reductant provided evidence for the involvement of cytochrome o as well as cytochrome a3 in H2 oxidation. H2 uptake activity in cell-free extracts was inhibited by UV light irradiation. Most of the activity of the UV-treated extracts was restored with the addition of ubiquinone. The restored activity was inhibited by cyanide. A branched electron transport pathway from H2 to O2 is proposed.  相似文献   

10.
Electron transport components involved in H2 oxidation were studied in membranes from Rhizobium japonicum bacteroids. Hydrogen oxidation in membranes was inhibited by antimycin A and 2-n-heptyl-4-hydroxyquinoline-N-oxide with Ki values of 39.4 and 5.6 microM, respectively. The inhibition of H2 uptake by cyanide was triphasic with Ki values of 0.8, 9.9, and 93.6 microM. This result suggested that three cyanide-reactive components were involved in H2 oxidation. H2-reduced minus O2-oxidized absorption difference spectra showed peaks at 551.5 and 560 nm, indicating the involvement of c- and b-type cytochromes, respectively. This spectrum also revealed a trough at 455 nm, showing that H2 oxidation involves a flavoprotein. This flavoprotein was not reduced by H2 in the presence of cyanide. The inhibition of H2 or cytochrome c oxidation by the flavoprotein inhibitor Atebrin was monophasic; the Ki values were similar for both substrates. A role for the flavoprotein as a terminal oxidase was implicated based on its high redox potential and its sensitivity to cyanide. Cytochromes o and c-552 were identified based on their ability to bind carbon monoxide and cyanide.  相似文献   

11.
Y Shahak  B Arieli  E Padan  G Hauska 《FEBS letters》1992,299(2):127-130
Membranes of the green sulfur bacterium, Chlorobium limicola f. thiosulfatophilum, catalyze the reduction of externally added isoprenoid quinones by sulfide. This activity is highly sensitive to stigmatellin and aurachins. It is also inhibited by 2-n-nonyl-4-hydroxyquinoline-N-oxide, antimycin, myxothiazol and cyanide. It is concluded that in sulfide oxidizing bacteria like Chlorobium, sulfide oxidation involves a sulfide-quinone reductase (SQR) similar to the one found in Oscilatoria limnetica [Arieli, B., Padan, E. and Shahak, Y. (1991) J. Biol. Chem. 266, 104-111].  相似文献   

12.
Glucose-supported O2 uptake in the filarial nematode Brugia pahangi was partially inhibited by antimycin A (30-40%), with the remaining activity being sensitive to o-hydroxydiphenyl or salicylhydroxamic acid (SHAM). The production of CO2 by B. pahangi in the presence of D-glucose was stimulated by O2; the stimulation of CO2; the stimulation of CO2 production was sensitive to antimycin A. The O2 dependencies of respiration showed that the apparent O2 affinity for B. pahangi was diminished in the presence of antimycin A; O2 thresholds for inhibition of respiration were observed which showed that the alternative electron transport pathway was less sensitive to inhibition at elevated O2 concentrations. H2O2 production and its excretion could be detected in whole B. pahangi; higher rates were observed in the presence of the uncoupler carbonyl cyanide m-chlorophenylhydrazone. The effects of inhibitors on H2O2 production suggest two sites of H2O2 production, one associated with the classical antimycin A-sensitive pathway, the other with the alternative respiratory pathway. The similarity in the O2 dependencies of H2O2 production and respiration may indicate that H2O2 production is involved in O2-mediated toxicity. Succinate and malate respiring sub-mitochondrial particles of B. pahangi produced O2.- radicals at a site on the antimycin A-sensitive respiratory pathway. Inhibition of the alternative electron pathway by SHAM was unusual; sub-millimolar concentrations markedly stimulated respiration, H2O2 production and O2.- production by 30, 20 and 25%, respectively, whereas higher concentrations (greater than 2.5 mM) inhibited respiration by 75% and H2O2 and O2.- production by up to 85%.  相似文献   

13.
Bovine heart mitochondrial NADH-ubiquinone oxidoreductase (complex I) catalyzed NADH- and ubiquinone-1-dependent oxygen (O2) turnover to hydrogen peroxide that was stimulated by piericidin A and superoxide dismutase (SOD), but was insensitive to antimycin A, myxothiazol, and potassium cyanide. The extent of O2 consumption as a function of ubiquinone-1 did not correlate with piericidin A-sensitive rates of ubiquinone reduction. Decylubiquinone did not stimulate O2 consumption, but did initiate an SOD-sensitive cytochrome c reduction when complex I was isolated away from ubiquinol-cytochrome c oxidoreductase. Rates and extent of O2 turnover (ROS production) and ubiquinone reduction were higher than previously reported for submitochondrial particles (SMP) and isolated complex I. This ROS production was shown to co-isolate with complex I flavin.  相似文献   

14.
2-Phenyl-beta-lapachone (3,4-dihydro-2-methyl-2-phenyl-2H-naphtho[1,2b]pyran-5,6-dione) (2PBL) is a o-naphthoquinone synthesized as a possible antitumoral agent. The addition of micromolar concentrations of 2PBL to rat liver mitochondria (in the presence of malate-glutamate or succinate, as respiratory substrates): (1) stimulated O(2) consumption in state 4 and inhibited O(2) consumption in state 3, thus decreasing respiratory control index (RCI); and (2) collapsed the mitochondrial membrane potential. The addition of 2PBL to rat liver submitochondrial particles: (1) stimulated NADH oxidation in the presence of rotenone, antimycin, myxothiazol or cyanide; (2) stimulated (.-)O(2)(-) production in the presence of NADH and antimycin; and (3) led to 2PBL semiquinone radical production. Control studies carried out with two p-naphthoquinones, menadione and atovaquone, did not produced equivalent effects. These findings support the hypothesis that 2PBL, undergoes redox cycling and affects mitochondrial function. The 2PBL effect is complex, involving inhibition of electron transfer, uncoupling of oxidative phosphorylation, collapse of mitochondrial membrane potential and (.-)O(2)(-) production by redox cycling. The mitochondrion could be a target organelle for 2PBL cytotoxicity.  相似文献   

15.
It is postulated that antioxidant properties of American ginseng root mediate its cardioprotective actions. The antioxidant capabilities of the American ginseng root have been demonstrated previously, however, the berry of the American ginseng has not yet been evaluated. In this study, we tested the American ginseng berry extract (AGBE) for its antioxidant effects in cell-free chemical systems using H(2)O(2)/FeSO(4) to generate hydroxyl radicals which were measured by a fluorescent probe, 2', 7'-dichlorofluorescin diacetate (DCFH/DA). Xanthine/xanthine oxidase was used to generate superoxide anion, which was measured by a fluorescent probe dihydroethidium (DHE). We found that AGBE decreased fluorescence significantly, suggesting that AGBE scavenges oxygen free radicals. We further tested whether AGBE (0.1-1 mg/ml) can protect cardiomyocytes from oxidative injury induced by exogenous or endogenous oxidants. Cells were exposed to either H(2)O(2) or antimycin A (a mitochondrial electron transport chain site III inhibitor that augments mitochondrial oxidant production). The resulting oxidant stress was measured using DCFH/DA and the cell death was assessed using propidium iodide staining. Pretreatment with AGBE (1 mg/ml) significantly attenuated DCF fluorescence by 49% or 85% and reduced cell death by 59% or 63% in cells exposed to H(2)O(2) or antimycin A, respectively. When the effects of extracts from berry and root of American ginseng were compared in cardiomyocytes exposed to antimycin A, we observed that AGBE conferred greater antioxidant protection at the same dose. We conclude that AGBE is a potent antioxidant that protects cardiomyocytes against oxidant-mediated injury and this protection is partly mediated by its free radical scavenging properties.  相似文献   

16.
Experiments employing electron transport inhibitors, room- and low-temperature spectroscopy, and photochemical action spectra have led to a model for the respiratory chain of Pseudomonas carboxydovorans. The chain is branched at the level of b-type cytochromes or ubiquinone. One branch (heterotrophic branch) contained cytochromes b558, c, and a1; the second branch (autotrophic branch) allowed growth in the presence of CO and contained cytochromes b561 and o (b563). Electrons from the oxidation of organic substrates were predominantly channelled into the heterotrophic branch, whereas electrons derived from the oxidation of CO or H2 could use both branches. Tetramethyl-p-phenylenediamine was oxidized via cytochromes c and a exclusively. The heterotrophic branch was sensitive to antimycin A, CO, and micromolar concentrations of cyanide. The autotrophic branch was sensitive to 2-n-heptyl-4-hydroxyquinoline-N-oxide, insensitive to CO, and inhibited only by millimolar concentrations of cyanide. The functioning of cytochrome a1 as a terminal oxidase was established by photochemical action spectra. Reoxidation experiments established the functioning of cytochrome o as an alternative CO-insensitive terminal oxidase of the autotrophic branch.  相似文献   

17.
Anaerobiosis depresses the light- and bicarbonate-saturated rates of O(2) evolution in intact spinach (Spinacia oleracea) chloroplasts by as much as 3-fold from those observed under aerobic conditions. These lower rates are accelerated 2-fold or more by the addition of 1 mum antimycin A or by low concentrations of the uncouplers 0.3 mm NH(4)Cl or 0.25 mum carbonyl cyanide m-chlorophenylhydrazone. Oxaloacetate and glycerate 3-phosphate reduction rates are also increased by antimycin A or an uncoupler under anaerobic conditions. At intermediate light intensities, the rate accelerations by either antimycin A or uncoupler are inversely proportional to the adenosine 5'-triphosphate demand of the reduction process for the acceptors HCO(3) (-), glycerate 3-phosphate, and oxaloacetate. The acceleration of bicarbonate-supported O(2) evolution may also be produced by adding an adenosine 5'-triphosphate sink (ribose 5-phosphate) to anaerobic chloroplasts. The above results suggest that a proton gradient back pressure resulting from antimycin A-sensitive cyclic electron flow is responsible for the depression of light-saturated photosynthesis under anaerobiosis.  相似文献   

18.
Endogenous ubiquinones (UQ) such as coenzyme Q(10) are essential electron carriers in the mitochondrial respiratory chain, and the reduced ubiquinol form (UQH(2)) is a chain-breaking antioxidant, decreasing oxidative damage caused by lipid peroxidation within mitochondria. Consequently, exogenous UQ are used as therapies to decrease mitochondrial oxidative damage. The proximal radical produced during mitochondrial oxidative stress is superoxide (O(2)(.-)) and the reaction between UQ and O(2)(.-) to form the ubisemiquinone radical anion (UQ(.-)) may also be important for the scavenging of O(2)(.-) by exogenous UQ. The situation in vivo is that many UQ are predominantly located in the hydrophobic membrane core, from which O(2)(.-) will be excluded but its conjugate acid, HOO(.), can enter. The reactivity of UQ or UQH(2) with HOO(.) has not been reported previously. Here a pulse radiolysis study on the reactions between UQ/UQH(2) and O(2)(.-)/HOO(.) in water and in solvent systems mimicking the surface and core of biological membranes has been undertaken. O(2)(.-) reacts very rapidly with UQ, suggesting that this may contribute to the scavenging of O(2)(.-) in vivo. In contrast, UQH(2) reacts relatively slowly with HOO(.), but rapidly with other oxygen- and carbon-centered radicals, indicating that the antioxidant role of UQH(2) is mainly in preventing lipid peroxidation.  相似文献   

19.
Submitochondrial particles (SMP) from the bovine heart were treated with platinum complex--K [C2H4 PtCl3] (Zeize's salt); there occurred a menadion-dependent shunt, this being expressed in menadion stimulation of oxygen consumption under conditions of electron transport block with rotenon. This effect was observed only with the use in the capacity of a substrate of NAD.N2, but not of succinate. Menadion-dependent respiration induced with Zeize's salt was dicoumarol-sensitive, but was not inhibited by antimycin and cyanide, this differentiating it from menadionreductase shunt in the intact hepatic mitochondria.  相似文献   

20.
In Chlamydomonas reinhardtii mutants deficient in photosystem I because of inactivation of the chloroplast genes psaA or psaB, oxygen evolution from photosystem II occurs at significant rates and is coupled to a stimulation of oxygen uptake. Both activities can be simultaneously monitored by continuous mass spectrometry in the presence of (18)O(2). The light-driven O(2) exchange was shown to involve the plastoquinone pool as an electron carrier, but not cytochrome b(6)f. Photosystem II-dependent O(2) production and O(2) uptake were observed in isolated chloroplast fractions. Photosystem II-dependent oxygen exchange was insensitive to a variety of inhibitors (azide, carbon monoxide, cyanide, antimycin A, and salicylhydroxamic acid) and radical scavengers. It was, however, sensitive to propyl gallate. From inhibitors effects and electronic requirements of the O(2) uptake process, we conclude that an oxidase catalyzing oxidation of plastoquinol and reduction of oxygen to water is present in thylakoid membranes. From the sensitivity of flash-induced O(2) exchange to propyl gallate, we conclude that this oxidase is involved in chlororespiration. Clues to the identity of the protein implied in this process are given by pharmacological and immunological similarities with a protein (IMMUTANS) identified in Arabidopsis chloroplasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号