首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study was conducted to determine the effects of dietary supplementation with Cr nicotinate and Cr chloride and their optimum inclusion rate on performance, carcass traits, meat oxidative stability, serum metabolites, hematological parameters, and liver chromium concentration in heat-stressed broilers. A total number of 420, 1-day-old male broiler chicks were randomly assigned to seven treatments with four replicates of 15 chicks. The dietary treatments consisted of the basal diet supplemented with 0 (control), 500, 1,000, and 1,500 μg/kg Cr in the form of Cr nicotinate and Cr chloride. Chicks were raised for 6 weeks in heat stress condition (33 ± 2°C). Supplements of organic and inorganic Cr particularly at 1,500 μg/kg incorporation increased feed consumption (P < 0.05) and body mass gain of broilers (P < 0.01). Cr supplementation increased carcass yield and decreased abdominal fat (P < 0.01). Supplementation of 1,500 μg/kg Cr nicotinate (P < 0.05) enhanced liver Cr concentration. Storage time increased lipid oxidation of meat (P < 0.01). Cr decreased lipid oxidation of breast and thigh muscles over 2 (P < 0.01) or 6 (P < 0.05) days of storage time. Birds fed 1,500 μg/kg Cr nicotinate, had lower concentration of serum glucose and triglyceride at 21 days (P < 0.05). Hematological parameters tested at 21 and 42 days, were not influenced. The results suggested that dietary Cr supplementation regardless of its source have a positive effect on productive, and carcass traits, also enhances oxidative stability of refrigerated meat in broilers reared under heat stress conditions.  相似文献   

2.
Patients with chronic kidney disease (CKD) have an increased incidence of cancer. It is well known that long periods of hemodialysis (HD) treatment are linked to DNA damage due to oxidative stress. In this study, we examined the effect of selenium (Se) supplementation to CKD patients on HD on the prevention of oxidative DNA damage in white blood cells. Blood samples were drawn from 42 CKD patients on HD (at the beginning of the study and after 1 and 3 months) and from 30 healthy controls. Twenty-two patients were supplemented with 200 μg Se (as Se-rich yeast) per day and 20 with placebo (baker's yeast) for 3 months. Se concentration in plasma and DNA damage in white blood cells expressed as the tail moment, including single-strand breaks (SSB) and oxidative bases lesion in DNA, using formamidopyrimidine glycosylase (FPG), were measured. Se concentration in patients was significantly lower than in healthy subjects (P < 0.0001) and increased significantly after 3 months of Se supplementation (P < 0.0001). Tail moment (SSB) in patients before the study was three times higher than in healthy subjects (P < 0.01). After 3 months of Se supplementation, it decreased significantly (P < 0.01) and was about 16% lower than in healthy subjects. The oxidative bases lesion in DNA (tail moment, FPG) of HD patients at the beginning of the study was significantly higher (P < 0.01) compared with controls, and 3 months after Se supplementation it was 2.6 times lower than in controls (P < 0.01). No changes in tail moment was observed in the placebo group. In conclusion, our study shows that in CKD patients on HD, DNA damage in white blood cells is higher than in healthy controls, and Se supplementation prevents the damage of DNA.  相似文献   

3.
Both total and dialyzable iron levels and corresponding dialyzability were determined in 108 duplicate meals during 36 consecutive days. Total mean iron fraction of 5.90 ± 4.97 mg was found in the meals. The iron supplied by the meals is directly and significantly (p < 0.05) correlated with macromicronutrient content (carbohydrates, fiber, and protein). The mean iron dialyzability (4.81 ± 3.25%) was low and not significantly different among the three primary meals (breakfast, lunch, and dinner). Significant interactions of several minerals on iron levels were found (p < 0.05). Iron dialyzability was only statistically influenced by zinc dialyzability in meals (p < 0.05). The dialyzed iron fraction present in meals was significantly correlated with protein and ascorbic acid levels (p < 0.01). The mean iron daily dietary intake was 17.7 ± 6.91 mg. The hospital meals provided enough iron. Foods of animal origin are primary sources of iron in diet.  相似文献   

4.
This study compared several maternal risk factors of low birth weight (LBW) between 204 normal birth weight (NBW) and 133 LBW newborns from Kolkata, India. Based on their birth weight (BW), newborns were classified as LBW (BW < 2.5 kg) and NBW (BW ≥ 2.5 kg). Results revealed that means for maternal age (MA, p < 0.05), gestational age (GA, p < 0.01), hemoglobin (Hb) concentration (p < 0.05), and per capita daily income (PCDI, p < 0.05) were significantly higher among mothers of NBW. Correlation analyses revealed that MA (r = 0.119, p < 0.05), GA (r = 0.583, p < 0.01), PCDI (r = 0.118, p < 0.05), and Hb (r = 0.138, p < 0.05) were significantly positively correlated with BW; PCDI was also significantly positively correlated (r = 0.142, p < 0.01) with Hb. Stepwise regression analyses with BW as the dependent variable revealed that GA (t = 7.915, p < 0.001) and Hb (t = 2.057, p < 0.05) were the most important predictive variables. The effect of Hb, independent of GA, was statistically significant (change in F = 4.231, p < 0.05). Because GA is not modifiable in pregnant women, there is a need to increase Hb levels among pregnant mothers. Most importantly, appropriately targeted preventive strategies, including iron supplementation, need to be implemented for health promotion.  相似文献   

5.
Trace elements such as Zinc (Zn), copper (Cu), iron (Fe), and selenium (Se) are essential for male fertility. The fertilizing capacity of most animals reduced with advancing age. The objective of the present work was to determine the serum and testicular levels of Zn, Cu, and Se in young (10 months old) and old (30 months old) rabbits. Blood and testicular samples were obtained from rabbits after their slaughter. All samples were digested by concentrated acids and analyzed for trace elements by flame emission atomic absorption spectrophotometer. The results showed that serum Zn and Cu were lower in old rabbits than young (P < 0.01). Serum Se was higher in old than young rabbits (P < 0.05). Testicular Cu and Se were significantly lower in old than young rabbits (P < 0.01). However, Zn level was higher in old compared to young rabbits (P < 0.01). The serum Zn and Se were higher than the testicular levels (P < 0.01). The testicular Cu in both ages was higher than the serum level (P < 0.01), which suggest a very important role for Cu in the process of spermatogenesis in rabbits.  相似文献   

6.
A 16-week experiment was conducted to compare effects of various levels of sodium selenite (SS) and Se-enriched yeast (SY), on the whole-egg Se content and hen’s productivity. One hundred Shaver 579 hens, 27 weeks old, were placed on one of five experimental treatments. Each treatment was replicated four times with five hens per cage. Treatments consisted of feeding a low Se diet without supplementation (basal diet) or basal diet with one of two levels of supplemented Se (0.4 or 0.8 mg/kg) supplied by SS or SY. All supplemented treatments had significantly higher whole-egg Se concentration from basal diet (P < 0.05). On the same supplemented level, hens fed on SY had higher egg Se content from hens feed on SS (P < 0.001). No effects of dietary treatments on egg weight, percentages of dirty and cracked egg, and feed intake and conversion of feed were observed throughout the trial (P < 0.05). In the first 8 weeks, there was no significant difference (P < 0.05) in hen-day egg production among treatments. From the ninth week on to the end of the trial, supplementation of SY to hen’s diet resulted in a higher egg production than SS (P < 0.01).  相似文献   

7.
This experiment was carried out to investigate the effects of different levels of organic and inorganic chromium on the performance, immune function and some serum mineral concentrations of broilers under heat stress condition (23.9–37°C cycling). A total of 150 one-day-old broiler chicks according to a completely randomized design were assigned into five treatment groups. Each treatment consisted of three replicates and each replicate contained ten chicks. Chicks were fed on corn–soybean meal basal diets with added different concentrations of chromium (0, 600 and 1,200 μg kg−1 chromium chloride or 600 and 1,200 μg/kg chromium l-methionine) from 1 to 49 days of age. Humoral immunity was assessed by intravenous injection of 7% sheep red blood cell (SRBC) followed by evaluation of serum for antibody titers in primary and secondary responses. Cell-mediated immunity was assessed by the cutaneous basophil hypersensitivity (CBH) test to phytohemagglutinin (PHA)-P at day 32 and PHA-M at day 48. Heterophil/lymphocyte (H/L) ratio was also measured as a reliable indicator of stress. The body mass, feed intake and conversion ratio were not influenced by dietary chromium (P > 0.05). Dietary supplementation of both organic and inorganic chromium significantly increased primary and secondary antibody responses (P < 0.01), and also improved H/L ratio (P < 0.05), CBH response (P < 0.01) as well as relative weights of thymus (P < 0.05) and spleen (P < 0.01). Both dietary organic and inorganic chromium caused an increase in serum concentrations of Cr and Zn (P < 0.01), but decreased the serum concentration of Cu (P < 0.01). These results suggest that supplemental chromium especially in organic form offers a good management practice to reduce heat stress-related depression in immunocompetence of broiler chicks.  相似文献   

8.
The study was conducted to investigate determinants (clinical, nutritional, and nonnutritional factors) of anemia among pregnant women in Kassala, eastern Sudan. Sociodemographic characteristics were gathered; serum ferritin, zinc, albumin, and C-reactive protein were measured using different laboratory methods in a cross-sectional study of 250 pregnant women. Of the 250 women, 58.4% had anemia (hemoglobin (HB) <11 g/dl), 6.8% had severe anemia (HB < 7 g/dl), 19.6% had iron deficiency (S-ferritin <15 μg/l), 14.8% had iron deficiency anemia (<11 g/dl and S-ferritin <15 μg/l), and 38% had zinc deficiency (<80 μg/ml). S-albumin, zinc, and ferritin were significantly lower in patients with severe anemia. While age, gestational age, ferritin, and C-reactive protein were not predictors for anemia, primigravidae (OR = 2.7, 95% CI = 1.1–6.7, P = 0.02), low S-albumin (OR = 5.9, 95% CI = 1.4–25.2, P = 0.01), and low S-zinc (OR = 2.6, 95% CI = 1.0–6.6, P = 0.03) were the predictors for anemia. While there was no significant correlation between hemoglobin, S-zinc, and S-ferritin, there was a significant positive correlation between hemoglobin and S-albumin (r = 0.308, P = 0.001) and significant inverse correlation between hemoglobin and C-reactive protein (r = 0.169, P = 0.007). Thus, the role of chronic inflammation and zinc as possible contributing factors to anemia in pregnancy has important implications for the clinical evaluation and treatment of these women.  相似文献   

9.
Supplementation of broiler diets with copper, manganese, and zinc at levels higher than that stipulated by the National Research Council 1994 reportedly improved live weight, feed conversion, and cured leg abnormality supposedly caused by inadequate intake of Mn and Zn. The objective of the study was to ascertain the effects of plethoric supplementation of copper (Cu), manganese (Mn), and zinc (Zn) on performance and metabolic responses in broiler chickens. The study also aimed to discriminate the responses of the birds when the mineral elements were supplemented either in an inorganic or in an organic form. Cobb 400 broiler chickens (1-day old, n = 300) were assigned to three dietary treatments each containing nine replicates with ten birds for 39 days. The treatments included a control in which the diet was devoid of supplemental trace elements and treatments supplemented with an inorganic trace element premix (ITM) and supplemented with a combination of the inorganic and an organic trace element premix (OTM). The ITM contained (per kilogram) copper, 15 g; iron, 90 g; manganese, 90 g; zinc, 80 g (all as sulfated salts); iodine (as potassium iodide), 2 g; and selenium (as sodium selenite), 0.3 g. The OTM on the other hand, contained copper, 2.5 g; iron, 15 g; manganese, 15 g; zinc, 13.33 g; and chromium, 0.226 g (all as protein chelates). Plethoric supplementation of trace elements improved live weight gain and feed/gain ratio (p < 0.05). Leg abnormality developed in the 16% of the control group of birds but not in the supplemented group. Metabolizability of dry matter, organic matter, and protein was higher (p < 0.01) in the ITM and OTM groups. Excretion of Cu, Fe, and Zn decreased (p < 0.1) due to supplementation of the trace elements leading to increased apparent absorption of the said mineral elements (p < 0.01). Concentration of the concerned trace elements in serum, liver, and composite muscle samples was higher (p < 0.05) in the ITM and OTM dietary groups indicating an increased deposition of the said mineral elements due to supplementation. Although the study revealed subtle difference between the inorganic and organic mineral premixes with regards to the parameters mentioned above, it became apparent that it is possible to reduce excretion of these trace elements by a judicious escalation in the level of supplementation. The results of the present investigation further revealed that the trace mineral requirement of broiler chickens suggested by the National Research Council may not be optimum to support the maximum growth potential of the high yielding strains, and it is reasonable to consider a review of the current NRC recommendations to meet the needs of the modern birds.  相似文献   

10.
The study was conducted to investigate the effects of dietary maternal selenomethionine or sodium selenite supplementation on performance and selenium status of broiler breeders and their next generation. Two hundred and forty 39-week-old Lingnan yellow broiler breeders were allocated randomly into two treatments, each of which included three replicates of 40 birds. Pretreatment period was 2 weeks, and the experiment lasted 8 weeks. The groups were fed the same basal diet supplemented with 0.30 mg selenium/kg of sodium selenite or selenomethionine. After incubation, 180 chicks from the same parental treatment group were randomly divided into three replicates, with 60 birds per replicate. All the offspring were fed the same diet containing 0.04 mg selenium/kg, and the experiment also lasted 8 weeks. Birth rate was greater (p < 0.05) in hens fed with selenomethionine than that in hens fed with sodium selenite. The selenium concentration in serum, liver, kidney, and breast muscle of broiler breeders, selenium deposition in the yolk, and albumen and tissues' (liver, kidney, breast muscle) selenium concentrations of 1-day-old chicks were significantly (p < 0.01) increased by maternal selenomethionine supplementation compared with maternal sodium selenite supplementation. The antioxidant status of 1-day-old chicks was greatly improved by maternal selenomethionine intake in comparison with maternal sodium selenite intake and was evidenced by the increased glutathione peroxidase activity in breast muscle (p < 0.05), superoxide dismutase activity in breast muscle and kidney (p < 0.05), glutathione concentration in kidney (p < 0.01), total antioxidant capability in breast muscle and liver (p < 0.05), and decreased malondialdehyde concentration in liver and pancreas (p < 0.05) of 1-day-old chicks. Feed utilization was better (p < 0.05), and mortality was lower (p < 0.05) in the progeny from hens fed with selenomethionine throughout the 8-week growing period compared with those from hens fed with sodium selenite. In summary, we concluded that maternal selenomethionine supplementation increased birth rate and Se deposition in serum and tissues of broiler breeders as well as in egg yolk and egg albumen more than maternal sodium selenite supplementation. Furthermore, maternal selenomethionine intake was also superior to maternal sodium selenite intake in improving the tissues Se deposition and antioxidant status of 1-day-old chicks and increasing the performance of the progeny during 8 weeks of post-hatch life.  相似文献   

11.
The effects of supplemental chromium (Cr) as chromic chloride hexahydrate in incremental dose levels (0, 0.5, 1.0, and 1.5 mg/day for 240 days) on metabolism of nutrients and trace elements were determined in dwarf Bengal goats (Capra hircus, castrated males, average age 3 months, n = 24, initial mean body weight 6.4 ± 0.22 kg). Live weight increased linearly (p < 0.05) with the level of supplemental Cr. Organic matter and crude protein digestibility, intake of total digestible nutrients, and retention of N (g/g N intake) increased (p < 0.05) in a dose-dependent linear manner. Serum cholesterol and tryacylglycerol concentrations changed inversely with the dose of supplemental Cr (p < 0.01). Supplemental Cr positively influenced retention of copper and iron (p < 0.05) causing linear increase (p < 0.01) in their serum concentrations. It was concluded that Cr supplementation may improve utilization of nutrients including the trace elements and may also elicit a hypolidemic effect in goats. However, further study with regards to optimization of dose is warranted.  相似文献   

12.
A 2 × 3 factorial arrangement of treatments was used to investigate the effects of different levels of copper (Cu, 0, 19, and 38 mg/kg, dry matter (DM)) and molybdenum (Mo, 0 and 5 mg/kg, DM) supplements and an interaction of these two factors on growth performance, nutrient digestibility, and cashmere and follicle characteristics in cashmere goats. Thirty-six Liaoning cashmere goats (approximately 1.5 years of age; 27.53 ± 1.38 kg of body weight) were assigned randomly to one of six treatments and fed with Chinese wildrye- and alfalfa hay-based treatment diets (the basal diet contained 4.72 mg Cu/kg, 1.65 mg Mo/kg, and 0.21% S.). Body weight was measured on two consecutive days at the start and the end of the 70-day experimental period. On day 30, the metabolism trial was conducted to study the effects of dietary Cu and Mo on nutrient digestibility. The cashmere and skin samples were collected on day 70. Copper supplementation increased (P < 0.05) growth performance and fiber digestion, but there were no differences (P > 0.05) between Cu-supplemented groups. Addition of 19 mg Cu/kg DM increased (P < 0.05) cashmere growth length or growth rate by increasing the number of active secondary follicles. Molybdenum supplementation decreased (P < 0.05) growth, but did not affect (P > 0.05) nutrient digestion, cashmere, and follicle characteristics. There is a tendency or significant interaction effect of Cu and Mo on growth performance (P = 0.057), cashmere growth (P = 0.076), or diameter (P < 0.05) which might be accomplished by changing the number of secondary follicle and active secondary follicle, and secondary to primary follicle ratio. In conclusion, the optimal supplemental Cu level for Liaoning cashmere goats fed with the basal diet was 19 mg/kg DM (the total dietary Cu level of 23.72 mg/kg DM), while 38 mg Cu/kg DM supplementation was found to be needed when 5 mg Mo/kg was added in the basal diet during the cashmere growing period.  相似文献   

13.
Forty-eight 2-year-old Liaoning Cashmere goats (body weight = 38.0 ± 2.94 kg) were used to investigate the effects of dietary iodine (I) and selenium (Se) supplementation on nutrient digestibility, serum thyroid hormones, and antioxidant status during the cashmere telogen period to learn more about the effects of dietary I and Se on nutrition or health status of Cashmere goats. The goats were equally divided into six groups of eight animals each that were treated with 0, 2, or 4 mg of supplemental I/kg dry matter (DM) and 0 or 1 mg of supplemental Se/kg DM in a 2 × 3 factorial arrangement of treatments. The six treatments were I0Se0, I2Se0, I4Se0, I0Se1, I2Se1, and I4Se1. The concentrations of I and Se in the basal diet were 0.67 and 0.09 mg/kg DM, respectively. The study started in March and proceeded for 45 days. Supplemental I or Se alone had no effect on nutrient digestibility and nitrogen metabolism. However, the interaction between I and Se was significant regarding the digestibility of acid detergent fiber (ADF; P < 0.05), and compared with group I4Se1, the digestibility of ADF was significantly increased in group I4Se0 (P < 0.05). Selenium supplementation did not affect serum triiodothyronine (T3) or thyroxine (T4) concentrations. However, the concentration of serum T4 but not that of T3 was significantly increased with I supplementation (P < 0.05). In addition, serum superoxide dismutase (SOD) activity was not affected (P > 0.05), but serum glutathione peroxidase (GSH-Px) activity was significantly decreased by I supplementation (P < 0.05). The antioxidant status was improved by Se supplementation, and the activities of SOD and GSH-Px were significantly increased (P < 0.05).  相似文献   

14.
Premature graying of hair with unclear etiology, which is known as premature canities, is a common cause of referrals to the dermatologists. We assessed the relationship between serum iron, copper, and zinc concentrations with premature canities. This study was conducted on patients under 20 years old suffering from premature canities, having a minimum of ten gray hair fibers, and referring to university hospitals of Isfahan (Iran). The results were compared with age–sex-matched controls. Demographic data and disease characteristics were recorded for two groups. We studied serum iron, copper, and zinc concentrations of 66 patients and 66 controls using atomic absorption and Ferrozine methods. The mean age of studied cases was 17.8 ± 2.0 years, and the mean age of the onset of canities was 15.5 ± 3.2 years with no significant difference between males and females (P > 0.05). Serum copper concentration was significantly lower in patients compared with controls (90.7 ± 37.4 vs. 105.3 ± 50.2 μg/dL, P = 0.048), but serum iron concentration was significantly lower in controls compared to patients (88.8 ± 39.5 vs. 108.3 ± 48.4 μg/dL, P = 0.008). Also, there was no significant difference between patients and controls in serum zinc concentration (114.8 ± 67.8 vs. 108.2 ± 49.9 μg/dL, P = 0.285). According to these results, among copper, zinc, and iron, a low serum copper concentration may play a role in premature graying of hairs in our society. Further studies are needed to find the underlying mechanism of this relationship.  相似文献   

15.
The present research evaluated differential effects of sodium selenite and nano-Se on growth performance, tissue Se distribution, and glutathione peroxidase (GSH-Px) activity of avian broiler. Broilers were randomly segregated into 12 groups so that three replicates were available for each of the three treatments (T-1, T-2, and T-3) and control groups. The control groups were fed basal diets without Se addition. T-1, T-2, and T-3 were fed with diets containing 0.2 mg kg−1 sodium selenite, 0.2 mg kg−1 nano-Se, and 0.5 mg kg−1 nano-Se, respectively. Compared with the control, Se supplementation remarkably improved daily weight gain and survival rate and decreased feed conversion ratio (P < 0.05). However, no significant difference was observed between T-1, T-2, and T-3. The tissue Se content was significantly higher (P < 0.05) in Se-supplemented groups than the control, and T-3 showed the highest. Furthermore, higher Se content was observed in liver, and there was a significant difference (P < 0.05) compared with that in muscle. As for serum and hepatic GSH-Px activities, Se supplementation remarkably improved GSH-Px activity (P < 0.05), and there was no significant difference (P > 0.05) between treatments (T-1, T-2, and T-3).  相似文献   

16.
The present study was conducted to investigate the effects of chromium histidinate (CrHis) against experimentally induced type II diabetes and on chromium (Cr), zinc (Zn), selenium (Se), manganese (Mn), iron (Fe), and copper (Cu) in serum, liver, and kidney of diabetic rats. The male Wistar rats (n = 60, 8 weeks old) were divided into four groups. Group I received a standard diet (12% of calories as fat); group II were fed standard diet and received CrHis (110 mcg CrHis/kg body weight per day); group III received a high-fat diet (HFD; 40% of calories as fat) for 2 weeks and then were injected with streptozotocin (STZ) on day 14 (STZ, 40 mg/kg i.p.; HFD/STZ); group IV were treated as group III (HFD/STZ) but supplemented with 110 mcg CrHis/kg body weight per day. The mineral concentrations in the serum and tissue were determined by atomic absorption spectrometry. Compared to the HFD/STZ group, CrHis significantly increased body weight and reduced blood glucose in diabetic rats (p < 0.001). Concentrations of Cr, Zn, Se, and Mn in serum, liver, and kidney of the diabetic rats were significantly lower than in the control rats (p < 0.0001). In contrast, higher Fe and Cu levels were found in serum and tissues from diabetic versus the non-diabetic rats (p < 0.001). Chromium histidinate supplementation increased serum, liver, and kidney concentrations of Cr and Zn both in diabetic and non-diabetic rats (p < 0.001). Chromium supplementation increased Mn and Se levels in diabetic rats (p < 0.001); however, it decreased Cu levels in STZ-treated group (p < 0.001). Chromium histidinate supplementation did not affect Fe levels in both groups (p > 0.05). The results of the present study conclude that supplementing Cr to the diet of diabetic rats influences serum and tissue Cr, Zn, Se, Mn, and Cu concentrations.  相似文献   

17.
Cataract is the opacification in eye lens and leads to 50% of blindness worldwide. The present study was undertaken to evaluate the anticataract potential of Trigonella foenum-graecum Linn seeds (fenugreek) in selenite-induced in vitro and in vivo cataract. In vitro enucleated rat lenses were maintained in organ culture containing Dulbecco’s modified Eagles medium (DMEM) alone or in addition with 100 μM selenite and served as the normal and control groups, respectively. For the test group, the medium was supplemented with selenite and T. foenum-graecum aqueous extract. The lenses were incubated for 24 h at 37°C. After incubation, the lenses were processed for the estimation of reduced glutathione (GSH), lipid peroxidation product (malondialdehyde), and the antioxidant enzymes. In vivo selenite cataract was induced in 9-day-old rats by subcutaneous injection of sodium selenite (25 μmol/kg body weight). Animals in the test group were injected with different doses of aqueous extract of T. foenum-graecum 4 h before the selenite challenge. A fall in GSH and a rise in malondialdehyde levels were observed in control as compared to normal lenses. T. foenum-graecum significantly (P < 0.01) restored glutathione and decreased malondialdehyde levels. A significant restoration in the activities of antioxidant enzymes such as superoxide dismutase (P < 0.01), catalase, (P < 0.01), glutathione peroxidase (P < 0.01), and glutathione-S-transferase (P < 0.01) was observed in the T. foenum-graecum supplemented group as compared to control. In vivo, none of the eyes was found with nuclear cataract in treated group as opposed to 72.5% in the control group. T. foenum-graecum protects against experimental cataract by virtue of its antioxidant properties. Further studies are warranted to explore its role in human cataract.  相似文献   

18.
A feeding trial was conducted to study the effect of montmorillonite superfine composite (MSC) on growth performance and tissue lead levels in pigs. Sixty barrows were randomly divided into two groups. They were fed the same basal diet supplemented with 0 or 0.5% MSC, respectively, for 100 days. Serum samples were collected and analyzed to study growth hormone secretion pattern. The mean lead concentration in selected tissues was analyzed. The results showed that average daily gain, average daily feed intake, and feed conversion ratio of pigs were improved by 8.97% (p < 0.05), 3.90% (p < 0.05), and 4.76% (p < 0.05), respectively, with the supplementation of MSC compared to the control group. Serum sample analysis indicated that peak amplitude, base-line level, and mean level of growth hormone were increased by 117.14% (p < 0.01), 42.78% (p < 0.01), and 51.75% (p < 0.01), respectively. Supplementation of MSC in the diet was found to significantly reduce lead concentration of tissues in blood, brain, liver, bone, kidney and hair.  相似文献   

19.
The experiment was conducted to study the effects of different selenium (Se) sources on productive performance, serum and milk Se concentrations, and antioxidant status of sows. A total of 12 sows (Landrace×Yorkshire) with same pregnancy were randomly divided into two groups; each group was replicated six times. These two groups received the same basal gestation and lactation diets containing 0.042 mg Se/kg, supplemented with 0.3 mg Se/kg sodium selenite or selenomethionine (i.e., seneno-dl-methylseleno), respectively. The feeding trial lasted for 60 days, with 32 and 28 days for gestation and lactation period, respectively. Compared with sodium selenite, maternal selenomethionine intake significantly increased (P < 0.05) the weaning litter weight and average weight of piglet. The Se concentration in the serum, colostrum, and milk of sows were significantly higher (p < 0.05) in the selenomethionine-treated group. The antioxidant status was greatly improved in sows of selenomethionine-treated group and was illuminated by the increased total antioxidant capability (T-AOC; P < 0.05) and decreased malondialdehyde (MDA; P < 0.01) level in the serum of sows, increased T-AOC (P < 0.05), glutathione (GSH) peroxidase (P < 0.05), superoxide dismutase (P < 0.05) and GSH (P < 0.05), and MDA (P < 0.05) level in the colostrum and milk of sows. These results suggested that maternal selenomethionine intake improved Se concentration and antioxidant status of sows, thus maintain maternal health and increase productive performance after Se was transferred to its offspring.  相似文献   

20.
A 42-day experiment was conducted to compare the effects of various levels of sodium selenite (SS) and Se-enriched yeast (SY) on chicken productivity, carcass traits, and breast Se concentration. Six hundred 1-day-old Cobb 500 broiler chicks were placed on 1 of 6 experimental treatments. The treatments consisted of feeding a diet without Se supplementation (basal diet) or basal diet with 0.6 mg/kg supplemented Se supplied by SS, SY, or a mix of the two (0.45 SS + 0.15 SY; 0.3 SS + 0.3 SY; 0.15 SS + 0.45 SY). Chicks in all Se-supplemented treatments had significantly higher final body weight and eviscerated weight than those on the basal diet (P < 0,05) and no significant differences were observed among selenium source (P < 0.05). Also, chicks in all Se-supplemented treatments had significantly higher Se contents in breast tissue than the control group (P < 0.05). Replacing SS by SY in the broiler diets resulted in increased concentrations of Se in the breast (P < 0.01). Strong correlations were found between breast Se concentrations and the level of SY supplementation of the broiler diet (r = 0.992). The results from this experiment indicate that SY is a superior source of selenium for the production of selenized meat, and can be used, without any detrimental effect on chicken performance, for adding nutritional value to broiler meat and thus safely improving human selenium intake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号