首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Native to Japan, Fallopia japonica, most frequently referred to as Japanese knotweed, is a highly problematic invasive weed, particularly in the UK and North America. During surveys for natural enemies of this plant in Japan, two species of Mycosphaerella were collected. One of these was identified as M. polygoni-cuspidati, and is redescribed and neotypified. Causing a damaging leaf spot disease of F. japonica throughout its natural range in Japan, it is absent from the host’s exotic range. The restriction of M. polygoni-cuspidati to F. japonica in its center of origin, together with its severe impact on host fitness, indicates that this is a coevolved natural enemy with high potential as a classical biological control agent for the long-term management of this ecologically and economically important weed. In the field, the fungus has a reduced life cycle, with only spermogonia and pseudothecia (ascomata) being formed. Ascospores are the primary source of infection, and studies show that the mycelium from in vitro cultures is also infective and hyphae penetrate mainly via the stomata. A further, undescribed species of Mycosphaerella co-occurs with M. polygoni-cuspidati, here proposed as the new species M. shimabarensis. Both species have been studied using cultural, morphological and molecular phylogenetic methods.  相似文献   

2.
Russian thistle (Salsola tragus, tumbleweed, RT) is a problematic invasive weed in the United States (U.S.) and is a target of biological control efforts. The facultative saprophytic fungus Colletotrichum salsolae (CS) kills RT plants in greenhouse tests and is specific to Salsola spp., which are not native in the U.S. However, the effectiveness of CS in controlling RT has not been previously demonstrated. The objectives of this study were to determine in field tests: (1) disease progress of CS in time; (2) the relationship of disease progress to rainfall and temperature; (3) the effect of CS on RT plant density. Field tests were established in Serres and Kozani, Greece and Taman and Tuzla, Russia with isolates of the pathogen collected in the respective countries. Solid inoculum was prepared by asceptically inoculating sterile mixtures of grain and grain hulls with axenic cultures of CS. Spore suspensions used in Russia were prepared by blending pure sporulating cultures of CS with distilled water and diluting the suspension to 106 conidia per ml. Six field plots, each subdivided into 36 subplots, of an RT infested field in Serres, Greece were inoculated on October 23, 2006 by placing about 300 g of solid inoculum in the center of each plot. Four field plots, similarly subdivided, in each of two fields at Kozani, Greece were inoculated in the same way on October 1, 2010. RT density was counted and recorded in each sub-plot prior to inoculation and in September in each of 2 years following inoculation. Disease incidence and/or severity in each sub-plot were recorded at about 7-days intervals after inoculation. Rainfall and temperature data, from inoculation until 40–55 days after inoculation, were collected and recorded at Serres and at the Kozani airport meteorological station. Disease progressed rapidly at both sites and was correlated with cumulative rainfall. By 2 years after inoculation, RT had been eliminated from the Serres site and one field in Kozani. In the other Kozani field, RT density declined to 0–25% from original densities of about 80% in large areas of the field. RT plants in Taman and Tuzla, Russia were inoculated either with 250 g of grain inoculum or with a suspension of 106 conidia sprayed onto each plant until runoff. The proportion of diseased tissue reached 1.0 by 55 days after inoculation in both sites. Non-inoculated plants that were near inoculated plants became diseased quickly and reached the same disease severity as inoculated plants. Disease severity was correlated with cumulative rainfall but not temperature. This pathogen and inoculation procedure offers a low-cost solution to RT infestations. Since CS is specific to Salsola spp., this effective biological control is also environmentally friendly.  相似文献   

3.
Invasive species of the knotweed complex (Fallopia sp.) have repeatedly been shown to decrease diversity of native local biota. While effects on plant species richness are well established, effects on invertebrate and in particular gastropod species richness are less well understood. We recorded cover of plant species and diversity and abundance of gastropod species in four plots (1 m × 1 m) with Fallopia japonica and compared these to paired control plots without F. japonica at 15 sites along the river Birs (Switzerland) in early summer (June) and autumn (September). Knotweed and control plots did not differ in site characteristics and soil parameters.Average plant species richness in F. japonica plots was 50% lower compared to control plots. This reduction was significant for woody species as well as for herbaceous species. However, species richness of early flowering annuals did not differ significantly. Among the species most affected by knotweed were hop (Humulus lupulus) and European spindle tree (Euonymus europaeus) but also stand-forming species such as nettle (Urtica dioica) or ground elder (Aegopodium podagraria).Average snail species richness was significantly reduced in F. japonica plots. The reduction was pronounced in large (≥5 mm shell size) and long-lived (>2 years) snail species but not in slugs or small and short-lived snails. For example, large snails such as the Roman snail (Helix pomatia, ?85%) or the red-listed species Bradybaena fruticum (?93%), showed reduced abundances in F. japonica compared to control plots. In contrast, the red-listed but small Vertigo pusilla (+92%) had higher abundances in F. japoinca plots. Principal component analyses revealed little overlap in plant communities or community composition of large snail species between F. japonica and control plots. Taken together, knotweed invasion decreased the cover of most plant species and abundance of large and long-lived gastropods.  相似文献   

4.
《Biological Control》2007,40(3):539-546
A thermogradient apparatus was used to investigate the effect of variable dew temperatures on infection of green foxtail by the indigenous pathogen Pyricularia setariae (Ps) and the exotic pathogens Drechslera gigantea (Dg), and Exserohilum rostratum (Er) from the southern USA that showed bioherbicide potential against several grassy weeds. This device is capable of creating multiple diurnal temperature cycles, mimicking daily temperature fluctuations that occur under field conditions. Seven temperature regimes, i.e., 15/10 °C, 20/5 °C, 20/15 °C, 25/10 °C, 25/20 °C, 30/15 °C, and 30/25 °C (maximum/minimum), were used with temperature cycling from maximum to minimum and then back up to maximum in a 24 h period. Ps and Dg were much more virulent than Er on green foxtail, resulting in higher levels of disease and weed control. Dg was little affected by the dew temperatures in terms of plant infection and was more efficacious than Ps under cooler dew temperatures (15/10 °C and 20/5 °C), causing twice as much disease. This greater amount of disease coincided with higher conidial germination, appressorial formation and infection-hypha frequency by Dg at the lower temperatures. The efficacy of Ps improved as dew temperature increased, accompanied by a higher percentage of germination and more frequent appressorial production. Dg caused severe disease 2 d after inoculation whereas Ps required 4 d to initiate disease symptoms. These observations suggest that Dg is a superior candidate than Ps for green foxtail control on the Canadian prairies.  相似文献   

5.
Canada thistle (Cirsium arvense) is one of the worst weeds in temperate areas of the world. A rust fungus, Puccinia punctiformis, was first proposed as a biological control agent for C. arvense in 1893. The rust causes systemic disease which ultimately kills C. arvense plants. In 2013 it was demonstrated in four countries, that inoculation of C. arvense rosettes in the fall with ground telia-bearing leaves can initiate epidemics of systemic rust disease with an average of 28% of inoculated rosettes producing a systemically diseased shoot the following spring. Other rosettes that emerged near inoculation points in spring were stunted and appeared diseased. To determine whether other rosettes were diseased, a chemiluminescence western slot blot test, applying polyclonal antibodies raised against P. punctiformis antigens, was developed to detect the fungus in roots. Rosettes were inoculated with telia-bearing leaves in the fall in Maryland, USA and Veroia, Greece. Roots of asymptomatic rosettes that emerged adjacent to inoculation points the following spring were tested for the presence of the fungus with the slot blot test. Rosettes that had diseased shoots were recorded. Based on the slot blot tests, 50–60% of the asymptomatic rosettes adjacent to inoculation points were positive for presence of the rust and likely to be systemically diseased. To demonstrate that systemic disease leads to C. arvense decline, C. arvense shoot densities were measured annually at 10 sites, in three countries, that had been inoculated with telia-bearing leaves in the fall between 2008 and 2012. Changes in C. arvense shoot densities over time were calculated. Average reductions in C. arvense density across the 10 sites were 43.1 ± 10.0% at 18 months after inoculation, 63.8 ± 8.0% at 30 months after inoculation, and 80.9 ± 16.5% at 42 months after inoculation, and 72.9 ± 27.2% at 54 months after inoculation; the 54 month reduction was, however, based on only two sites.  相似文献   

6.
The interaction between Meloidogyne incognita (race 2) and Rhizoctonia solani (AG 4) in a root rot disease complex of green beans (Phaseolus vulgaris) was examined in a greenhouse pot experiment. Three week-old seedlings (cv. Contender) were inoculated with the nematode and/or the fungus in different combinations and sequences. Two months after last nematode inoculation, the test was terminated and data were recorded. The synchronized inoculation by both pathogens (N + F) increased the index of Rhizoctonia root rot and the number of root galls; and suppressed plant growth, compared to controls. However, the severity of root rot and suppression of plant growth were greater and more evident when inoculation by the nematode preceded the fungus (N  F) by two weeks. Nematode reproduction (eggs/g root) was adversely affected by the presence of the fungus except by the synchronized inoculation. When inoculation by nematode preceded the fungus, plant growth was severely suppressed and roots were highly damaged and rotted leading to a decrease of root galls and eggs.  相似文献   

7.
The aim of this study was to determine the efficacy of dietary administration of Lactobacillus pentosus PL11 on growth performance and the immune and antioxidant systems in Japanese eel Anguilla japonica challenged with Edwardsiella tarda. A total of 75 Japanese eels (24.63 ± 0.83 g) were grouped into 5 treatment diets which were a control diet (C) without E. tarda and 4 treatment diets with E. tarda challenge, including C for E. tarda challenge (NC), C plus L. pentosus PL11 supplemented diet (108 cfu g?1) (T-PL11), C plus L. pentosus KCCM 40997 supplemented diet (108 cfu g?1) (T-Lp) and C plus Weissella hellenica DS-12 supplemented diet (108 cfu g?1) (T-Wh) for 5 weeks (4 week before and 1 week after challenge). The results showed enhanced growth performance in fish fed the diet containing L. pentosus PL11 compared to others. The growth performance parameters including specific growth rate (SGR) and weight gain (WG), feed intake (FI), feed conversion ratio (FCR) and survival were significantly (P < 0.05) higher in fish maintained on L. pentosus PL11 supplemented diet compared to C and NC. T-PL11 group also shows a significant increase in the levels of plasma immunoglobulin M, CAT and SOD activities compared to NC. Hematological parameters and mieloperoxidase were significantly better in fish fed the L. pentosus PL11 supplemented diet than in the control. L. pentosus PL11 supplementation recover the reduced expression of SOD, CAT and heat shock protein 70 genes in liver and intestine in pathogen challenged fishes. In conclusion the result of the current study demonstrated L. pentosus PL11 potential as an alternative to antibiotic supplementation to improve the growth and health performance of Japanese eel (A. japonica).  相似文献   

8.
Popillia quadriguttata (Fabricius), and Protaetia brevitarsis (Lewis) adults were captured with Japanese beetle, Popillia japonica Newman, sex attractant and floral lures at Changchun, China during July–August 2012. The floral lure (phenethyl propionate:eugenol:geraniol, 3:7:3) was attractive to male and female P. quadriguttata (AV: 1.2 ± 0.9; 1.1 ± 0.3; total: 2.3 ± 0.8), and was similar in attraction to the combination of the sex attractant (SA) [(R, Z)-5-(1-decenyl) dihydro-2(3H)-furanone] plus the floral lure for male (1.60 ± 0.2), female (1.30 ± 1.1) and total captures (2.9 ± 3.0). However, the SA alone captured only males in much higher numbers than when combined with the floral lure (10.0 ± 6.4). In a separate earlier test, the greatest number of P. quadriguttata males (12.5 ± 3.0), female (12.2 ± 1.5) and total captures (24.7 ± 2.5) was in yellow, laboratory-made, bottle traps. The floral lure also attracted female Pro. brevitarsis (10.0 ± 3.4), while the SA attracted only few male beetles (1.0 ± 0.2). The combination SA + floral lure captured similar females (11.0 ± 2.0) and total (14.2 ± 2.2) Pro. brevitarsis as the floral lure alone. Two butterflies, Colias erate poliographus (Motschulsky) and Pieris rapae (Linnaeus), were also attracted to the floral lure. These studies indicate a potential for replacing pesticides by using the Japanese beetle lures for monitoring and control of several insects in China, and that they would be useful in monitoring and eradication of two potential scarab pests, P. quadriguttata and Pro. brevitaris, in the United States and Europe.  相似文献   

9.
The protozoan pathogen Trypanosoma cruzi, the causative agent of Chagas disease, encodes an α-class carbonic anhydrase (CA, EC 4.2.1.1), TcCA, which was recently shown to be crucial for its life cycle. Thiols, a class of strong TcCA inhibitors, were also shown to block the growth of the pathogen in vitro. Here we report the inhibition of TcCA by inorganic and complex anions and other molecules interacting with zinc proteins, such as sulfamide, sulfamic acid, phenylboronic/arsonic acids. TcCA was inhibited in the low micromolar range by iodide, cyanate, thiocyanate, hydrogensulfide and trithiocarbonate (KIs in the range of 44–93 μM), but the best inhibitor was diethyldithiocarbamate (KI = 5 μM). Sulfamide showed an inhibition constant of 120 μM, but sulfamic acid was much less effective (KI of 10.6 mM). The discovery of diethyldithiocarbamate as a low micromolar TcCA inhibitor may be useful to detect leads for developing anti-Trypanosoma agents with a diverse mechanism of action compared to clinically used drugs (benznidazole, nifurtimox) for which significant resistance emerged.  相似文献   

10.
《Biological Control》2008,47(3):391-399
Greenhouse and laboratory experiments were conducted with the potential bioherbicides Colletotrichum graminicola (Cg) and Gloeocercospora sorghi (Gs) for control of shattercane weed. Single-spray tank mixture applications containing different ratios of the two fungi resulted in additive percent weed biomass losses. Intraspecific (Cg + Cg or Gs + Gs) and interspecific (Cg + Gs or Gs + Cg) sequential applications 1- or 7-days apart indicated antagonistic interactions in percent biomass loss. Application of either fungus with, or 1–3 days prior to, a sub-lethal concentration of glyphosate resulted in an antagonistic percent biomass loss; while application of glyphosate prior to either potential bioherbicide resulted in a synergistic weed disease response. Conidia germination studies conducted both in vitro on agar plates and with leaf impression peels suggest that antagonistic interactions observed in weed disease severity are probably due to the host–pathogen response following infection.  相似文献   

11.
Fusarium culmorum can cause Fusarium head blight (FHB) disease of cereals, resulting in yield loss and contamination of grain with the trichothecene mycotoxin, deoxynivalenol (DON). In this study, we compared the efficacy of a biological control agent (Pseudomonas fluorescens strain MKB 158) with the biochemical chitosan (the deacetylated derivative of chitin) in controlling FHB disease of wheat and barley. Both agents were equally effective in reducing DON contamination of grain caused by F. culmorum. Under both glasshouse and field conditions, treatment with commercially available crabshell-derived chitosan reduced the severity of FHB symptom development on wheat and barley by ?74% (P ? 0.050). While treatment with P. fluorescens reduced the severity of FHB symptom development on these cereals by ?48% (P ? 0.050). Chitosan and P. fluorescens respectively prevented ?58 and ?35% of the FHB-associated reductions in 1000-grain weight in wheat and barley (P ? 0.050). Both agents significantly reduced the DON content of wheat and barley under both glasshouse and field conditions (P ? 0.050) and were equally efficacious in doing so (?74 and ?79% reductions due to chitosan and P. fluorescens, respectively). Crude chitin extracts from crabshells and crude chitosan-based formulations prepared from crabshells and eggshells were also tested under field conditions, but were not as effective as the commercial crabshell-derived preparation in controlling FHB disease. This is the first report on the use of chitosan for the control of Fusarium head blight disease and DON contamination of grain.  相似文献   

12.
Systemic disease of Cirsium arvense caused by Puccinia punctiformis depends on teliospores, from telia that are formed from uredinia, on C. arvense leaves. Uredinia result from infection of the leaves by aeciospores which are one main source of dispersal of the fungus. However, factors governing aeciospore spread, germination, infection, and conversion to uredinia and telia have not been extensively investigated. In this study, effective spread of aeciospores from a source area in a field was fitted to an exponential decline model with a predicted maximum distance of spread of 30 m from the source area to observed uredinia on one leaf of one C. arvense shoot. However, the greatest number of shoots bearing leaves with uredinia/telia was observed within 12 m of the source area, and there were no such shoots observed beyond 17 m from the source area. Aeciospore germination under laboratory conditions was low, with a maximum of about 10%. Temperatures between 18 °C and 25 °C were most favorable for germination with maximum germination at 22 °C. Temperature and dew point data collected from the Frederick, MD airport indicated that optimum temperatures for aeciospore germination occurred in late spring from about May 18 to June 20. Dew conditions during this period were favorable for aeciospore germination. A total of 122 lower leaves, 2 per shoot, on 61 C. arvense shoots were individually inoculated in a dew tent in a greenhouse by painting suspensions of aeciospores onto the leaves. Of these inoculated leaves, 47 produced uredinia within an average of 21.2 ± 6.9 days after inoculation. Uredinia were also produced, in the absence of dew, on 17 non-inoculated leaves of 12 shoots. These leaves were up to 4 leaves above leaves on the same shoots that had been individually and separately inoculated. Results of PCR tests for the presence of the fungus in non-inoculated leaves that were not bearing uredinia, showed that 44 leaves above inoculated leaves on 27 shoots were positive for the presence of the fungus. These leaves were up to 5 leaves above inoculated leaves on the same shoot. Uredinia production and positive PCR results on leaves above inoculated leaves on the same shoot indicated that aeciospore infection was weakly systemic. In other tests in which all leaves of plants were spray-inoculated with aeciospores, uredinia were produced by 10 days after inoculation and converted to telia and sole production of teliospores in about 63 days after inoculation. Successful systemic aeciospore infections in late spring would be expected to result in uredinia production in excess of a 1:1 ratio of aeciospore infections to uredinia and ultimately telia production in late summer. In this manner, systemic aeciospore infections would promote increased density of telia that lead to systemic infections of roots in the fall.  相似文献   

13.
《Biological Control》2010,55(3):172-180
The efficacy of Aureobasidium pullulans PL5 against different postharvest pathogens of fruits (Monilinia laxa on plums and peaches, Botrytis cinerea and Penicillium expansum on apples) were evaluated under storage conditions when applied at 108 cells ml−1 and their interactions were studied in vitro and in vivo to discover the possible modes of action. Under 1.2 °C and 95% relative humidity (RH) for 28 days, the efficacy of PL5 against M. laxa on plums was 45%, reducing disease incidence from 78% to 43%. Under 1 °C and 95% RH for 21 days, the efficacy against M. laxa on peaches was 63%, reducing disease incidence from 79% to 29%. Under 4 °C and 95% RH for 45 days, the efficacy against B. cinerea and P. expansum on apples was 56% and 46%, respectively. In Lilly–Barnett minimal salt medium with the fungal cell walls of pathogens as sole carbon source, PL5 produced β-1,3-glucanase, exo-chitinase and endo-chitinase. Nutrient concentrations had significant effect on pathogen growth reduction by PL5. No attachment was observed in antagonist–pathogen interactions in vitro or in vivo. PL5 completely inhibited pathogen spore germination in PDB at 108 cells ml−1, whereas at 106 cells ml−1 the efficacy was significantly decreased. However, inactivated cells and culture filtrate of PL5 had no effect on pathogen spore germination and germ tube elongation. Our results showed that A. pullulans PL5 could be introduced in commercial formulations to control postharvest pathogens on fruits and its activity was based on secretion of lytic enzymes and competition for nutrients.  相似文献   

14.
Marine toxic dinoflagellates of the genus Gambierdiscus are the causative agents of ciguatera fish poisoning (CFP), a form of seafood poisoning that is widespread in tropical, subtropical and temperate regions worldwide. The distributions of Gambierdiscus australes, Gambierdiscus scabrosus and two phylotypes of Gambierdiscus spp. type 2 and type 3 have been reported for the waters surrounding the main island of Japan. To explore the bloom dynamics and the vertical distribution of these Japanese species and phylotypes of Gambierdiscus, the effects of light intensity on their growth were tested, using a photoirradiation-culture system. The relationship between the observed growth rates and light intensity conditions for the four species/phylotypes were formulated at R > 0.92 (p < 0.01) using regression analysis and photosynthesis-light intensity (P-L) model. Based on this equation, the optimum light intensity (Lmax) and the semi-optimum light intensity range (Ls-opt) that resulted in the maximum growth rate (μmax) and ≥80% μ max values of the four species/phylotypes, respectively, were as follows: (1) the Lmax and Ls-opt of G. australes were 208 μmol photons m−2 s−1 and 91–422 μmol photons m−2 s−1, respectively; (2) those of G. scabrosus were 252 and 120–421 μmol photons m−2 s−1, respectively; (3) those of Gambierdiscus sp. type 2 were 192 and 75–430 μmol photons m−2 s−1, respectively; and (4) those of Gambierdiscus sp. type 3 were ≥427 and 73–427 μmol photons m−2 s−1, respectively. All four Gambierdiscus species/phylotypes required approximately 10 μmol photons m−2 s−1 to maintain growth. The light intensities in coastal waters at a site in Tosa Bay were measured vertically at 1 m intervals once per season. The relationships between the observed light intensity and depth were formulated using Beer’s Law. Based on these equations, the range of the attenuation coefficients at Tosa Bay site was determined to be 0.058–0.119 m−1. The values 1700 μmol photons m−2 s−1, 500 μmol photons m−2 s−1, and 200 μmol photons m−2 s−1 were substituted into the equations to estimate the vertical profiles of light intensity at sunny midday, cloudy midday and rainy midday, respectively. Based on the regression equations coupled with the empirically determined attenuation coefficients for each of the four seasons, the ranges of the projected depths of Lmax and Ls-opt for the four Gambierdiscus species/phylotypes under sunny midday conditions, cloudy midday conditions, and rainy midday conditions were 12–38 m and 12–54 m, 1–16 m and 1–33 m, and 0 m and 0–16 m, respectively. These results suggest that light intensity plays an important role in the bloom dynamics and vertical distribution of Gambierdiscus species/phylotypes in Japanese coastal waters.  相似文献   

15.
Hsp70(241–258), an octadecapeptide derived from the heat shock protein 70 (Hsp70) of rice (Oryza sativa L. japonica), is a novel cationic α-helical antimicrobial peptide (AMP) that contains four lysine, two arginine, and two histidine residues. The antimicrobial activity of Hsp70(241–258) against Porphyromonas gingivalis, a periodontal pathogen, and Candida albicans, an opportunistic fungal pathogen, was quantitatively evaluated using a chemiluminescence method that measures ATP derived from viable cells. The 50% growth-inhibitory concentrations of Hsp70(241–258) against P. gingivalis and C. albicans cells were 63 μM and 70 μM, respectively. Hsp70(241–258) had little or no hemolytic activity even at 1 mM, and showed negligible cytotoxicity up to 300 μM. The degrees of calcein leakage from large unilamellar vesicles, which mimic the membranes of Gram-negative bacteria, and 3,3′-dipropylthiadicarbocyanine iodide release from P. gingivalis cells induced by the addition of Hsp70(241–258) increased in a concentration-dependent manner. When Hsp70(241–258) was added to calcein-acetoxymethyl ester-loaded C. albicans cells, calcein release from the cells increased in a concentration-dependent manner. Flow cytometric analysis also showed that the percentages of C. albicans cells stained with propidium iodide, a DNA-intercalating dye, increased as the concentration of Hsp70(241–258) added was increased. Therefore, Hsp70(241–258) appears to exhibit antimicrobial activity against P. gingivalis and C. albicans through membrane disruption. These results suggest that Hsp70(241–258) could be useful as a safe and potent AMP against P. gingivalis and C. albicans in many fields of health care, especially in the control of oral infections.  相似文献   

16.
《Inorganica chimica acta》2006,359(4):1275-1281
Two new complexes of composition [Cu(2-NO2bz)2(3-pyme)2(H2O)2] (1) and/or [Cu{3,5-(NO2)2bz}2(3-pyme)2] (2) (3-pyme = 3-pyridylmethanol, ronicol or 3-pyridylcarbinol, 2-NO2bz = 2-nitrobenzoate and 3,5-(NO2)2bz = 3,5-dinitrobenzoate) have been prepared and studied by elemental analysis, electronic, infrared and EPR spectroscopy, magnetic susceptibility measurements and the structure of both complexes has been solved. Complex (1) shows an unusual molecular type of structure consisting of the [Cu(2-NO2bz)2(3-pyme)2(H2O)2] molecules held together by hydrogen bonds and van der Waals interactions. Complex (2) exhibits a polymeric chain-like structure [Cu{3,5-(NO2)2bz}2(3-pyme)2]n with copper atoms doubly bridged by two 3-pyridylmethanol molecules and the polymeric molecules are held together by van der Waals interactions. Complex (1) exhibits a magnetic moment μeff = 1.84 B.M. at 300 K that remains nearly constant within the temperature region (5–300 K). Further cooling results in lowering the magnetic moment to μeff = 1.82 B.M. at 1.8 K. The magnetic susceptibility temperature dependence obeys Curie–Weiss law with Curie constant of 0.423 cm3 K mol−1 and with Weiss constant of −0.06 K. The magnetic moment of (2) exhibits a small increase with a decrease in the temperature (μeff = 1.80 B.M. at 300 K and μeff = 1.85 B.M. at 1.8 K) with Curie constant of 0.409 cm3 K mol−1 and with Weiss constant of +1.1 K, which can indicate a very weak ferromagnetic interaction between the copper atoms within the chain. Applying the molecular field model resulted in obtaining zJ′ values −0.08 cm−1 for complex (1), and −0.07 cm−1 for complex (2), respectively, that could characterize intermolecular and interchain interactions transmitted through π–π stacking.  相似文献   

17.
The alkaloid rich extracts from an acid/base extraction of bulb material of Haemanthus coccineus L., H. montanus Baker and H. sanguineus Jacq. revealed that two montanine type Amaryllidaceae alkaloids, montanine (1) and coccinine (2) were the major alkaloid constituents. Together these two alkaloids constituted 88, 91 and 98% of the total alkaloid extract from each species respectively. GC–MS analysis revealed that H. coccineus and H. sanguineus had a relative abundance of coccinine (74 and 91% respectively) to montanine (14 and 7% respectively); whereas H. montanus had 20% coccinine and 71% montanine. The three extracts and two isolated alkaloids were evaluated for binding to the serotonin transporter protein (SERT) in vitro. Affinity to SERT was highest in H. coccineus (IC50 = 2.0 ± 1.1 μg/ml) followed by H. montanus (IC50 = 6.8 ± 1.0 μg/ml) and H. sanguineus (IC50 = 28.7 ± 1.1 μg/ml). Montanine (IC50 = 121.3 ± 3.6 μM or 36.56 ± 1.14 μg/ml; Ki = 66.01 μM) was more active than coccinine (IC50 = 196.3 ± 3.8 μM or 59.15 ± 1.08 μg/ml; Ki = 106.8 μM), both of which were less active than the total alkaloid extracts of each species investigated. The possible synergistic effects of two coccinine/montanine mixtures (80:20 and 20:80) were investigated, however the mixtures gave similar activities as the pure compounds and did not show any increase in activity or activity similar to the total alkaloid extracts. Thus the considerably higher activity observed in the total alkaloid extracts is not correlated to the relative proportions of coccinine and montanine in the extracts and thus are likely to be due to more potent unidentified minor constituents. Both alkaloids exhibited low binding affinity to P-glycoprotein (P-gp) as demonstrated by low inhibition of calcein-AM efflux in the MDCK-MDR1 cell line. This indicates that P-gp efflux will not be limiting for blood–brain-barrier passage of the alkaloids.  相似文献   

18.
A series of novel 2-(phenylaminocarbonylmethylthio)-6-(2,6-dichlorobenzyl)-pyrimidin-4(3H)-ones have been designed and synthesized. All of the new compounds were evaluated for their anti-HIV activities in MT-4 cells. Most of these new compounds showed moderate to potent activities against wild-type HIV-1 with an EC50 ranging from 4.48 μM to 0.18 μM. Among them, 2-[(4-bromophenylamino)carbonylmethylthio]-6-(2,6-dichlorobenzyl)-5-methylpyrimidin-4(3H)-one 4b3 was identified as the most promising compound (EC50 = 0.18 ± 0.06 μM, CC50 >243.56 μM, SI >1326). The structure–activity relationship (SAR) of these new congeners is discussed.  相似文献   

19.
Secoisolariciresinol diglucosides (SDGs) (S,S)-SDG-1 (major isomer in flaxseed) and (R,R)-SDG-2 (minor isomer in flaxseed) were synthesized from vanillin via secoisolariciresinol (6) and glucosyl donor 7 through a concise route that involved chromatographic separation of diastereomeric diglucoside derivatives (S,S)-8 and (R,R)-9. Synthetic (S,S)-SDG-1 and (R,R)-SDG-2 exhibited potent antioxidant properties (EC50 = 292.17 ± 27.71 μM and 331.94 ± 21.21 μM, respectively), which compared well with that of natural (S,S)-SDG-1 (EC50 = 275.24 ± 13.15 μM). These values are significantly lower than those of ascorbic acid (EC50 = 1129.32 ± 88.79 μM) and α-tocopherol (EC50 = 944.62 ± 148.00 μM). Compounds (S,S)-SDG-1 and (R,R)-SDG-2 also demonstrated powerful scavenging activities against hydroxyl [natural (S,S)-SDG-1: 3.68 ± 0.27; synthetic (S,S)-SDG-1: 2.09 ± 0.16; synthetic (R,R)-SDG-2: 1.96 ± 0.27], peroxyl [natural (S,S)-SDG-1: 2.55 ± 0.11; synthetic (S,S)-SDG-1: 2.20 ± 0.10; synthetic (R,R)-SDG-2: 3.03 ± 0.04] and DPPH [natural (S,S)-SDG-1: EC50 = 83.94 ± 2.80 μM; synthetic (S,S)-SDG-1: EC50 = 157.54 ± 21.30 μM; synthetic (R,R)-SDG-2: EC50 = 123.63 ± 8.67 μM] radicals. These results confirm previous studies with naturally occurring (S,S)-SDG-1 and establish both (S,S)-SDG-1 and (R,R)-SDG-2 as potent antioxidants and free radical scavengers for potential in vivo use.  相似文献   

20.
Temperature is one of the most important environmental factors, and is responsible for a variety of physiological stress responses in organisms. Induced thermal stress is associated with elevated reactive oxygen species (ROS) generation leading to oxidative damage. The ladybeetle, Propylaea japonica (Thunberg) (Coleoptera: Coccinellidae), is considered a successful natural enemy because of its tolerance to high temperatures in arid and semi-arid areas in China. In this study, we investigated the effect of high temperatures (35, 37, 39, 41 and 43 °C) on the survival and activities of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), peroxidases (POD), glutathione-S-transferases (GST), and total antioxidant capacity (TAC) as well as malondialdehyde (MDA) concentrations in P. japonica adults. The results indicated that P. japonica adults could not survive at 43 °C. CAT, GST and TAC were significantly increased when compared to the control (25 °C), and this played an important role in the process of antioxidant response to thermal stress. SOD and POD activity, as well as MDA, did not differ significantly at 35 and 37 °C compared to the control; however, there were increased levels of SOD, POD and MDA when the temperature was above 37 °C. These results suggest that thermal stress leads to oxidative stress and antioxidant enzymes play important roles in reducing oxidative damage in P. japonica adults. This study represents the first comprehensive report on the antioxidant defense system in predaceous coccinellids (the third trophic level). The findings provide useful information for predicting population dynamics and understanding the potential for P. japonica as a natural enemy to control pest insects under varied environmental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号