首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Degradation of proteins via the ubiquitin system is an important step in many stress signaling pathways in plants. E3 ligases recognize ligand proteins and dictate the high specificity of protein degradation, and thus, play a pivotal role in ubiquitination. Here, we identified a gene, named Arabidopsis thaliana abscisic acid (ABA)‐insensitive RING protein 4 (AtAIRP4), which is induced by ABA and other stress treatments. AtAIRP4 encodes a cellular protein with a C3HC4‐RING finger domain in its C‐terminal side, which has in vitro E3 ligase activity. Loss of AtAIRP4 leads to a decrease in sensitivity of root elongation and stomatal closure to ABA, whereas overexpression of this gene in the T‐DNA insertion mutant atairp4 effectively recovered the ABA‐associated phenotypes. AtAIRP4 overexpression plants were hypersensitive to salt and osmotic stresses during seed germination, and showed drought avoidance compared with the wild‐type and atairp4 mutant plants. In addition, the expression levels of ABA‐ and drought‐induced marker genes in AtAIRP4 overexpression plants were markedly higher than those in the wild‐type and atairp4 mutant plants. Hence, these results indicate that AtAIRP4 may act as a positive regulator of ABA‐mediated drought avoidance and a negative regulator of salt tolerance in Arabidopsis.  相似文献   

3.
4.
Zhang Y  Yang C  Li Y  Zheng N  Chen H  Zhao Q  Gao T  Guo H  Xie Q 《The Plant cell》2007,19(6):1912-1929
Ubiquitination plays important roles in plant hormone signal transduction. We show that the RING finger E3 ligase, Arabidopsis thaliana SALT- AND DROUGHT-INDUCED RING FINGER1 (SDIR1), is involved in abscisic acid (ABA)-related stress signal transduction. SDIR1 is expressed in all tissues of Arabidopsis and is upregulated by drought and salt stress, but not by ABA. Plants expressing the ProSDIR1-beta-glucuronidase (GUS) reporter construct confirmed strong induction of GUS expression in stomatal guard cells and leaf mesophyll cells under drought stress. The green fluorescent protein-SDIR1 fusion protein is colocalized with intracellular membranes. We demonstrate that SDIR1 is an E3 ubiquitin ligase and that the RING finger conservation region is required for its activity. Overexpression of SDIR1 leads to ABA hypersensitivity and ABA-associated phenotypes, such as salt hypersensitivity in germination, enhanced ABA-induced stomatal closing, and enhanced drought tolerance. The expression levels of a number of key ABA and stress marker genes are altered both in SDIR1 overexpression and sdir1-1 mutant plants. Cross-complementation experiments showed that the ABA-INSENSITIVE5 (ABI5), ABRE BINDING FACTOR3 (ABF3), and ABF4 genes can rescue the ABA-insensitive phenotype of the sdir1-1 mutant, whereas SDIR1 could not rescue the abi5-1 mutant. This suggests that SDIR1 acts upstream of those basic leucine zipper family genes. Our results indicate that SDIR1 is a positive regulator of ABA signaling.  相似文献   

5.
Drought stress has detrimental effects on plants. Although the abscisic acid (ABA)‐mediated drought response is well established, defensive mechanisms to cope with dehydration‐induced proteotoxicity have been rarely studied. DRR1 was identified as an Arabidopsis drought‐induced gene encoding an ER‐localized RING‐type E3 Ub ligase. Suppression of DRR1 markedly reduced tolerance to drought and proteotoxic stress without altering ABA‐mediated germination and stomatal movement. Proteotoxicity‐ and dehydration‐induced insoluble ubiquitinated protein accumulation was more obvious in DRR1 loss‐of‐function plants than in wild‐type plants. These results suggest that DRR1 is involved in an ABA‐independent drought stress response possibly through the mitigation of dehydration‐induced proteotoxic stress.  相似文献   

6.
Gao T  Wu Y  Zhang Y  Liu L  Ning Y  Wang D  Tong H  Chen S  Chu C  Xie Q 《Plant molecular biology》2011,76(1-2):145-156
Recent genomic and genetic analyses based on Arabidopsis suggest that ubiquitination plays crucial roles in the plant response to abiotic stress and the phytohormone abscisic acid (ABA). However, few such studies have been reported in rice as a monocotyledonous model plant. Taking advantage of strategies in biochemistry, molecular cell biology and genetics, the RING-finger containing E3 ligase OsSDIR1 (Oryza sativa SALT-AND DROUGHT-INDUCED RING FINGER 1) was found to be a candidate drought tolerance gene for engineering of crop plants. The expression of OsSDIR1 was detected in all tissues of rice and up-regulated by drought and NaCl, but not by ABA. In vitro ubiquitination assays demonstrated that OsSDIR1 is a functional E3 ubiquitin ligase and that the RING finger region is required for its activity. OsSDIR1 could complement the drought sensitive phenotype of the sdir1 mutant and overexpressing transgenic Arabidopsis were more sensitive to ABA, indicating that the OsSDIR1 gene is a functional ortholog of SDIR1. Upon drought treatment, the OsSDIR1-transgenic rice showed strong drought tolerance compared to control plants. Analysis of the stomata aperture revealed that there were more closed stomatal pores in transgenic plants than those of control plants. This result was also confirmed by the water loss assay and leaf related water content (RWC) measurements during drought treatment. Thus, we demonstrated that monocot- and dicot- SDIR1s are conserved yet have diverse functions.  相似文献   

7.
AtSAP5, one of approximately 14 members of the Stress Associated Protein gene family in Arabidopsis, was identified by its expression in response to salinity, osmotic, drought and cold stress. AtSAP5 shows strong homology to OSISAP1, an A20/AN1-type zinc finger protein implicated in stress tolerance in rice. To evaluate the function of AtSAP5 in the regulation of abiotic stress responses, transgenic Arabidopsis plants that over-express AtSAP5 (35S::AtSAP5) were characterized, along with wild-type and T-DNA knock-down plants. Plants that over-express AtSAP5 showed increased tolerance to environmental challenges including salt stress, osmotic stress and water deficit. Comparison of gene expression patterns between 35S::AtSAP5 transgenic plants and wild-type plants under normal conditions and water deficit stress indicated that over-expression of AtSAP5 correlates with up-regulation of drought stress responsive gene expression. Analysis of transgenic plants that express GFP-AtSAP5 showed that it is localized primarily in nuclei of root cells and recombinant AtSAP5 has E3 ubiquitin ligase activity in vitro. These results indicate that AtSAP5 has E3 ligase activity and acts as a positive regulator of stress responses in Arabidopsis.  相似文献   

8.
9.
10.
Seo YS  Choi JY  Kim SJ  Kim EY  Shin JS  Kim WT 《Plant cell reports》2012,31(9):1659-1665
CaRma1H1, an endoplasmic reticulum (ER)-localized hot pepper really interesting new genes (RING) E3 Ub ligase, was previously reported to be a positive regulator of drought stress responses. To address the possibility that CaRma1H1 can be used to improve tolerance to abiotic stress in crop plants, CaRma1H1 was constitutively expressed in transgenic tomato (Solanum lycopersicum) plants. CaRma1H1-overexpressing tomato plants (35S:CaRma1H1) exhibited greatly enhanced tolerance to high-salinity treatments compared with wild-type plants. Leaf chlorophyll and proline contents in CaRma1H1 overexpressors were 4.3- to 8.5-fold and 1.2- to 1.5-fold higher, respectively, than in wild-type plants after 300?mM NaCl treatment. Transgenic cotyledons developed and their roots elongated in the presence of NaCl up to 200?mM. In addition, 35S:CaRma1H1 lines were markedly more tolerant to severe drought stress than were wild-type plants. Detached leaves of CaRma1H1 overexpressors preserved water more efficiently than did wild-type leaves during a rapid dehydration process. The ER chaperone genes LePDIL1, LeBIP1, and LeCNX1 were markedly up-regulated in 35S:CaRma1H1 tomatoes compared with wild-type plants. Therefore, overexpression of CaRma1H1 may enhance tomato plant ER responses to drought stress by effectively removing nonfunctional ubiquitinated proteins. Collectively, constitutive expression of CaRma1H1 in tomatoes conferrred strongly enhanced tolerance to salt- and water-stress. This raises the possibility that CaRma1H1 may be useful for developing abiotic stress-tolerant tomato plants. Key message CaRma1H1 increases drought tolerance in transgenic tomato plants.  相似文献   

11.
12.
13.
Among approximately 480 RING domain-containing E3 Ub ligases in Arabidopsis, three, At3g46620, At5g59550, and At2g39720, have a domain-of-unknown-function (DUF) 1117 motif in their C-terminal regions. At3g46620 and At5g59550 were identified as homologous ABA- and drought-induced RING-DUF1117 genes and were designated AtRDUF1 and AtRDUF2, respectively. Single and double knock-out mutations of AtRDUFs resulted in hyposensitive phenotypes toward ABA in terms of germination rate and stomatal closure and markedly reduced tolerance to drought stress relative to wild-type plants. These results are discussed in the context that AtRDUF1 and AtRDUF2 play combinatorial, but still distinguishable, roles in ABA-mediated dehydration stress responses.  相似文献   

14.
15.
Ubiquitination is a critical post‐translational protein modification that has been implicated in diverse cellular processes, including abiotic stress responses, in plants. In the present study, we identified and characterized a T‐DNA insertion mutant in the At5g10650 locus. Compared to wild‐type Arabidopsis plants, at5g10650 progeny were hyposensitive to ABA at the germination stage. At5g10650 possessed a single C‐terminal C3HC4‐type Really Interesting New Gene (RING) motif, which was essential for ABA‐mediated germination and E3 ligase activity in vitro. At5g10650 was closely associated with microtubules and microtubule‐associated proteins in Arabidopsis and tobacco leaf cells. Localization of At5g10650 to the nucleus was frequently observed. Unexpectedly, At5g10650 was identified as JAV1‐ASSOCIATED UBIQUITIN LIGASE1 (JUL1), which was recently reported to participate in the jasmonate signaling pathway. The jul1 knockout plants exhibited impaired ABA‐promoted stomatal closure. In addition, stomatal closure could not be induced by hydrogen peroxide and calcium in jul1 plants. jul1 guard cells accumulated wild‐type levels of H2O2 after ABA treatment. These findings indicated that JUL1 acts downstream of H2O2 and calcium in the ABA‐mediated stomatal closure pathway. Typical radial arrays of microtubules were maintained in jul1 guard cells after exposure to ABA, H2O2, and calcium, which in turn resulted in ABA‐hyposensitive stomatal movements. Finally, jul1 plants were markedly more susceptible to drought stress than wild‐type plants. Overall, our results suggest that the Arabidopsis RING E3 ligase JUL1 plays a critical role in ABA‐mediated microtubule disorganization, stomatal closure, and tolerance to drought stress.  相似文献   

16.
Abscisic acid (ABA) plays a key role in plant responses to abiotic stress, particularly drought stress. A wide number of ABA-hypersensitive mutants is known, however, only a few of them resist/avoid drought stress. In this work we have generated ABA-hypersensitive drought-avoidant mutants by simultaneous inactivation of two negative regulators of ABA signaling, i.e. the protein phosphatases type 2C (PP2Cs) ABA-INSENSITIVE1 (ABI1) and HYPERSENSITIVE TO ABA1 (HAB1). Two new recessive loss-of-function alleles of ABI1, abi1-2 and abi1-3, were identified in an Arabidopsis (Arabidopsis thaliana) T-DNA collection. These mutants showed enhanced responses to ABA both in seed and vegetative tissues, but only a limited effect on plant drought avoidance. In contrast, generation of double hab1-1 abi1-2 and hab1-1 abi1-3 mutants strongly increased plant responsiveness to ABA. Thus, both hab1-1 abi1-2 and hab1-1 abi1-3 were particularly sensitive to ABA-mediated inhibition of seed germination. Additionally, vegetative responses to ABA were reinforced in the double mutants, which showed a strong hypersensitivity to ABA in growth assays, stomatal closure, and induction of ABA-responsive genes. Transpirational water loss under drought conditions was noticeably reduced in the double mutants as compared to single parental mutants, which resulted in reduced water consumption of whole plants. Taken together, these results reveal cooperative negative regulation of ABA signaling by ABI1 and HAB1 and suggest that fine tuning of ABA signaling can be attained through combined action of PP2Cs. Finally, these results suggest that combined inactivation of specific PP2Cs involved in ABA signaling could provide an approach for improving crop performance under drought stress conditions.  相似文献   

17.
Cho SK  Ryu MY  Song C  Kwak JM  Kim WT 《The Plant cell》2008,20(7):1899-1914
Ubiquitination is involved in diverse cellular processes in higher plants. In this report, we describe Arabidopsis thaliana PUB22 and PUB23, two homologous U-box-containing E3 ubiquitin (Ub) ligases. The PUB22 and PUB23 genes were rapidly and coordinately induced by abiotic stresses but not by abscisic acid. PUB22- and PUB23-overexpressing transgenic plants were hypersensitive to drought stress. By contrast, loss-of-function pub22 and pub23 mutant plants were significantly more drought-tolerant, and a pub22 pub23 double mutant displayed even greater drought tolerance. These results indicate that PUB22 and PUB23 function as negative regulators in the water stress response. Yeast two-hybrid, in vitro pull-down, and in vivo coimmunoprecipitation experiments revealed that PUB22 and PUB23 physically interacted with RPN12a, a subunit of the 19S regulatory particle (RP) in the 26S proteasome. Bacterially expressed RPN12a was effectively ubiquitinated in a PUB-dependent fashion. RPN12a was highly ubiquitinated in 35S:PUB22 plants, but not in pub22 pub23 double mutant plants, consistent with RPN12a being a substrate of PUB22 and PUB23 in vivo. In water-stressed wild-type and PUB-overexpressing plants, a significant amount of RPN12a was dissociated from the 19S RP and appeared to be associated with small-molecular-mass protein complexes in cytosolic fractions, where PUB22 and PUB23 are localized. Overall, our results suggest that PUB22 and PUB23 coordinately control a drought signaling pathway by ubiquitinating cytosolic RPN12a in Arabidopsis.  相似文献   

18.
Plant growth under low water availability adversely affects many key processes with morphological, physiological, biochemical and molecular consequences. Here, we found that a rice gene, OsCTR1, encoding the RING Ub E3 ligase plays an important role in drought tolerance. OsCTR1 was highly expressed in response to dehydration treatment and defense‐related phytohormones, and its encoded protein was localized in both the chloroplasts and the cytosol. Intriguingly, the OsCTR1 protein was found predominantly targeted to the cytosol when rice protoplasts transfected with OsCTR1 were treated with abscisic acid (ABA). Several interacting partners were identified, which were mainly targeted to the chloroplasts, and interactions with OsCTR1 were confirmed by using biomolecular fluorescence complementation (BiFC). Interestingly, two chloroplast‐localized proteins (OsCP12 and OsRP1) interacted with OsCTR1 in the cytosol, and ubiquitination by OsCTR1 led to protein degradation via the Ub 26S proteasome. Heterogeneous overexpression of OsCTR1 in Arabidopsis exhibited hypersensitive phenotypes with respect to ABA‐responsive seed germination, seedling growth and stomatal closure. The ABA‐sensitive transgenic plants also showed improvement in their tolerance against severe water deficits. Taken together, our findings lend support to the hypothesis that the molecular functions of OsCTR1 are related to tolerance to water‐deficit stress via ABA‐dependent regulation and related systems.  相似文献   

19.
Zhang Y  Xu W  Li Z  Deng XW  Wu W  Xue Y 《Plant physiology》2008,148(4):2121-2133
Guard cells, which form stoma in leaf epidermis, sense and integrate environmental signals to modulate stomatal aperture in response to diverse conditions. Under drought stress, plants synthesize abscisic acid (ABA), which in turn induces a rapid closing of stoma, to prevent water loss by transpiration. However, many aspects of the molecular mechanism for ABA-mediated stomatal closure are still not understood. Here, we report a novel negative regulator of guard cell ABA signaling, DOR, in Arabidopsis (Arabidopsis thaliana). The DOR gene encodes a putative F-box protein, a member of the S-locus F-box-like family related to AhSLF-S(2) and specifically interacting with ASK14 and CUL1. A null mutation in DOR resulted in a hypersensitive ABA response of stomatal closing and a substantial increase of drought tolerance; in contrast, the transgenic plants overexpressing DOR were more susceptible to the drought stress. DOR is strongly expressed in guard cells and suppressed by ABA treatment, suggesting a negative feedback loop of DOR in ABA responses. Double-mutant analyses of dor with ABA-insensitive mutant abi1-1 showed that abi1-1 is epistatic to dor, but no apparent change of phospholipase Dalpha1 was detected between the wild type and dor. Affymetrix GeneChip analysis showed that DOR likely regulates ABA biosynthesis under drought stress. Taken together, our results demonstrate that DOR acts independent of phospholipase Dalpha1 in an ABA signaling pathway to inhibit the ABA-induced stomatal closure under drought stress.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号