首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 225 毫秒
1.
GPR41 is reportedly expressed in murine adipose tissue and mediates short chain fatty acid (SCFA)-stimulated leptin secretion by activating Gαi. Here, we agree with a contradictory report in finding no expression of GPR41 in murine adipose tissue. Nevertheless, in the presence of adenosine deaminase to minimise Gαi signalling via the adenosine A1 receptor, SCFA stimulated leptin secretion by adipocytes from wild-type but not GPR41 knockout mice. Expression of GPR43 was reduced in GPR41 knockout mice. Acetate but not butyrate stimulated leptin secretion in wild-type mesenteric adipocytes, consistent with mediation of the response by GPR43 rather than GPR41. Pertussis toxin prevented stimulation of leptin secretion by propionate in epididymal adipocytes, implicating Gαi signalling mediated by GPR43 in SCFA-stimulated leptin secretion.  相似文献   

2.
Short chain fatty acids (SCFAs), including acetate, propionate, and butyrate, are produced at high concentration by bacteria in the gut and subsequently released in the bloodstream. Basal acetate concentrations in the blood (about 100 microm) can further increase to millimolar concentrations following alcohol intake. It was known previously that SCFAs can activate leukocytes, particularly neutrophils. In the present work, we have identified two previously orphan G protein-coupled receptors, GPR41 and GPR43, as receptors for SCFAs. Propionate was the most potent agonist for both GPR41 and GPR43. Acetate was more selective for GPR43, whereas butyrate and isobutyrate were more active on GPR41. The two receptors were coupled to inositol 1,4,5-trisphosphate formation, intracellular Ca2+ release, ERK1/2 activation, and inhibition of cAMP accumulation. They exhibited, however, a differential coupling to G proteins; GPR41 coupled exclusively though the Pertussis toxin-sensitive Gi/o family, whereas GPR43 displayed a dual coupling through Gi/o and Pertussis toxin-insensitive Gq protein families. The broad expression profile of GPR41 in a number of tissues does not allow us to infer clear hypotheses regarding its biological functions. In contrast, the highly selective expression of GPR43 in leukocytes, particularly polymorphonuclear cells, suggests a role in the recruitment of these cell populations toward sites of bacterial infection. The pharmacology of GPR43 matches indeed the effects of SCFAs on neutrophils, in terms of intracellular Ca2+ release and chemotaxis. Such a neutrophil-specific SCFA receptor is potentially involved in the development of a variety of diseases characterized by either excessive or inefficient neutrophil recruitment and activation, such as inflammatory bowel diseases or alcoholism-associated immune depression. GPR43 might therefore constitute a target allowing us to modulate immune responses in these pathological situations.  相似文献   

3.
The expression of GPR41 and 43, which have recently been identified as G-protein-coupled cell-surface receptors for short-chain fatty acids (SCFAs), was detected in a human breast cancer cell line (MCF-7) by RT-PCR. Acetate, propionate and butyrate induced an increase in intracellular Ca2+ in these cells that was not blocked by treatment with pertussis toxin (PTX). SCFAs significantly reduced forskolin-induced cAMP levels in these cells. The phosphorylation of mitogen-activated protein kinase (MAPK) p38 was selectively increased by SCFAs. The downstream substrate heat shock protein 27 (HSP27) was also phosphorylated by SCFAs at Ser-78 and-82, but not-15. Propionate induced elevations in intracellular Ca2+ and the phosphorylation of p38 were inhibited by the silencing of GPR43 using a specific siRNA. These results suggest that GPR41 and 43 mediate SCFA signaling in mammary epithelial cells and thereby play an important role in their stress management.  相似文献   

4.
Docosahexaenoic acid (DHA) is an endogenous ligand of G protein-coupled receptor 120 (GPR120). However, the mechanisms underlying DHA action are poorly understood. In this study, DHA stimulated glucose uptake in the skeletal muscles in an AMP-activated protein kinase (AMPK)-dependent manner. GPR120-mediated increase in intracellular Ca2+ was critical for DHA-mediated AMPK phosphorylation and glucose uptake. In addition, DHA stimulated GLUT4 translocation AMPK-dependently. Inhibition of AMPK and Ca2+/calmodulin-dependent protein kinase kinase blocked DHA-induced glucose uptake. DHA and GW9508, a GPR120 agonist, increased GPR120 expression. DHA-mediated glucose uptake was not observed in GPR120 knockdown conditions. DHA increased AMPK phosphorylation, glucose uptake, and intracellular Ca2+ concentration in primary cultured myoblasts. Taken together, these results indicated that the beneficial metabolic role of DHA was attributed to its ability to regulate glucose via the GPR120-mediated AMPK pathway in the skeletal muscles.  相似文献   

5.
Hexarelin (HEX) is a new synthetic analog of the Growth Hormone releasing peptides and is stronger than GHRH in releasing GH in vivo. No information is available on the effect of food ingestion on HEX-induced GH secretion. On the other hand, we have previously demonstrated that food intake at lunchtime in normal subjects has an inhibitory effect on the GH response to GHRH. The aim of the present study was to investigate the effect of food ingestion on GH secretion induced by HEX as compared to GHRH in six normal men (aged 23-29 years) and six normal women (aged 24-29 years). The body weights for all subjects were within 120% of their ideal body weight, according to their sex and age. Our data confirm that HEX is much more powerful than GHRH in inducing GH release in humans, both in the fasting state (GH-AUC: 3010 +/- 695 after HEX, vs. 1339 +/- 281 after GHRH, microg/L/120 min; p<0.06) and after a meal (GH-AUC: 1523 +/- 121, after HEX, vs. 309 +/- 61, after GHRH, microg/L/120 min; p<0.06). Moreover, our study shows that food intake partially blunts the fasting GH response to HEX (GH-AUC: 3010 +/- 695 after HEX, in fasting state, vs. 1523 +/- 121 after HEX, after meal, microg/L/120 min; p<0.06; mean inhibition of AUC 41.02 +/- 7.96%), whereas it nearly abolishes the GH response to GHRH in the same subjects (GH-AUC: 1339 +/- 281 after GHRH, in fasting state, vs. 309 +/- 61 after GHRH, after meal, microg/L/120 min; p<0.06; mean inhibition of AUC 70.31 +/- 6.22%). In conclusion, our study confirms that HEX acts differently from GHRH; the GH releasing effect of HEX could be only partially influenced by the physiological metabolic or neuroendocrine food-related modifications.  相似文献   

6.
Short chain fatty acids (SCFA) stimulate colonic Na+ absorption and inhibit cAMP and cGMP-mediated Cl- secretion. It is uncertain whether SCFA have equivalent effects on absorption and whether SCFA inhibition of Cl- secretion involves effects on mucosal enzymes. Unidirectional Na+ fluxes were measured across stripped colonic segments in the Ussing chamber. Enzyme activity was measured in cell fractions of scraped colonic mucosa. Mucosal 50 mM acetate, propionate, butyrate and poorly metabolized isobutyrate stimulated proximal colon Na+ absorption equally (300%). Neither 2-bromo-octanoate, an inhibitor of beta-oxidation, nor carbonic anhydrase inhibition affected this stimulation. All SCFA except acetate stimulated distal colon Na+ absorption 200%. Only one SCFA affected proximal colon cGMP phosphodiesterase (PDE) (18% inhibition by 50 mM butyrate). All SCFA at 50 mM stimulated distal colon cAMP PDE (24-43%) and decreased forskolin-stimulated mucosal cAMP content. None of the SCFA affected forskolin-stimulated adenylyl cyclase in distal colon or ST(a)-stimulated guanylyl cyclase in proximal colon. Na+-K+-ATPase in distal colon was inhibited 23-51% by the SCFA at 50 mM. We conclude that all SCFA (except acetate in distal colon) stimulate colonic Na+ absorption equally, and the mechanism does not involve mucosal SCFA metabolism or carbonic anhydrase. SCFA inhibition of cAMP-mediated secretion may involve SCFA stimulation of PDE and inhibition of Na+-K+-ATPase.  相似文献   

7.
Wu J  Zhou Z  Hu Y  Dong S 《遗传学报》2012,39(8):375-384
Butyrate has been recently identified as a natural ligand of the G-protein-coupled receptor 41(GPR41).In addition,it is an inhibitor of histone deacetylase(HDAC).Butyrate treatment results in the hyperacetylation of histones,with resultant multiple biological effects including inhibition of proliferation,induction of cell cycle arrest,and apoptosis,in a variety of cultured mammalian cells.However,it is not clear whether GPR41 is actively involved in the above-mentioned processes.In this study,we generated a stable cell line expressing the hGPR41 receptor in order to investigate the involvement of GPR41 on butyrate-induced biochemical and physiologic processes.We found that GPR41 activation may be a compensatory mechanism to counter the increase in histone H3 acetylation levels induced by butyrate treatment.Moreover,GPR41 had an inhibitory effect on the anti-proliferative,pro-apoptotic effects of butyrate.GPR41 expression induced cell cycle arrest at the G1-stage,while its activation by butyrate can cause more cells to pass the G1 checkpoint.These results indicated that GPR41 was associated with histone acetylation and might be involved in the acetylation-related regulation of cell processes including proliferation,apoptosis,and the cell cycle.  相似文献   

8.
Short chain fatty acids (SCFA) also named volatile fatty acids, mainly acetate, propionate and butyrate, are the major end-products of the microbial digestion of carbohydrates in the alimentary canal. The highest concentrations are observed in the forestomach of the ruminants and in the large intestine (caecum and colon) of all the mammals. Butyrate and caproate released by action of gastric lipase on bovine milk triacylglycerols ingested by preruminants or infants are of nutritional importance too. Both squamous stratified mucosa of rumen and columnar simple epithelium of intestine absorb readily SCFA. The mechanisms of SCFA absorption are incompletely known. Passive diffusion of the unionized form across the cell membrane is currently admitted. In the lumen, the necessary protonation of SCFA anions could come first from the hydration of CO2. The ubiquitous cell membrane process of Na+-H+ exchange can also supply luminal protons. Evidence for an acid microclimate (pH = 5.8-6.8) suitable for SCFA-protonation on the surface of the intestinal lining has been provided recently. This microclimate would be generated by an epithelial secretion of H+ ions and would be protected by the mucus coating from the variable pH of luminal contents. Part of the absorbed SCFA does not reach plasma because it is metabolized in the gastrointestinal wall. Acetate incorporation in mucosal higher lipids is well-known. However, the preponderant metabolic pathway for all the SCFA is catabolism to CO2 except in the rumen wall where about 80% of butyrate is converted to ketone bodies which afterwards flow into bloodstream. Thus, SCFA are an important energy source for the gut mucosa itself.  相似文献   

9.
Short-chain fatty acids (SCFAs) play a regulatory role in various physiological processes in mammals and act as endogenous ligands for the G protein-coupled receptors (GPR) 41 and 43. The role of GPR41 and GPR43 in mediating SCFA signaling in the rabbit remains unclear. The present study was to investigate the sequence of the GPR41 and GPR43 messenger RNA (mRNA) and their expression pattern in different tissues and developmental stages in New Zealand rabbit. Comparison of genomic sequences in GenBank using the Basic Local Alignment Search Tool program suggested that the New Zealand rabbit GPR41 mRNA has high similarities with the human (84%), bovine (84%) and Capra hircus (84%) genes. Similarly, GPR43 mRNA has high similarity with the rat (84%) and mouse (84%) genes. Real-time PCR results indicated that GPR41 and GPR43 mRNA were expressed throughout rabbit’s whole development and were expressed in several tissues. G protein-coupled receptor 41 and GPR43 mRNA were most highly expressed in pancreas (P<0.05) and s.c. adipose tissue (P<0.05), respectively. The expression levels of GPR41 mRNA was down-regulated in duodenum, cecum (P<0.05) and pancreas and up-regulated in jejunum, ileum, adipose tissue and spleen during growth. G protein-coupled receptor 43GPR43 mRNA was highly expressed in the duodenum, jejunum, ileum, colon, cecum and lung at 15th day (P<0.05), whereas the expression levels in the pancreas and spleen increased later after birth, with the highest expression at 60th day (P<0.05).  相似文献   

10.
The L-α-lysophosphatidylinositol (LPI)-sensitive receptor GPR55 is coupled to Ca2+ signaling. Low levels of GPR55 expression in the heart have been reported. Similar to other G protein-coupled receptors involved in cardiac function, GPR55 may be expressed both at the sarcolemma and intracellularly. Thus, to explore the role of GPR55 in cardiomyocytes, we used calcium and voltage imaging and extracellular administration or intracellular microinjection of GPR55 ligands. We provide the first evidence that, in cultured neonatal ventricular myocytes, LPI triggers distinct signaling pathways via GPR55, depending on receptor localization. GPR55 activation at the sarcolemma elicits, on one hand, Ca2+ entry via L-type Ca2+ channels and, on the other, inositol 1,4,5-trisphosphate-dependent Ca2+ release. The latter signal is further amplified by Ca2+-induced Ca2+ release via ryanodine receptors. Conversely, activation of GPR55 at the membrane of intracellular organelles promotes Ca2+ release from acidic-like Ca2+ stores via the endolysosomal NAADP-sensitive two-pore channels. This response is similarly enhanced by Ca2+-induced Ca2+ release via ryanodine receptors. Extracellularly applied LPI produces Ca2+-independent membrane depolarization, whereas the Ca2+ signal induced by intracellular microinjection of LPI converges to hyperpolarization of the sarcolemma. Collectively, our findings point to GPR55 as a novel G protein-coupled receptor regulating cardiac function at two cellular sites. This work may serve as a platform for future studies exploring the potential of GPR55 as a therapeutic target in cardiac disorders.  相似文献   

11.
GPR17 is a G-protein-coupled receptor (GPCR) implicated in the regulation of glucose metabolism and energy homeostasis. Such evidence is primarily drawn from mouse knockout studies and suggests GPR17 as a potential novel therapeutic target for the treatment of metabolic diseases. However, links between human GPR17 genetic variants, downstream cellular signaling, and metabolic diseases have yet to be reported. Here, we analyzed GPR17 coding sequences from control and disease cohorts consisting of individuals with adverse clinical metabolic deficits including severe insulin resistance, hypercholesterolemia, and obesity. We identified 18 nonsynonymous GPR17 variants, including eight variants that were exclusive to the disease cohort. We characterized the protein expression levels, membrane localization, and downstream signaling profiles of nine GPR17 variants (F43L, V96M, V103M, D105N, A131T, G136S, R248Q, R301H, and G354V). These nine GPR17 variants had similar protein expression and subcellular localization as wild-type GPR17; however, they showed diverse downstream signaling profiles. GPR17-G136S lost the capacity for agonist-mediated cAMP, Ca2+, and β-arrestin signaling. GPR17-V96M retained cAMP inhibition similar to GPR17-WT, but showed impaired Ca2+ and β-arrestin signaling. GPR17-D105N displayed impaired cAMP and Ca2+ signaling, but unaffected agonist-stimulated β-arrestin recruitment. The identification and functional profiling of naturally occurring human GPR17 variants from individuals with metabolic diseases revealed receptor variants with diverse signaling profiles, including differential signaling perturbations that resulted in GPCR signaling bias. Our findings provide a framework for structure–function relationship studies of GPR17 signaling and metabolic disease.  相似文献   

12.
We previously reported that human growth hormone (hGH) increases cytoplasmic Ca2+ concentration ([Ca2+]i) and proliferation in pancreatic -cells (Sjöholm Å, Zhang Q, Welsh N, Hansson A, Larsson O, Tally M, and Berggren PO. J Biol Chem 275: 21033–21040, 2000) and that the hGH-induced rise in [Ca2+]i involves Ca2+-induced Ca2+ release facilitated by tyrosine phosphorylation of ryanodine receptors (Zhang Q, Kohler M, Yang SN, Zhang F, Larsson O, and Berggren PO. Mol Endocrinol 18: 1658–1669, 2004). Here we investigated the tyrosine kinases that convey the hGH-induced rise in [Ca2+]i and insulin release in BRIN-BD11 -cells. hGH caused tyrosine phosphorylation of Janus kinase (JAK)2 and c-Src, events inhibited by the JAK2 inhibitor AG490 or the Src kinase inhibitor PP2. Although hGH-stimulated rises in [Ca2+]i and insulin secretion were completely abolished by AG490 and JAK2 inhibitor II, the inhibitors had no effect on insulin secretion stimulated by a high K+ concentration. Similarly, Src kinase inhibitor-1 and PP2, but not its inactive analog PP3, suppressed [Ca2+]i elevation and completely abolished insulin secretion stimulated by hGH but did not affect responses to K+. Ovine prolactin increased [Ca2+]i and insulin secretion to a similar extent as hGH, effects prevented by the JAK2 and Src kinase inhibitors. In contrast, bovine GH evoked a rise in [Ca2+]i but did not stimulate insulin secretion. Neither JAK2 nor Src kinase inhibitors influenced the effect of bovine GH on [Ca2+]i. Our study indicates that hGH stimulates rise in [Ca2+]i and insulin secretion mainly through activation of the prolactin receptor and JAK2 and Src kinases in rat insulin-secreting cells. c-Src; growth hormone receptor; prolactin receptor; Ca2+-induced Ca2+ release  相似文献   

13.
Because estrogen production and age are strong covariates, distinguishing their individual impact on hypothalamo-pituitary regulation of growth hormone (GH) output is difficult. In addition, at fixed elimination kinetics, systemic GH concentration patterns are controlled by three major signal types [GH-releasing hormone (GHRH), GH-releasing peptide (GHRP, ghrelin), and somatostatin (SS)] and by four dynamic mechanisms [the number, mass (size), and shape (waveform) of secretory bursts and basal (time invariant) GH secretion]. The present study introduces an investigative strategy comprising 1) imposition of an experimental estradiol clamp in pre- (PRE) and postmenopausal (POST) women; 2) stimulation of fasting GH secretion by each of GHRH, GHRP-2 (a ghrelin analog), and l-arginine (to putatively limit SSergic restraint); and 3) implementation of a flexible-waveform deconvolution model to estimate basal GH secretion simultaneously with the size and shape of secretory bursts, conditional on pulse number. The combined approach unveiled the following salient percent POST/PRE contrasts: 1) only 27% as much GH secreted in bursts during fasting (P < 0.001); 2) markedly attenuated burstlike GH secretion in response to bolus GHRP-2 (29%), bolus GHRH (30%), l-arginine (37%), constant GHRP-2 (38%), and constant GHRH (42%) (age contrasts, 0.0016 相似文献   

14.
Septic shock, the most severe complication associated with sepsis, is manifested by tissue hypoperfusion due, in part, to cardiovascular and autonomic dysfunction. In many cases, the splanchnic circulation becomes vasoplegic. The celiac-superior mesenteric ganglion (CSMG) sympathetic neurons provide the main autonomic input to these vessels. We used the cecal ligation puncture (CLP) model, which closely mimics the hemodynamic and metabolic disturbances observed in septic patients, to examine the properties and modulation of Ca2+ channels by G protein-coupled receptors in acutely dissociated rat CSMG neurons. Voltage-clamp studies 48 hr post-sepsis revealed that the Ca2+ current density in CMSG neurons from septic rats was significantly lower than those isolated from sham control rats. This reduction coincided with a significant increase in membrane surface area and a negligible increase in Ca2+ current amplitude. Possible explanations for these findings include either cell swelling or neurite outgrowth enhancement of CSMG neurons from septic rats. Additionally, a significant rightward shift of the concentration-response relationship for the norepinephrine (NE)-mediated Ca2+ current inhibition was observed in CSMG neurons from septic rats. Testing for the presence of opioid receptor subtypes in CSMG neurons, showed that mu opioid receptors were present in ~70% of CSMG, while NOP opioid receptors were found in all CSMG neurons tested. The pharmacological profile for both opioid receptor subtypes was not significantly affected by sepsis. Further, the Ca2+ current modulation by propionate, an agonist for the free fatty acid receptors GPR41 and GPR43, was not altered by sepsis. Overall, our findings suggest that CSMG function is affected by sepsis via changes in cell size and α2-adrenergic receptor-mediated Ca2+ channel modulation.  相似文献   

15.
16.
Plasma growth hormone releasing factor (GHRH) was measured by RIA in the plasma of 41 children with constitutionally short stature. Basal plasma GHRH was 51 +/- 10 pg/ml. L-Dopa induced a 2-fold increase in circulating GHRH 30-45 min before the elevation of GH. A positive correlation (p less than 0.005) was found between the peak of GH and GHRH during the dopaminergic stimulus. On the opposite, the secretion of GH induced by amino acids or clonidine is not preceded by an elevation of plasma GHRH. When a release of GH appeared after the insertion of the venous catheter alone, probably due to the stress, it was preceded by a rise of plasma GHRH. In four sleeping adolescents during the night no relationship was found between the peaks of plasma GHRH and the peaks of GH secretion. These results suggest that the various stimulations of GH secretion used for investigations of a short stature do not act in the same way at the hypothalamo-pituitary level.  相似文献   

17.
GH responses to GHRH and GHRP-6 in Streptozotocin (STZ)-diabetic rats   总被引:2,自引:0,他引:2  
GH responses to GHRH, the physiologic hypothalamic stimulus, and GHRP-6, a synthetic hexapeptide that binds the Ghrelin receptor, were studied in rats treated with streptozotocin (STZ), an experimental model of diabetes. Sprague-Dawley male rats received a single injection either of STZ (70 mg/Kg in 0.01 M SSC, i.p.) or of the vehicle (0.01 M SSC). GH responses were challenged with two different doses of GHRH (1 and 10 microg/kg) or GHRP-6 (3 and 30 microg/kg) and with a combination of both at low (1 + 3 microg/kg) or high (10 + 30 microg/kg) doses, respectively. We observed a dose-dependent effect for GH responses to GHRH both in STZ-treated rats and in controls. However, we could not find significant differences between STZ-rats and controls. GH responses to GHRP-6 occurred in a dose-dependent manner in STZ-rats, but not in controls. GH responses to GHRP-6 in both groups were clearly lower than those elicited by GHRH. GH responses to 30 microg/Kg of GHRP-6 were significantly greater in STZ-rats than in controls (AUC: 3549.9 +/- 1001.4 vs. 2046.4 +/- 711.7; p<0.05). The combined administration of GHRH plus GHRP-6 was the most potent stimuli for GH in both groups. The administration of doses in the lower range (1 + 3 microg/Kg, GHRH + GHRP-6 respectively) induced a great peak of GH in STZ-rats and in control rats, revealing a synergistic effect of GHRH and GHRP-6 in both groups. When the higher doses were administered (10 + 30 microg/kg), GH levels in time 5, and AUC were significantly higher in control rats. In addition, a negative correlation between WT (weight tendency) values and GH responses, represented as AUC, could be established in STZ-rats (r2=-0.566, p=0.004 for GHRH; r2=-0.412, p=0.028 for GHRP-6). Thus, the more negative the values of WT were, the more severe the metabolic alteration and, therefore, the higher the GH response to GHRH and GHRHP-6. In conclusion, our results do not support the existence of a functional hypothalamic hypertone of SS in diabetic rats, as GH responses were not usually reduced in STZ-rats, except when both secretagogues were administered together at the higher doses. Besides, GH responses to GHRH and GHRP-6 were inversely correlated with the severity of the metabolic alteration in STZ-rats, meaning that worse glycaemic control promoted higher GH secretion. These results resemble those found in humans, where GH responses to secretagogues are increased in type-1 diabetes and depend on hyperglycaemia, and are representative of not well-controlled insulin-dependent diabetic status.  相似文献   

18.
A possible role for Ca 2+ and calmodulin in the action of growth-hormone-releasing factor (GHRF) was investigated . Low extracellular Ca2+ (<100 M), methoxyverapamil, flunarizine, cinnarizine, and Co2+ decreased both basal and GHRF-stimulated growth-hormone secretion, but did not totally inhibit GHRF-stimulation secretion. A calmodulin antagonist, W7, abolished GHRF-stimulated GH secretion, with no effect on basal secretion. It is suggested that GHRF may act primarily by elevating cellular cyclic AMP, which may then modulate calcium mobilization or flux; the increased intracellular Ca2+ concentrations may then activate calmodulin.  相似文献   

19.
Growth hormone (GH) secretion is decreased during aging in humans and in rodents. This decrease may be due to increased hypothalamic somatostatin release, which is inhibited by cholinergic agonists, or to decreased secretion of GHRH. Alpha-glyceryl-phosphorylcholine (alpha-GFC) is a putative acetylcholine precursor used in the treatment of cognitive disorders in the elderly. In order to learn what effect alpha-GFC had on GH secretion, GH-release hormone (GHRH) was given to young and old human volunteers, with or without the addition of alpha-GFC. GH secretion was greater in the younger subjects than in the old individuals, and both groups had a greater GH response to the GHRH+alpha-GFC than to GHRH alone. The potentiating effect of alpha-GFC on GH secretion was more pronounced in the elderly subjects. These findings confirm the observation that aged individuals respond less well to GHRH than younger subjects, and provides further evidence that increased cholinergic tone enhances GH release.  相似文献   

20.
Glucagon-like peptide-1 (GLP-1) is an incretin hormone secreted from enteroendocrine L-cells. Although several nutrients induce GLP-1 secretion, there is little evidence to suggest that non-nutritive compounds directly increase GLP-1 secretion. Here, we hypothesized that anthocyanins induce GLP-1 secretion and thereby significantly contribute to the prevention and treatment of diabetes. Delphinidin 3-rutinoside (D3R) was shown to increase GLP-1 secretion in GLUTag L cells. The results suggested that three hydroxyl or two methoxyl moieties on the aromatic ring are essential for the stimulation of GLP-1 secretion. Notably, the rutinose moiety was shown to be a potent enhancer of GLP-1 secretion, but only in conjunction with three hydroxyl moieties on the aromatic ring (D3R). Receptor antagonist studies revealed that D3R-stimulates GLP-1 secretion involving inositol 1,4,5-trisphosphate receptor-mediated intracellular Ca2+ mobilization. Treatment of GLUTag cells with a Ca2+/calmodulin-dependent kinaseII (CaMKII) inhibitor (KN-93) abolished D3R-stimulated GLP-1 secretion. In addition, treatment of GLUTag cells with D3R resulted in activation of CaMKII. Pre-treatment of cells with a G protein-coupled receptor (GPR) 40/120 antagonist (GW1100) also significantly decreased D3R-stimulated GLP-1 secretion. These observations suggest that D3R stimulates GLP-1 secretion in GLUTag cells, and that stimulation of GLP-1 secretion by D3R is mediated via Ca2+-CaMKII pathway, which may possibly be mediated by GPR40/120. These findings provide a possible molecular mechanism of GLP-1 secretion in intestinal L-cells mediated by foods or drugs and demonstrate a novel biological function of anthocyanins in regards to GLP-1 secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号