首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 875 毫秒
1.
陈建文  史建伟  王孟本 《生态学报》2016,36(13):4021-4033
采用微根管技术(Minirhizotron technique)对晋西北黄土丘陵区幼林(5a)与成林(30a)柠条(Caragana korshinskii)细根动态进行了为期5a的原位观测。基于2008—2011年的观测数据,对两林龄柠条不同土层细根现存量动态进行了比较研究,并探讨了两林龄柠条细根现存量与不同年际间水热条件的差异。结果表明:在0—100 cm土壤剖面,柠条幼林与成林细根现存量的峰值均位于50 cm土层以下,成林细根现存量峰值位于50—60 cm土层,幼林细根现存量峰值则从观测期初的90—100 cm土层到观测期末的80—90 cm土层。各观测年内,两林地各土层每年生长季初(3—4月)会出现细根现存量的积累;30—100 cm土层中,幼林细根最大现存量出现时间均较成林早,而生长季末(9—10月),所有土层幼林细根现存量下降均较成林快。柠条细根现存量的垂直分布主要受土壤水分影响,季节变化受温度的影响更大,年际间细根现存量的差异主要是由于年降雨量变化;幼林细根现存量受降水、土壤水分、土壤温度等的影响比成林大。  相似文献   

2.
 该文研究了华北落叶松(Larix principis-rupprechtii)人工林细根生物量水平分布和季节变化特征。采用钻土芯法(土钻内径7.0 cm), 在距树干20、50和100 cm处设取样点, 每个样点处分3层(0~10、11~20和21~30 cm)钻取土芯, 取样时间为5、7、9和10月。华北落叶松人工林细根(≤2 mm)生物量全年平均值为224.89 g•m–2, 在水平分布上表现为100 cm处细根生物量最大(244.20 g•m–2), 其次为20 cm处(221.03 g•m–2), 50 cm处最少(209.45 g•m–2)。在0~30 cm土层, 总细根(包括活跟和死根)生物量季节变化范围在169.67~263.09 g•m–2之间, 9月细根生物量最大, 5月细根生物量最少。0~10 cm土层细根生物量季节变化差异显著(p<0.05), 11~20和21~30 cm差异不显著(p>0.05)。距树干100和20 cm处(0~10 cm土层), 细根生物量的季节变化差异明显(p<0.05), 9月总细根生物量最大(172.82和185.68 g•m–2), 5月总细根生物量最少(69.28和73.47 g•m–2); 50 cm处季节变化差异不明显(p>0.05)。细根生物量分布和季节变化不仅受土壤垂直格局影响同时也与距树干不同水平距离有很大的关系。  相似文献   

3.
落叶松和水曲柳人工林细根生长、死亡和周转   总被引:12,自引:3,他引:9       下载免费PDF全文
 细根周转是陆地生态系统碳分配格局与过程的核心环节,而细根周转估计的关键是了解细根的生长和死亡动态。该研究以18年生落叶松(Larix gmelinii)和水曲柳(Fraxi nus mandshurica)人工林为对象,采用微根管(Minirhizotron)技术对两树种0~40 cm深度的细根生长和死亡动态进行了为期1年的观测,研究了两树种细根在不同土层深度的生长与死亡动态、细根周转以及与土壤有效氮含量、土壤温度、大气温度和降水的关系。结果表明:1) 落叶松平均细根生长(Root length density production, RLDP)0.0045 mm•cm-2•d-1)明显低于水曲柳RLDP(0.0077 mm•cm-2•d-1)。两个树种细根平均RLDP在表层(0~10 cm)最大,而底层(30~40 cm)最小 ,两树种平均细根死亡(Root length density mortality, RLDM)也表现同样规律 。水曲柳春季生长的细根占41.7%,夏季占39.7%,而落叶松细根生长分别是24.0%和51.2%,水曲柳细根死亡主要发生在春季(34.3%) 和夏季(34.0%),而落叶松细根死亡主要发生在夏季和秋季(分别占28.5%和32.3%),两 树种细根生长与死亡在冬季均较小;2)落叶松细根年生长量(0.94 mm•cm-2•a-1)和年死亡量(0.72 mm•cm-2•a-1)明显低于水曲柳(1.52和1.21 mm•cm-2•a-1),两树种细根表层年生长量和年死亡量均最高,底层最低。落叶松细根年周转为3.1次•a-1(按年生长量计算)和2.4次•a-1(按年死亡量计算),相比较,水曲柳细根年周转分别为2.7次•a-1和2.2次•a-1;3)土壤有效氮含量、土壤温度、大气温度和降水综合作用影响细根生长和死亡动态,可以解释细根生长80%的变异和细根死亡95%以上的变异。  相似文献   

4.
柠条细根的空间分布特征及其季节动态   总被引:3,自引:0,他引:3  
以晋西北黄土区30年生柠条(Caragana korshinskii Kom.)人工林为研究对象,2007年应用Minirhizotron技术,分别在距茎干水平距离0、50、100 cm处设点,对林地0-100 cm土层深度范围内的柠条细根空间分布及其生长季的动态进行了研究。结果表明:(1)生长季柠条细根根长密度(RLD)总平均值为1.3423 mm/cm2。在水平方向上,距茎干水平距离50 cm处分布最多(1.5369 mm/cm2),其次为0 cm处(1.3855 mm/cm2), 100cm处分布最少(1.1044 mm/cm2)。在垂直深度上,各土层RLD平均值大小顺序为40-60 cm>60-80 cm>20-40 cm>0-20 cm>80-100 cm;(2)在0-100 cm土层范围内,月平均RLD在生长季的波动范围为0.4405 2.1040 mm/cm2,其中9月份最多,4月份最少;RLD在5个土层深度3个水平距离处随季节变化均表现先增加后减少的趋势,且不同空间位置RLD峰值变化均在秋季(8 10月份)波动。细根的这种时空分布差异,可能主要受林下土壤资源空间异质性及其季节性变化的影响,但也不排除其它因素的影响(如真菌,植食性昆虫)。  相似文献   

5.
晋西北黄土区幼龄柠条细根的净生长速率   总被引:3,自引:1,他引:2  
以晋西北黄土区5年生柠条(Caragana korshinskii)人工林为研究对象,使用微根管技术对林地100cm土层深度的柠条细根生长动态进行观测。以根长密度(RLD,mm.cm-3)为基本参数,以净生长量(RLDnet,mm.mm-3)和净生长速率(RLDNGR,mm.cm-.3d-1)为相应导出参数,对2007年生长季(4-9月份)柠条细根的RLDNGR及其与环境因子气温、降雨量、土壤温度、土壤水分的关系进行了探讨。结果表明:柠条细根的RLDnet为(2.923±1.767)mm.cm-3;RLDNGR为(0.113±0.069)mm.cm-.3d-1。50-100cm土层是柠条细根生长的活跃区,其细根RLDNGR是0-50cm土层细根的1.5倍。柠条细根生长的季节变化趋势呈单峰型,4月初至8月初RLDNGR逐渐增大,8月中旬RLDNGR达到最大,之后逐渐减小,9月下旬RLDNGR出现负值。统计分析表明,柠条细根的RLDNGR与气温呈显著正相关。年生长季柠条细根的累计净生长量为14.613mm.cm-3;累计净生产力为1.461×108m.hm-2。  相似文献   

6.
华西雨屏区苦竹林土壤呼吸对模拟氮沉降的响应   总被引:15,自引:2,他引:13       下载免费PDF全文
 2007年11月至2008年11月, 对华西雨屏区苦竹(Pleioblastus amarus)人工林进行了模拟氮沉降试验, 氮沉降水平分别为对照(CK, 0 g N·m–2·a–1)、低氮(5 g N·m–2·a–1)、中氮(15 g N·m–2·a–1)和高氮(30 g N·m–2·a–1)。每月下旬, 采用红外CO2分析法测定土壤呼吸速率, 并定量地对各处理施氮(NH4NO3)。结果表明: 2008年试验地氮湿沉降量为8.241 g·m–2, 超出该地区氮沉降临界负荷。在生长季节, 苦竹林根呼吸占总土壤呼吸的60%左右。模拟氮沉降促进了苦竹林土壤呼吸速率, 使苦竹林土壤每年向大气释放的CO2增加了9.4%~28.6%。在大时间尺度上(如1 a), 土壤呼吸主要受温度的影响。2008年6~10月, 土壤呼吸速率24 h平均值均表现为: 对照<低氮<中氮<高氮。氮沉降处理1 a后, 土壤微生物呼吸速率和土壤微生物生物量碳、氮增加, 并且均与氮沉降量具有相同趋势。各处理土壤呼吸速率与10 cm土壤温度、月平均气温呈极显著指数正相关关系, 利用温度单因素模型可以解释土壤呼吸速率的大部分。模拟氮沉降使得土壤呼吸Q10值增大, 表明氮沉降可能增强了土壤呼吸的温度敏感性。在氮沉降持续增加和全球气候变暖的背景下, 氮沉降和温度的共同作用可能使得苦竹林向大气中排放的CO2增加。  相似文献   

7.
 比较利用静态箱式法测定长白山原始阔叶红松林(Pinus koraiensis)和次生杨桦混交林的土壤呼吸作用表明,两者土壤呼吸作用的日动态均主要受温度影响,次生林土壤呼吸作用的日变化极值出现时间较原始林提前1~2 h;两者具有明显的季节动态,其中8月土壤呼吸速率最大;在生长季,土壤呼吸速率与土壤含水量关系不显著,而与土壤5 cm温度呈显著的指数关系;生长季(5~9月)次生林土壤释放CO2量(3 449.4 g·m-2)约为原始林(2 674.4 g·m-2)的1.3倍,这可能是由于次生林内具有比原始林较高的温度和较低的土壤含水量,更有利于根系生长代谢和土壤微生物的活动引起的。  相似文献   

8.
幼龄柠条细根的空间分布和季节动态   总被引:2,自引:0,他引:2  
张帆  陈建文  王孟本 《生态学报》2012,32(17):5484-5493
以晋西北黄土高原区5年生柠条(Caragana korshinskii)人工林为研究对象,应用Minirhizotron技术,分别在距茎干水平距离0 cm和50 cm处设点(以下简称为0 cm位点和50 cm位点),对林地0—100 cm土层深度范围内的柠条细根进行了观测。以2009年生长季(4—10月)的细根根长密度(RLD,mm/cm2)和表面积密度(RAD,mm2/cm2)数据为基础,结合同期环境因子(气温、降雨量、土壤温度和土壤含水量等)数据,对0 cm和50 cm两个位点的细根动态特点进行了比较研究。结果表明:(1)两个水平位点的细根垂直分布和季节变化趋势均具有一定差异,主要差异是0 cm位点0—60 cm各土层的RLD均大于50 cm位点,前者各测定期的RLD(RAD)均大于后者。因此,0 cm位点的细根分布量(4.04 mm/cm2和4.67 mm2/cm2)显著大于50 cm位点(3.07 mm/cm2和2.99 mm2/cm2)。(2)就整体(两个位点平均值)而言,RLD(RAD)的垂直分布以40—50cm土层最大,以60—70cm土层最小。RLD(RAD)的季节变化具有由小变大再变小的趋势。年生长季幼龄柠条细根的RLD和RAD总平均值分别为3.55 mm/cm2和3.83 mm2/cm2。(3)就0 cm位点、50 cm位点或整个林地而言,细根RLD的季节变化与气温和土壤温度的季节变化均具有显著正相关性。以上结果表明,幼龄柠条细根的水平分布具有"近主根"特点;RLD的季节变化与温度因子的季节变化具有高度一致性。  相似文献   

9.
柠条人工幼林细根生长和死亡的季节变化   总被引:3,自引:2,他引:1       下载免费PDF全文
以晋西北黄土区5年生柠条(Caragana korshinskiiKom.)人工林为研究对象,应用微根管技术对林地100cm土层范围的柠条细根动态进行了观测。以细根根长密度(RLD,mm.cm-3)、生长速率(RLDgr,mm.cm-.3d-1)、死亡速率(RLDdr,mm.cm-.3d-1)和生死之比(Rgd)为基本参数,对生长季(2007年4-9月)柠条细根的生长和死亡特点及其与环境因子(如气温、降雨量、土壤温度、土壤水分等)的关系做了探讨。结果表明:(1)在生长季,柠条细根的平均RLDgr和RLDdr分别为0.1264mm.cm-.3d-1和0.0354mm.cm-.3d-1;(2)下层(50-100cm)细根的RLDgr大于上层(0-50cm);但是下层细根的RLDdr小于上层;(3)柠条细根RLDgr的季节变化趋势为4-7月份迅速增大,8月份达峰值,之后迅速减小;细根RLDdr的季节变化趋势则为4-7月初缓慢增大,之后迅速增大,在生长季末(9月下旬)达到最大;(4)柠条细根Rgd在生长季呈逐渐减小趋势,但是仅季末Rgd1,说明在生长季柠条的细根动态是一个以生长占优势的生死交织过程;(5)RLDgr与气温存在极显著正相关(P0.01),与土壤温度存在显著正相关(P0.05);但是RLDdr与各个环境因子的相关性均不显著(P0.05)。  相似文献   

10.
中国东部南北样带主要植被类型物候期的变化   总被引:12,自引:2,他引:10       下载免费PDF全文
 植被物候期的变化是全球变化研究的热点问题, 因为物候过程是反映植被对气候变化响应的最直接和最敏感的生态学过程之一, 大尺度植被物候学过程主要以植被的季节动态体现其对气候变化的长期适应过程。基于NOAA/AVHRR从1982年至2006年的双周归一化植被指数NDVI (Normalized Difference Vegetation Index)数据, 依托中国东部南北样带, 对主要植被类型的物候过程进行模拟, 并计算了主要物候现象(包括返青起始期、休眠起始期和生长季长度)的发生时间和演变趋势。结果表明: 返青起始期显著提前的植被有温带针叶林(TCF, 0.56 d·a–1)、温带草丛(TG, 0.66 d·a–1)、亚热带热带针叶林(STCF,0.46 d·a–1)、亚热带落叶阔叶林(SDBF, 0.58 d·a–1)和亚热带热带草丛(STG, 0.89 d·a–1); 休眠起始期显著推迟的植被有寒温带温带针叶林(TCTCF, 0.32 d·a–1)、SDBF (0.80 d·a–1)和温带落叶阔叶林(TDBF, 0.18 d·a–1); 此外, 大部分植被类型的生长季长度都有所延长, 但延长的方式不同: TCF (0.77 d·a–1)是由于返青起始期显著提前造成的; TCTCF (0.38 d·a–1)和TDBF (0.36 d·a–1)是由于休眠起始期显著推迟造成的; TG (0.76 d·a -1)、STCF (0.83 d·a–1)、SDBF (1.40 d·a–1)和STG (1.30 d·a–1)等是由于返青起始期提前和休眠起始期推迟共同造成的。对温度和降水的变化进行分析发现, 温度对南北样带上植被物候的影响较大, 而降水对物候的影响相对较小, 不同植被类型对温度的响应各异。在南北样带上存在的热量梯度, 使得整条样带上植被的物候现象也表现出时间梯度, 从返青起始期发生的时间上比较, 从北向南逐渐推迟, 即寒温带植被>温带植被>亚热带植被; 休眠起始期和生长季长度则正好相反, 亚热带植被>温带植被>寒温带植被。  相似文献   

11.
落叶松人工林细根动态与土壤资源有效性关系研究   总被引:39,自引:4,他引:35       下载免费PDF全文
 树木细根在森林生态系统C和养分循环中具有重要的作用。由于温带土壤资源有效性具有明显的季节变化,导致细根生物量、根长密度(Root length density, RLD)和比根长(Specific root length, SRL)的季节性变化。以17年生落叶松(Larix gmelini)人工林为研究对象,采用根钻法从5月到10月连续取样,研究了不同土层细根(直径≤2 mm)生物量、RLD和SRL的季节动态,以及这些根系指标动态与土壤水分、温度和N有效性的关系。结果表明:1) 落叶松细根年平均生物量(活根+死根)为189.1 g·m-2·a-1,其中50%分布在表层(0~10 cm),33%分布在亚表层(11~20 cm),17%分布在底层(21~30 cm)。活根和死根生物量在5~7月以及9月较高,8月和10月较低。从春季(5月)到秋季(10月),随着活细根生物量的减少,死细根生物量增加;2)土壤表层(0~10 cm)具有较高的RLD和SRL,而底层(21~30 cm)最低。春季(5月)总RLD和SRL最高,分别为10 621.45 m·m-3和14.83 m·g-1,到秋季(9月)树木生长结束后达到最低值,分别为2 198.20 m·m-3和3.77 m·g-1;3)细根生物量、RLD和SRL与土壤水分、温度和有效N存在不同程度的相关性。从单因子分析来看,土壤水分和有效N对细根的影响明显大于温度,对活根的影响大于死根。由于土壤资源有效性的季节变化,使得C的地下分配格局发生改变。各土层细根与有效性资源之间的相关性反映了细根功能季节性差异。细根 (生物量、RLD和SRL) 的季节动态(58%~73%的变异)主要由土壤资源有效性的季节变化引起。  相似文献   

12.
细根对植物功能的发挥和土壤碳库及全球碳循环具有重要意义。采用容器法和微根管法于2013年6~10月整个生长季内对紫花苜蓿的细根生物量、生产以及周转规律进行研究。结果表明:(1)紫花苜蓿活细根现存生物量平均值以接种摩西球囊霉(Gm)处理最高(12.46g·m-2),未接种对照最低(7.31g·m-2),并且活细根现存量在9月中旬达到峰值;死细根现存生物量呈先增加后降低再增加的变化趋势,在整个生长过程中未接种处理高于接种处理,接种根内球囊霉(Gi)处理死细根现存平均生物量(3.11g·m-2)又较接种组其他处理低。(2)苜蓿植株细根生长量以接种幼套球囊霉(Ge)处理最大(0.045 mm·cm-2·d-1),接种Gm处理和未接种对照最低(均为0.027mm·cm-2·d-1);而未接菌植株细根死亡量(0.044mm·cm-2·d-1)显著高于接种植株,接种组又以Gi处理最低(0.021mm·cm-2·d-1)。(3)紫花苜蓿在生长季节内细根生产和死亡的高峰分别出现在8月底和10月份,低谷出现在9月底到10月中旬和6月底到8月;接种地表球囊霉(Gv)后细根现存量和年生长量显著高于对照和接种其他菌种处理,细根的周转以对照组最大,而接种Gv和Gm处理较低。研究发现,通过接种丛植菌根真菌可以提高苜蓿细根生物量,降低细根的死亡,增加细根寿命。  相似文献   

13.
姜红英  谷加存  邱俊  王政权 《生态学杂志》2010,21(10):2465-2471
2004—2008年,采用微根管(minirhizotron)技术,对落叶松人工林细根生产和死亡进行连续动态观测,同时测定了温度(大气温度和土壤10 cm温度)和水分(降雨量和土壤10 cm深处含水量)的变化,研究细根生产、死亡的动态及其与温度和水分的关系.结果表明:落叶松细根年根长生产量在0.20~0.78 mm·cm-2,死亡量在0.26~0.72 mm·cm-2;2004—2006年细根年根长平均生产量(0.67 mm·cm-2)和死亡量(0.59 mm·cm-2)均高于2007—2008年细根年根长平均生产量和死亡量(0.37和0.39 mm·cm-2);在生长季内(5—10月),落叶松春末至夏季(6—7月) 的细根生产量占全年产量的51%~68%,秋末(10月)仅占全年的1%~4%;而夏末(8月)和秋季(9—10月)细根死亡量占全年的59%~70%,早春(5月)占全年的1%~5%.相关分析表明,大气温度变化可以解释细根生产量66%的变异,而土壤10 cm深处温度解释24%,降雨量解释27%.细根的死亡量与土壤10 cm深处温度呈指数正相关.  相似文献   

14.
施肥对落叶松和水曲柳人工林土壤呼吸的影响   总被引:13,自引:0,他引:13       下载免费PDF全文
 以落叶松(Larix gmelinii)和水曲柳(Fraxinus mandshurica)人工林为研究对象,采用动态气室法(LI-6400-09叶室连接到LI-6400便携式CO2/H2O分析系统)对两种林分的土壤呼吸速率进行了观测,探讨了细根生物量、根中氮含量与土壤呼吸速率的关系,以及施肥对细根生物量、根中氮含量和土壤呼吸速率的影响。结果表明:1)施肥导致落叶松和水曲柳林分的活细根生物量降低18.4%和27.4%, 死细根生物量分别降低了34.8%和127.4 %;2)施肥使落叶松和水曲柳林地土壤呼吸速率与对照相比分别减少了34.9%和25.8%;3 )施肥对根中氮含量没有显著影响;4)落叶松和水曲柳林地的土壤呼吸与土壤温度表现出相同的季节变化,两种林分的土壤呼吸速率与地下5和10 cm处的温度表现出明显的指数关系 ,其相关性R2=0.93~0.98。土壤呼吸温度系数Q10的范围在2.45~3.29。 施肥处理对Q10没有产生影响,施肥处理导致细根生物量减少可能是引起林地土壤呼吸速率下降的主要原因。  相似文献   

15.
Fine root turnover is a major pathway for carbon and nutrient cycling in terrestrial ecosystems and is most likely sensitive to many global change factors. Despite the importance of fine root turnover in plant C allocation and nutrient cycling dynamics and the tremendous research efforts in the past, our understanding of it remains limited. This is because the dynamics processes associated with soil resources availability are still poorly understood. Soil moisture, temperature, and available nitrogen are the most important soil characteristics that impact fine root growth and mortality at both the individual root branch and at the ecosystem level. In temperate forest ecosystems, seasonal changes of soil resource availability will alter the pattern of carbon allocation to belowground. Therefore, fine root biomass, root length density (RLD) and specific root length (SRL) vary during the growing season. Studying seasonal changes of fine root biomass, RLD, and SRL associated with soil resource availability will help us understand the mechanistic controls of carbon to fine root longevity and turnover. The objective of this study was to understand whether seasonal variations of fine root biomass, RLD and SRL were associated with soil resource availability, such as moisture, temperature, and nitrogen, and to understand how these soil components impact fine root dynamics in Larix gmelinii plantation. We used a soil coring method to obtain fine root samples (⩽2 mm in diameter) every month from May to October in 2002 from a 17-year-old L. gmelinii plantation in Maoershan Experiment Station, Northeast Forestry University, China. Seventy-two soil cores (inside diameter 60 mm; depth intervals: 0–10 cm, 10–20 cm, 20–30 cm) were sampled randomly from three replicates 25 m × 30 m plots to estimate fine root biomass (live and dead), and calculate RLD and SRL. Soil moisture, temperature, and nitrogen (ammonia and nitrates) at three depth intervals were also analyzed in these plots. Results showed that the average standing fine root biomass (live and dead) was 189.1 g·m−2·a−1, 50% (95.4 g·m−2·a−1) in the surface soil layer (0–10 cm), 33% (61.5 g·m−2·a−1), 17% (32.2 g·m−2·a−1) in the middle (10–20 cm) and deep layer (20–30cm), respectively. Live and dead fine root biomass was the highest from May to July and in September, but lower in August and October. The live fine root biomass decreased and dead biomass increased during the growing season. Mean RLD (7,411.56 m·m−3·a−1) and SRL (10.83 m·g−1·a−1) in the surface layer were higher than RLD (1 474.68 m·m−3·a−1) and SRL (8.56 m·g−1·a−1) in the deep soil layer. RLD and SRL in May were the highest (10 621.45 m·m−3 and 14.83m·g−1) compared with those in the other months, and RLD was the lowest in September (2 198.20 m·m−3) and SRL in October (3.77 m·g−1). Seasonal dynamics of fine root biomass, RLD, and SRL showed a close relationship with changes in soil moisture, temperature, and nitrogen availability. To a lesser extent, the temperature could be determined by regression analysis. Fine roots in the upper soil layer have a function of absorbing moisture and nutrients, while the main function of deeper soil may be moisture uptake rather than nutrient acquisition. Therefore, carbon allocation to roots in the upper soil layer and deeper soil layer was different. Multiple regression analysis showed that variation in soil resource availability could explain 71–73% of the seasonal variation of RLD and SRL and 58% of the variation in fine root biomass. These results suggested a greater metabolic activity of fine roots living in soil with higher resource availability, which resulted in an increased allocation of carbohydrate to these roots, but a lower allocation of carbohydrate to those in soil with lower resource availability. __________ Translated from Acta Phytoecologica Sinica, 2005, 29(3): 403–410 [译自: 植物生态学报, 2005, 29(3): 403–410]  相似文献   

16.
柠条人工林幼林与成林细根动态比较研究   总被引:2,自引:0,他引:2  
陈建文  王孟本  史建伟 《生态学报》2011,31(22):6978-6988
以晋西北黄土高原区柠条(Caragana korshinskii)人工林幼林和成林为研究对象,应用微根管技术(Minirhizotron technique)对林地0-100 cm土壤剖面的柠条细根生长动态进行了观测.以2007年生长季(4-9月)观测数据为基础,对两林地的柠条细根生长速率(G,mm cm-3 d-1)和细根死亡速率(M,mm cm-3 d-1)的时空变化格局及其与气温、降水、土壤温度和土壤水分等环境因子的关系进行了研究.结果表明,在年生长季,幼林的G(0.1264 mm cm-3 d-1)和M(0.0354 mm cm-3 d-1)均高于成林(分别为0.0914 mm cm-3 d-1和0.0220 mm cm-3 d-1).在垂直分布上,幼林G出现最大值的土层深度(70-80 cm)较成林(50-60 cm)为深.两林地的G和M具有相似的季节变化特点,即G在4月到7月之间缓慢增大,8月迅速达到峰值,之后迅速减小;M自4月至9月M呈持续增高趋势.配对数据t检验结果显示,幼林与成林的C没有显著差异(P>0.05),而幼林的M显著高于成林(P<0.05).Pearson相关系数表明,幼林和成林G的垂直分布与土壤温度和土壤水分的垂直变化没有显著相关性;但是幼林和成林M的垂直分布与土壤温度的相关性显著(幼林地P<0.01;成林地P<0.05).在年生长季,幼林G与气温和土壤温度具有显著正相关性(与气温的P<0.01;与土壤温度的P<0.05);而成林G与各环境因子的相关性则均不显著(P>0.05).两林地的M与各环境因子的相关性均不显著(P>0.05).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号