首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 171 毫秒
1.
Glutamine transport by rat basolateral membrane vesicles   总被引:1,自引:0,他引:1  
Glutamine, a neutral amino acid, is unlike most amino acids, has two amine moieties which underlies its importance as a nitrogen transporter and a carrier of ammonia from the periphery to visceral organs. The gastrointestinal tract utilizes glutamine as a respiratory substrate. The intestinal tract receives glutamine from the luminal side and from the arterial side through the basolateral membranes of the enterocyte. This study characterizes the transport of glutamine by basolateral membrane vesicles of the rat. Basolateral membranes were prepared by a well validated technique of separation on a percoll density gradient. Membrane preparations were enriched with Na+/K+-ATPase and showed no 'overshoot' phenomena with glucose under sodium-gradient conditions. Glutamine uptake represented transport into the intravesicular space as evident by an osmolality study. Glutamine uptake was temperature sensitive and driven by an inwardly directed sodium gradient as evident by transient accumulation of glutamine above the equilibrium values. Kinetics of glutamine uptake under both sodium and potassium gradients at glutamine concentrations between 0.01 and 0.6 mM showed saturable processes with Vmax of 0.39 +/- 0.008 and 0.34 +/- 0.05 nmol/mg protein per 15 s for both sodium-dependent and sodium-independent processes, respectively. Km values were 0.2 +/- 0.01 and 0.55 +/- 0.01 mM, respectively. pH optimum for glutamine uptake was 7.5. Imposition of negative membrane potential by valinomycin and anion substitution studies enhanced the sodium-dependent uptake of glutamine suggesting an electrogenic process, whereas the sodium-independent uptake was not enhanced suggesting an electroneutral process. Other neutral amino acids inhibited the initial uptake of glutamine under both sodium-dependent and sodium-independent conditions. We conclude that glutamine uptake by basolateral membranes occurs by carrier-mediated sodium-dependent and sodium-independent processes. Both processes exhibit saturation kinetics and are inhibited by neutral amino acids. The sodium-dependent pathway is electrogenic whereas the sodium-independent pathway is electroneutral.  相似文献   

2.
We studied the uptake of leucine, phenylalanine, and the amino acid analog, 2-aminonorborane-2-carboxylic acid, by rat hepatoma cells in tissue culture. The uptake of these amino acids was partially mediated by a plasma membrane transport system similar to the L agency described in other cell types in that it does not require extracellular sodium and is subject to trans-stimulation. Initial rates of sodium-independent transport of these amino acids were calculated using mathematical transformations of the uptake time course curves. The glucocorticoid dexamethasone inhibits the activity of this transport system; the initial rates of sodium-independent uptake of leucine, phenylalanine, and 2-aminonorborane-2-carboxylic acid are decreased by approximately one-third (average = 30%, n = 19) after incubation of HTC cells with 0.1 microM dexamethasone. This inhibition requires at least 15 h, reaching a maximum at 24 h of exposure of the cells to the hormone. Dexamethasone has an asymmetrical effect on sodium-independent amino acid transport in that exposure of the cells to the hormone does not inhibit the rates of outflow of leucine or phenylalanine from preloaded cells into medium without sodium. Inhibition of uptake is blocked by 0.1 mM cycloheximide and 4 microM actinomycin D, indicating the need for continuous protein synthesis for dexamethasone action. Insulin, which is known to partially reverse the inhibitory effect of dexamethasone on the A amino acid transport system in HTC cells, does not alter the action of dexamethasone on the L system. Previous investigations have demonstrated inhibition by dexamethasone of at least two distinct sodium-dependent amino acid transport activities in HTC cells. The data presented here, showing inhibition by the glucocorticoid of a sodium-independent transport activity, indicate that the effect of the hormone is independent of the energy source of the amino acid transport systems affected.  相似文献   

3.
Uptake of Kynurenine into Rat Brain Slices   总被引:3,自引:3,他引:0  
The transport of [3H]kynurenine ([3H]KYN) into slices from rat tissue was examined in vitro. Brain accumulated KYN seven to eight times more effectively than any of several peripheral organs. Of all the organs tested, only the brain exhibited a sodium-dependent component of the uptake process. After an incubation period of 1 h, sodium-dependent transport amounted to 60% of total uptake. Both processes were abolished by prior sonication of the tissue and significantly inhibited by inclusion of metabolic blockers in the incubation medium. Time resolution showed that the sodium-independent uptake occurred rapidly and reached saturation within 30 min. In contrast, sodium-dependent transport was linear for at least 2 h of incubation. Brain regional analysis revealed a sevenfold difference between the areas of highest (cortex) and lowest (cerebellum) uptake. With the exception of cerebellar tissue, the ratio between sodium-dependent and sodium-independent processes was consistent among brain regions. Kinetic analyses were performed on striatal slices and revealed a Km of 927 microM and a Vmax of 18 nmol/h/mg of protein for the sodium-dependent process, and a Km of 3.8 mM and a Vmax of 38 nmol/10 min/mg of protein for the sodium-independent transport. The transporters were equally amenable to inhibition by KYN and tryptophan, indicating that KYN entry into the cell may be mediated by neutral amino acid uptake sites. No strict stereoselectivity existed, but L enantiomers were clearly more active than the D forms.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The temperature dependence of sodium-dependent and sodium-independent d-glucose and phosphate uptake by renal brush border membrane vesicles has been studied under tracer exchange conditions. For sodium-dependent d-glucose and phosphate uptake, discontinuities in the Arrhenius plot were observed. The apparent activation energy for both processes increased at least 4-fold with decreasing temperature. The most striking change in the slope of the Arrhenius plot occurred between 12 and 15°C. The sodium-independent uptake of d-glucose and phosphate showed a linear Arrhenius plot over the temperature range tested (35–5°C). The behavior of the transport processes was compared to the temperature dependence of typical brush border membrane enzymes. Alkaline phosphatase as intrinsic membrane protein showed a nonlinear Arrhenius plot with a transition temperature at 12.4°C. Aminopeptidase M, an extrinsic membrane protein exhibited a linear Arrhenius plot. These data indicate that the sodium-glucose and sodium-phosphate cotransport systems are intrinsic brush border membrane proteins, and that a change in membrane organization alters the activity of a variety of intrinsic membrane proteins simultaneously.  相似文献   

5.
Two distinctive sodium-dependent phosphate transport systems have been identified in early and late proximal tubules; a high-capacity process located only in outer cortical tissue, and a high affinity present in both outer cortical and outer medullary brush-border membranes (Km 0.1-0.25 mM). A third, sodium-independent, pH gradient-stimulated system (Vmax 4.7 +/- 0.3 nmol.mg-1.min-1, Km 0.15 +/- 0.002 mM) is present in the outer medulla, but absent in outer cortex. Brush-border vesicles were prepared from outer cortical and outer medullary tissue of pigs maintained on low (less than 0.05%), normal (0.4%), or high (4%) phosphate diets. Sodium-dependent phosphate uptake of the high-capacity system decreased (Vmax, 9.4 to 2.2 nmol.mg-1.min-1) from low to high phosphate diet, whereas uptake rates decreased about 50% in the high-affinity system. There were no changes in the respective Km values. The pH gradient-stimulated uptake also decreased (Vmax, 6.9 to 3.0 nmol.mg-1.min-1) with no change in mean Km value (0.15 +/- 0.001 mM) with dietary manipulation. Administration of 1 U parathyroid hormone prior to study resulted in a decrease in sodium-dependent uptake by 40-50% and in pH-dependent uptake (36%) with no change in the respective Km values. In conclusion, the antecedent dietary phosphate intake and parathyroid hormone administration appropriately alters phosphate uptake across the brush-border membrane of all three systems, sodium-dependent and pH gradient-stimulated phosphate transport.  相似文献   

6.
A large amount of [3H]GABA was bound to crude synaptic membrane fractions of rat. by sodium-independent process in a medium that contained 100 μM [3H]GABA used for assaying GABA uptake site. This [3H]-GABA binding was different from receptor binding of GABA. It was confirmed that this sodium-independent [2H]GABA binding scarcely occurred in the presence of a physiological concentration of sodium chloride, and that sodium-independent GABA binding had a negligible influence on sodium-dependent GABA binding.  相似文献   

7.
To characterize further the Na+/d-glucose cotransport system in renal brush border membranes, phlorizin - a potent inhibitor of d-glucose transport - has been chemically modified without affecting the d-glucose moiety or changing the side groups that are essential for the binding of phlorizin to the Na+/d-glucose cotransport system. One series of chemical modifications involved the preparation of 3-nitrophlorizin and the subsequent catalytic reduction of the nitro compound to 3-aminophlorizin. From 3-aminophlorizin, 3-bromoacetamido-, 3-dansyl- and 3-azidophlorizin have been synthesized. In another approach, 3′-mercuryphlorizin was obtained by reaction of phlorizin with Hg(II) acetate. The phlorizin derivatives inhibit sodium-dependent but not sodium-independent d-glucose uptake by hog renal brush border membrane vesicles in the following order of potency: 3′-mercuryphlorizin = phlorizin > 3-aminophlorizin > 3-bromoacetamidophlorizin > 3-azidophlorizin > 3-nitrophlorizin > 3-dansylphlorizin. 3-Bromoacetamidophlorizin - a potential affinity label - also inhibits sodium-dependent but not sodium-independent phlorizin binding to brush border membranes. In addition, sodium-dependent phosphate and sodium-dependent alanine uptake are not affected by 3-bromoacetamidophlorizin. The results described above indicate that specific modifications of the phlorizin molecule at the A-ring or B-ring are possible that yield phlorizin derivatives with a high affinity and high specificity for the renal Na+/d-glucose cotransport system. Such compounds should be useful in future studies using affinity labeling (3-bromoacetamido- and 3-azidophlorizin) or fluorescent probes (3-dansylphlorizin).  相似文献   

8.
These studies are aimed at characterizing the transport of the tripeptide, glycylglycyl-L-proline (GlyGlyPro) across human jejunal brush-border membrane vesicles. GlyGlyPro (0.65 mM) was hydrolyzed by brush-border membrane vesicles with the extent of hydrolysis per mg protein being 23% at 0.5 min, 57% at 1 min and complete hydrolysis at 60 min. Treatment of the membrane vesicles with gel-complexed papain (to remove membrane peptidases) resulted in minimal hydrolysis of GlyGlyPro up to 10 min of incubation. Measurement of GlyGlyPro influx with papain-treated vesicles in the presence of increasing medium osmolarity showed that uptake occurred into an osmotically reactive intravesicular space. Transport of GlyGlyPro with normal and papain-treated membrane vesicles was similar in the presence of an inward Na+ or K+ gradient. No overshoot phenomenon was observed in the presence of an inward proton gradient (extravesicular pH 5.5; intravesicular pH 7.5). An interior negative membrane potential induced by a K+ diffusion potential in the presence of valinomycin stimulated the uptake of the peptide. The effect of increasing concentrations on initial rates of GlyGlyPro uptake revealed the presence of a saturable component as well as a diffusional component. Preloading the membrane vesicles with 20 mM glycylsarcosylsarcosine stimulated uptake by 4-fold. Uptake of GlyGlyPro was inhibited greater than 50% by dipeptides and tripeptides and less than 15% by free amino acids. These results indicate that GlyGlyPro uptake in jejunal brush-border membrane vesicles is not energized by a Na+ or proton gradient and that transport occurs by carrier-mediated and diffusional processes.  相似文献   

9.
Adenosine transport has been further characterized in rat renal brush-border membranes (BBM). The uptake shows two components, one sodium-independent and one sodium-dependent. Both components reflect, at least partly, translocation via a carrier mechanism, since the presence of adenosine inside the vesicles stimulates adenosine uptake in the presence as well as in the absence of sodium outside the vesicles. The sodium-dependent component is saturable (Km adenosine = 2.9 microM, Vmax = 142 pmol/min per mg protein) and is abolished at low temperatures. The sodium-independent uptake has apparently two components: one saturable (Km = 4-10 microM, Vmax = 174 pmol/min per mg protein) and one non-saturable (Vmax = 3.4 pmol/min per mg protein, Km greater than 2000 microM). Inosine, guanosine, 2-chloroadenosine and 2'-deoxyadenosine inhibit the sodium-dependent and -independent transport, as shown by trans-stimulation experiments, probably because of translocation via the respective transporter. Uridine and dipyridamole inhibited only the sodium-dependent uptake. Other analogs of adenosine showed no inhibition. The kinetic parameters of the inhibitors of the sodium-dependent component were further investigated. Inosine was the most potent inhibitor with a Ki (1.9 microM) less than the Km of adenosine. This suggests a physiological role for the BBM ecto-adenosine deaminase (enzyme which extracellularly converts adenosine to inosine), balancing the amount of nucleoside taken up as adenosine or inosine by the renal proximal tubule cell.  相似文献   

10.
To characterize further the Na+/d-glucose cotransport system in renal brush border membranes, phlorizin - a potent inhibitor of d-glucose transport - has been chemically modified without affecting the d-glucose moiety or changing the side groups that are essential for the binding of phlorizin to the Na+/d-glucose cotransport system. One series of chemical modifications involved the preparation of 3-nitrophlorizin and the subsequent catalytic reduction of the nitro compound to 3-aminophlorizin. From 3-aminophlorizin, 3-bromoacetamido-, 3-dansyl- and 3-azidophlorizin have been synthesized. In another approach, 3′-mercuryphlorizin was obtained by reaction of phlorizin with Hg(II) acetate. The phlorizin derivatives inhibit sodium-dependent but not sodium-independent d-glucose uptake by hog renal brush border membrane vesicles in the following order of potency: 3′-mercuryphlorizin = phlorizin > 3-aminophlorizin > 3-bromoacetamidophlorizin > 3-azidophlorizin > 3-nitrophlorizin > 3-dansylphlorizin. 3-Bromoacetamidophlorizin - a potential affinity label - also inhibits sodium-dependent but not sodium-independent phlorizin binding to brush border membranes. In addition, sodium-dependent phosphate and sodium-dependent alanine uptake are not affected by 3-bromoacetamidophlorizin. The results described above indicate that specific modifications of the phlorizin molecule at the A-ring or B-ring are possible that yield phlorizin derivatives with a high affinity and high specificity for the renal Na+/d-glucose cotransport system. Such compounds should be useful in future studies using affinity labeling (3-bromoacetamido- and 3-azidophlorizin) or fluorescent probes (3-dansylphlorizin).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号