首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
贺兰山岩羊冬春季取食生境的比较   总被引:10,自引:2,他引:8  
2003年11~12月和2004年4~6月,在贺兰山设定了25条固定样线,采用直接观察法对岩羊冬春季的取食生境选择进行了研究。结果表明,岩羊冬季对12种取食生境生态因子有选择性,偏爱选择位于山地疏林草原带,优势乔木为灰榆,乔木密度〈4株、高度4~6m,灌木密度〉5株、高度〉1.3m,食物质量〉50g,人为干扰距离〈500m,距裸岩距离〈2m的地方取食。而春季对11种取食生境生态因子有选择性,偏爱选择山地疏林草原带,优势乔木为灰榆,乔木密度〈4株、高度〈6m,灌木密度5~10株、高度1.3~1.7m,食物质量〉100g,海拔高度〈2000m,距水源距离〈500m,隐蔽级50%~75%的地点。冬春季岩羊对植被类型、地形特征、优势乔木、乔木密度、乔木高度、灌木密度、灌木距离、食物丰富度、坡向、坡度、距水源距离、人为干扰距离和隐蔽级的选择存在显著差异。主成分分析表明,冬季第1主成分的贡献率达24.493%,其中绝对值较大的权系数出现在植被类型、优势乔木、乔木高度、乔木距离、灌木密度、灌木高度、海拔高度、距水源距离和人为干扰距离等生态因子:春季第1主成分的贡献率达28.777%,其中绝对值较大的权系数出现在植被类型、乔木距离、灌木高度、灌木距离、食物丰富度、海拔高度和人为干扰距离等生态因子。随着北方地区冬春季食物数量和质量的剧烈变化,贺兰山岩羊对取食生境的利用对策也将发生一定程度的改变,与其他分布区的岩羊相比,贺兰山独特的地理位置和特殊生境使其在取食生境选择上存在很大差异。  相似文献   

2.
The feeding habitat selection of blue sheep (Pseudois nayaur)was studied by direct observation method in the Helan Mountains,China during winter (from November to December)and spring (from April to June)from 2003 to 2004.We established 25 line transects to collect information on feeding habitats used by blue sheep.Blue sheep in the study area preferred mountain savanna forests,a habitat dominated by Ulmus glaucescens,with medium tree density (<4 individuals/400 m2),moderate tree height (4-6 m),higher shrub density (>5 individuals/100 m2),higher shrub (>1.3 m),higher food abundance (>50 g),moderate distance to human disturbance (<500 m),and mild distance to bare rock (<2 m).Such habitats characterized by 12 ecological factors were preferred as feeding areas by blue sheep during winter.Similar to habitat selection by the species during winter,blue sheep also showed a preference for mountain savanna with tree dominated by Ulmus glaucescens and medium tree density (<4 individuals/400 m2)during spring.Nevertheless,blue sheep preferred medium tree height (<6 m),moderate tree density (5-10 individuals/100 m2),medium shrub height (1.3-1.7 m),higher food abundance (>100 g),moderate altitude (<2 000 m),moderate distance to water resource (<500 m),and medium hiding cover (50%-75%)during spring.Selection of the feeding habitats by sheep showed a significant difference in vegetation type,landform feature,dominant tree,tree height,shrub density,distance to the nearest shrub,food abundance,slope direction,slope degree,distance to water resource,and hiding cover between winter and spring.Results of principal components analysis indicated that the first principal component accounted for 24.493%of the total variance among feeding habitat variance during winter,with higher loadings for vegetation type,dominant tree,tree height,distance to the nearest tree,shrub density,shrub height,altitude,distance to water resource,and distance to human disturbance.In spring,the first principal components explained 28.777%of the variance,with higher loadings for vegetation type,distance to the nearest tree,shrub height,distance to the nearest shrub,food abundance,altitude,and distance to human disturbance.  相似文献   

3.
张广才岭藏獾洞穴生境选择   总被引:1,自引:1,他引:0  
李路云  杨会涛  滕丽微  刘振生 《生态学报》2015,35(14):4836-4842
2008年9月至2009年8月,在黑龙江省方正林业局新风林场,用不定宽样线法对藏獾洞穴生境选择进行研究,共记录了55组藏獾洞穴,藏獾洞口平均直径为(27.40±7.15)cm,洞深平均为(84.18±22.04)cm,倾角平均为(26.36±9.10)°,洞口总数=3.02个常用洞数+0.80个不常用洞数+0.56个废弃洞数。相对于对照样方而言,藏獾洞穴更偏爱选择位于郁闭度和植被盖度小,灌木密度大、距离近,乔木距离远,距水源和农田近、人为干扰距离远,坡度较缓的向阳中坡位的生境。资源选择函数模型为:logit(p)=246.980-1.059×植被盖度-0.703×距水源距离-1.403×坡度-45.005×坡向,模型的正确预测率为93.9%。  相似文献   

4.
The monitoring of animal populations is necessary to conserve and manage the rare or harvest species and to understand the population change over several years. We used distance sampling methods to estimate seasonal density of blue sheep in a 2,740 km2 area of Helan Mountain region by walking along 32 transect lines from winter 2003 to autumn 2005. In all, 367–780 blue sheep were observed in 91–143 groups in the surveys during the seasons. Observed mean group size ranged from 3.42 to 8.35 individuals; encounter rate, the number of groups detected per kilometre, varied from 0.19 to 0.30 during the seasons. A hazard rate key function with cosine series expansion and a half-normal key function with either cosine or simple polynomial series expansion were the best fitting models based on the lowest value of Akaike’s information criterion (AIC). Density estimates varied between 3.627 sheep per square kilometre in spring 2004 and 4.635 per square kilometre in summer 2005. There were no detectable differences in estimated density among seasons (P = 0.887). The estimated density of blue sheep was negatively correlated with the total number of deaths (P < 0.05), number of sub-adult males’ deaths (P < 0.05), number of sub-adult females’ deaths (P < 0.05), and number of male lambs’ deaths (P < 0.05). We concluded that distance sampling surveys should be used to monitor long-term population trends to provide the best quantitative estimates of blue sheep populations in the Helan Mountains region.  相似文献   

5.
贺兰山牦牛冬春季的生境选择   总被引:1,自引:0,他引:1  
在2009年12月-2010年1月和2010年4-5月,采用样线法结合直接观察法对贺兰山牦牛的冬春季生境选择进行了研究。结果表明,牦牛冬季对11种生境因子有选择性,偏爱山地针叶林带,海拔小于2 000 m,优势乔木为灰榆,坡度小于10,下坡位,距水源距离大于1 200 m,人为干扰距离2 000-4 000 m,隐蔽级大于70 %;春季牦牛对13种利用生境生态因子有选择性,偏爱于亚高山灌丛和草甸带,海拔大于3 000 m,乔木密度小于1株,乔木高度小于3 m,乔木距离大于3 m,灌木密度大于4 0株,灌木距离小于1 m,植被盖度大于7 0 %,上坡位,距水源的距离小于8 00 m,人为干扰距离大于4 000 m,隐蔽级大于7 0 %。冬春季牦牛在海拔、植被类型、地形特征、优势乔木、灌木种类、坡位、坡向、人为干扰距离、距水源距离上存在显著差异。主成分分析表明冬季第一主成分的贡献率21.100 %,其中绝对值较大的相关系数是乔木距离、优势乔木、乔木高度和乔木密度;春季第一主成分的贡献率是31.247 %,其中绝对值较大的相关系数是植被类型、海拔高度、地形特征和灌木密度。与其他分布地区的牦牛相比,贺兰山地区的牦牛能适应当地的地理特征和气候环境。  相似文献   

6.
贺兰山马鹿冬季取食和卧息生境选择   总被引:4,自引:1,他引:3  
2007 年12 月至2008 年1 月,在贺兰山地区,利用痕迹检验法和直接观察法对马鹿阿拉善亚种的冬季取食和卧息生境选择进行研究。通过在选定的15 条沟段里进行调查,共测定了72 个取食利用样方,59 个卧息利用样方和131 个对照样方的18 种生态因子。结果表明,马鹿在冬季偏好的取食地为平滑起伏坡,以酸枣、柳为优势乔木、混合型树林或空地,乔木高大稀疏、间距较远,灌木密度大,草本盖度较高,位于< 15°的半阴半阳坡的下坡位,距裸岩远,隐蔽度高;偏好的卧息地在山地疏林草原带的平滑起伏坡上,以酸枣、柳为优势乔木、混合型树林或空地,乔木高大稀疏,灌木矮小、稀疏且距离较远,草本盖度较高,位于< 15°阳坡的下坡位,远离裸岩,隐蔽程度高。马鹿冬季的取食和卧息生境在草本盖度和隐蔽度上差异极显著。相对于卧息生境,马鹿冬季的取食生境对草本盖度和隐蔽度要求更低一些。马鹿冬季取食地的资源选择函数为1.155 - 0.149 × 乔木高度- 0.066 × 草本盖度+ 0.190 × 坡度,模型的正确判别率为86.8% ;马鹿冬季卧息地的资源选择函数为- 30.936
+ 0.494 × 乔木高度+ 0.257 × 坡度-0.002 × 海拔高度+ 0.387 × 隐蔽度,模型的正确判别率为95.8% 。食物、隐蔽条件以及贺兰山的独特地形特征是影响马鹿冬季取食和卧息生境选择的主要因素。  相似文献   

7.
The seed and seedling mortality ofFagus crenata Blume after a mast year (1993) was examined in relation to density and distance from the nearest conspecific adult tree in a mixed conifer-hardwood forest in Ohdaigahara, western Japan. The mortality of fallen seeds during winter amounted to 93.7%, and 79.2% of the current-year seedlings died in the first growing season. The most important factor of death for both seeds and seedlings was predation by vertebrates. The mortality of seeds during winter was positively correlated with sound seed density. The mortality of seedlings was positively correlated with density but not significantly related to the distance from the nearest crown edge of a conspecific adult tree. Mortality patterns varied with stages and spatial scales due to the behavior of predators; it is thus important to investigate the spatial pattern of seeds and seedling mortality at various temporal and spatial scales. After the first growing season, the difference in seedling density between distance classes was not significant at <4m from the nearest adult trees due to density-dependent mortality. However, seedling density was significantly lower in the ≥4 m class than in the <4 m classes.  相似文献   

8.
大兴安岭驯鹿(Rangifer tarandus)的春季生境选择   总被引:1,自引:0,他引:1  
为确定分布于我国大兴安岭西北麓的濒危驯鹿(Rangifer tarandus)的春季生境选择特征,于2012和2013年的3—4月间,采用样线样方结合的生境调查方法,对内蒙根河驯鹿的春季偏好生境和对照生境进行了取样,并对样方的海拔和乔木郁闭度等23个生境变量进行了计测与分析。结果表明:与非利用样方(n=132)相比,驯鹿春季偏好生境(n=79)的海拔((957.27±1.68)m)、乔木郁闭度((32.84±2.72)%)、乔木密度(21.72±1.52)、地表植被盖度((85.06±1.03)%)、树桩数(6.81±0.45)和倒木数(5.73±0.54)均显著较大(Mann-Whitney U test,P0.05),而灌木盖度((57.95±2.79)%)、枯草盖度((33.11±2.79)%)、乔木高度((9.58±0.27)m)和灌木均高((59.85±2.69)cm)显著较小(Mann-Whitney U test,P0.05),而且驯鹿春季趋向于选择西坡和南坡(77.21%)的坡度较缓(93.67%)、位于坡中下位(67.09%)的生境,并偏好选择针叶林(68.35%)中的隐蔽度好(82.28%)、避风状况良好(64.56%)、湿润(60.76%)、距水源较近(≤1000 m,94.94%)及距人为干扰较远(≥1000m,87.34%)的生境(Chi-Square test,P0.05)。此外,驯鹿偏好生境的变量主成分分析结果表明,坡位、乔木特征(乔木胸径和乔木高度)、食物多度(灌木盖度、倒木数及树桩数)、雪被特征(雪深、雪盖度和郁闭度)、干扰强度(距人为干扰距离)、植被类型(坡向和植被类型)是影响驯鹿春季生境选择的重要因素,综合体现了驯鹿在春季对保温、食物和安全性的需求。  相似文献   

9.
The red foxVulpes vulpes (Linnaeus, 1758) density and habitat use were studied in open farmland of western Poland, where forests covered only 6% of the area. During 1997-2000, nocturnal spotlight counts (in spring and early winter), the location of breeding sites and snow tracking were carried out, and the feeding habitat was described based on the stomach content of shot individuals. The average fox density estimated on the ground of spotlight counts was 1.02 individuals/km2 in spring and 1.63 ind./km2 in early winter, while the winter density obtained from the results of track counts was 1.26 ind./km2. The average breeding population density, calculated as the double density of breeding sites (mean 0.31/km2), amounted to 61% of the average total spring density, which indicates the occurrence of surplus individuals in the population. The searching intensity of farmland by foxes did not changed with the increasing distance from forests, but relatively larger number of individuals was observed <0.5 km than 0.5–1.0 km away from settlements. Out of 81 identified breeding sites, 17% were located in forests and 83% in farmland. The predominant ingredients of the fox’s diet were farm livestock and small rodents (44.4 and 43.8% of the stomach content volume, respectively). The fox density in the study area was 5.4 times higher, compared with the turn of the 1970s, and changes in the habitat use consisted of more intensive occupation of open farmland and the use of human-produced food. Thus, these changes may have been among reasons of the increase in the fox density in western Poland.  相似文献   

10.
11.
The chosen habitat of any animal species comprises a range of environmental features that provide adequate resources for its continuous survival. Consequently, the criteria of habitat selection by animals, combines a wider spectrum of both environmental and extrinsic factors, with major prerequisites based on food resources, availability of shelter and suitable ethics for procreation. From this study, conducted in winter and early spring, at Mt. Wangwushan area, located on 35°05′–35°15′ N, 112°12′–112°22′ E, in Taihangshan Macaque National Nature Reserve (TMNNR), Jiyuan, Henan Province, we show by elaborative results that Macaca mulatta tcheliensis was specifically associated with the following habitat characteristics: (1) the average tree DBH (diameter at breast height) with over 15 cm; (2) the distance from human disturbance of less than 2000 m; (3) the distance to water with less than 1000 m; (4) the gradient of mountain slope of 15°∼40°; (5) which was markedly tarrying with the altitude ranges from 1000 m to 1300 m; and (6) where the canopy coverage was less than 60%. In addition, during this study, rhesus macaque mostly inhabited the sunny slopes of mountains than the shady areas. Results of the first five principal components analysis (PCA) accounted for the total variance of 68.88%, while the other factors showed insignificant effects on habitat selection by rhesus macaque in the temperate forest. In conclusion, these new results increase our understanding on the living status, under the harshest condition, in winter and early spring of Macaca mulatta tcheliensis, the subspecies of rhesus macaques as may be linked to its habitat selection and utilization, in the temperate forest.  相似文献   

12.
From April to July 2003 and 2004, we surveyed the nest-site selection of the White Eared pheasant (Crossoptilon crossoptilon) in the Zhujie Monastery and in the mountain facing it in Sichuan Province, China. In this paper, we studied the nest characteristics and the clutch size of the pheasant. Habitat sampling method was used to determine the variables that might affect the nest-site selection of the White Eared pheasant. Chi-square test was used to identify which habitat type was likely to be preferred by the bird. Independent-samples t test and Mann-Whitney U test were used to find which variables were important for the birds’ nest-site selection. A total of 13 nests were found. Oak shrub was greatly preferred as nest sites (84.62%). Nests under a rock wall (7.69%) and a fallen tree (7.69%) were also found. The average clutch size of a White Eared pheasant is 7.33±0.54 (range, 5–11; n=12). Laying period was between April 27 and May 21. In the Zhujie area, 1 nest was in the forest and 11 nests were in oak shrubs. The species preferred oak shrub as its nesting habitat (χ 2=8.333, df=1, P<0.05). The bird was more likely to place its nest in sites with a high coverage, i.e. 0.5, 1, and 2 m above the ground (independent-samples t test, P<0.05), and with a large shrub diameter (Mann-Whitney U test, P<0.05). The species are more likely to prefer sites with plant cover, shrub cover (independent-samples t test, P<0.05), and shrub height (Mann-Whitney U test, P<0.05) in a relatively small range. Translated from Journal of Beijing Normal University (Natural Science), 2005, 41(2) (in Chinese)  相似文献   

13.
为了解宁夏贺兰山岩羊的种群现状,2020-2021年的8月和12-1月,在宁夏贺兰山国家级自然保护区运用样线法对岩羊(Pseudois nayaur)进行种群数量调查,利用R 4.0.1中的Distance 1.0.2对样线观测数据进行分析,估测保护区内岩羊的种群数量及密度,分析其种群结构。结果显示,夏季岩羊种群数量为5176(2554-10490)只,种群密度为2.674(1.320-5.420)只/km2;冬季岩羊种群数量为15752(7294-34017)只,种群密度为8.139(3.769-17.58)只/km2;多数观测距离样线垂直距离在0-200 m之内。岩羊主要集群形式:夏季为雌幼群(52.17%);冬季为混合群(26.60%)。岩羊平均群大小:夏季为(6.261±8.023)只,冬季为(4.064±4.229)只,群大小在不同季节的差异显著(P=0.010),集群大小多集中于1-5只之间,最大为47只。夏季调查中,雄性个体占比11.27%,雌性个体占比56.74%,幼体/亚成体占比31.99%;冬季调查中,雄性个体占比29.61%,雌性个体占比50.15%,幼体/亚成体占比20.24%;夏季和冬季岩羊组成成分之间差异极显著(P<0.001)。  相似文献   

14.
We measured the stable deuterium isotopic composition of xylem sap, the shoot predawn and midday water potentials, and the leaf δ13C of Mediterranean shrubs Pistacia lentiscus, Globularia alypum and Rosmarinus officinalis in a south-oriented transect from a large (12 m tall) Aleppo pine tree, Pinus halepensis. We aimed to study the possibility of hydraulic lift from the deep roots of this pine tree to the shallow soil layers and its influence on these neighbour shrubs. These same traits were also studied in several individuals of the shrub Pistacia lentiscus growing with different types of neighbours: just shrubs, a small (3 – 4 m) pine tree, and the above mentioned large pine tree. The greater the distance from P. halepensis the plants grew, the higher xylem water δD, the lower the soil water content, and, the lower the predawn and midday water potentials were found. These results suggest the existence of an hydraulic lift from deep roots to shallow soil in this big tree. Further indication of this existence is provided by the improved water status of P. lentiscus (higher water potentials and δD, and lower δ13C and, therefore, lower water use efficiencies) when growing close to the big pine in comparison with the same shrub species growing close to small pines or just surrounded by other shrubs. Moreover, all these trends occurred in the dry summer season, but disappeared in the wet spring season. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
为调查内蒙古贺兰山国家级自然保护区内岩羊(Pseudois nayaur alashanicus)的种群现状,通过样线法在2017、2018年冬季,2018、2019年春季进行了调查,利用R 4.0.3中的Distance 1.0.2对样线观测数据进行分析,估测保护区内岩羊的种群数量及密度,分析其种群结构。结果显示,调查共观测到岩羊6299只,其中,2018年冬季种群数量最高,约为2654(2230-3161)只(括号内为95%数量置信区间),种群密度为3.921(3.293-4.668)只/km2。与2003年同季节的调查数据对比发现,保护区内岩羊的种群数量在15年间增长迅速,岩羊的种群密度累计增长了约53.17%,年平均增长3.54%。岩羊集群形式:混合群(88.03%,80.95%)为岩羊冬、春最主要的集群形式,且混合群的数量冬季多于春季,独羊出现的次数最低(1.99%,2.86%),不同的集群类型在不同的季节的差异极显著(P<0.001);岩羊平均群大小:春季为(13.439±12.085)只,冬季为(9.011±8.610)只,调查季节中集群大小多为1-10只,岩羊的不同季节的群大小差异极显著(P<0.001)。种群成体与幼体比在不同季节的变化范围为1.411-2.673,雌雄比在不同季节的变化范围为0.934-1.469,种群结构的季节性差异极显著(P<0.001)。集群类型、群大小及群组成的调查表明,不同季节间岩羊种群结构差异明显。  相似文献   

16.
Benthic microalgae are known to perform important ecosystem functions in shallow lakes. As such it is important to understand the environmental variables responsible for regulating community structure, positioning and biomass. We tested the hypothesis that the positioning (across a depth gradient of 2–22 m overlying water depth) and relative biomass (determined using bulk and lens tissue harvested chlorophyll (Chl) a concentrations) of the epipelon community would vary independently with season (12 monthly samples) and across natural gradients of light and habitat disturbance relative to the total benthic algal community (i.e. all viable microalgae in the surface sediments) in a shallow eutrophic loch. Total sediment microalgal Chl a concentrations (TS-Chl; range: 5–874 μg Chl a g−1 dw) were highest in winter and in the deepest site (20 m overlying water depth), apparently as a result of phytoplanktonic settling and sediment focussing processes. Epipelic Chl a concentrations (Epi-Chl; range: <0.10–6.0 μg Chl a g−1 dw) were highest in winter/spring, a period when water clarity was highest and TS-Chl lowest. Principal components analysis highlighted strong associations between Epi-Chl and sites of intermediate depths (2.5–5.5 m) in all seasons except autumn/winter. Autumn/winter represented the season with the highest average wind speeds preceding sampling, during which the highest Epi-Chl concentrations were associated with the deepest sites. Epi-Chl was associated with intermediate light and habitat disturbance during spring/summer and summer/autumn and varied positively with habitat disturbance, only, in autumn/winter and winter/spring. The epipelon community structure also varied with depth; diatoms dominated shallow water sediments, cyanobacteria dominated deep water sediments, and sediments at sites of intermediate depth returned the highest biovolume estimates and the most diverse communities. This study has strengthened the hypothesis that the structure and biomass of benthic microalgal communities in lakes are regulated by habitat disturbance and water clarity, both of which are expected to respond to climate change and eutrophication. The degree to which these structural responses reflect functional performance requires clarification.  相似文献   

17.
Home range and habitat use of male Reeves’s pheasant (Syrmaticus reevesii) were studied during winter of 2001∼2002 and 2002∼2003 in the Dongzhai National Nature Reserve, Henan Province. Results from five individuals of Reeves’s pheasant with over 30 relocations, indicated that the average size of home range was 10.03 ± 1.17 hm2 by Minimum Convex Polygon method, 8.60 ± 0.35 hm2 by 90% Harmonic Mean Transformation method, and 9.50 ± 1.90 hm2 by 95% Fixed Kernel method. It was observed that the winter range is smaller than that in the breeding season. The mean core area of the home range was found to be 1.88 ± 0.37 hm2. Although the habitat composition of the core area varied greatly for individuals, a large part of the habitats used were composed of confier and broadleaf mixed forests, masson pine forests, fir forests, and shrubs. Habitat use within the study area was non-random, while habitats within home ranges were randomly used. Habitat use was dictated by tree diameter at breast height, shrub height and coverage at 2.0 m. The proximity between forests and shrubs were also found to be important in providing refuge for the birds during winter. Recommendations for conservation management include protecting the existing habitats in Dongzhai National Nature Reserve, increasing suitable habitat for Reeves’s Pheasant through artificial plantations (e.g. firs), and restoring some parts of the large shrub area into forests. __________ Translated from Biodiversity Science, 2005, 13 (5) [译自: 生物多样性, 2005,13(5)]  相似文献   

18.
Fuel management techniques are commonly used in shrublands to reduce wildfire risk. However, more information about the ecological effects of these treatments is needed by managers and ecologists. In an effort to address this need, we performed a replicated (4 replicates per treatment) 48-ha experiment in northern California chaparral dominated by Adenostoma fasciculatum to determine the effects of two fuel reduction types (prescribed fire and mastication) and three different seasons of treatment (fall, winter, and spring) on shrub cover, height, and seedling density. Exclosures (2.5 m2 each) were also used to assess herbivory effects. By the third post-treatment year, prescribed fire treatments had higher shrub cover (71 ± 2%) than mastication (43 ± 4%). There was no treatment effect on shrub height, species richness, or composition. Seedling density was initially higher in prescribed fire treatments (31 ± 4 seedlings m−2) than mastication (3 ± 0 seedlings m−2); however, prescribed fire treatments experienced substantial mortality, especially spring burning, resulting in lower densities 3 years after treatments (18 ± 0 seedlings m−2 after fall and winter fire compared to 2 ± 0 seedlings m−2 after spring fire). A. fasciculatum remained the dominant shrub species after the treatments, and Ceanothus cuneatus recruitment was higher in fall burning. Deer herbivory only affected shrub height, especially in masticated units, resulting in heights of 55 ± 2 cm in unexclosed areas compared to 66 ± 4 cm inside exclosures by the third post-treatment year. Overall, our findings suggest that fuel treatments play an important role in shrubland community dynamics, at least in the short-term, with implications for re-treatment frequency, community structure, and wildlife habitat.  相似文献   

19.
From April to July of 2003–2005, we investigated habitat selection of breeding brown eared-pheasants (Crossoptilon mantchuricum) in the Xiaowutaishan National Nature Reserve, Hebei Province. Our results show that brown eared-pheasants preferred deciduous-coniferous mixed or deciduous forests with altitudes ranging from 1600 to 2200 m, steep gradients of slopes and medium or high positions on slopes. Moreover, they preferred habitats with more tree species, larger diameters at the breast height, more density and cover of trees and habitats with more types of grasses, high density and cover of grasses, but with fewer types of shrubs and lower density and cover of shrubs. They had larger territories in the early breeding stage than in the late breeding stage. There were significant differences in diameters at the breast height of trees, average height of trees, cover of trees, density of shrubs, cover of shrubs, aspect, distance to path, distance to water, distance to forest edge (P < 0.01, respectively), density of trees, type of shrubs, height of shrubs, type of grasses, density of grasses and proportion of bareness (P < 0.05, respectively). The result of the principal component analysis suggested that the principal components among the 23 habitat factors were the average height of trees, density of trees, diameters at the breast height of trees, density of shrubs, cover of shrubs and density of grasses. The differences in habitat selection of brown eared-pheasants between early breeding and late breeding stages may correlate with the dynamics of ambient environmental conditions, the reproductive behavior and energy requirements in their sub-stages of breeding.  相似文献   

20.
Winter concealment habitat quality was assessed and its use by juvenile spring Chinook salmon (Oncorhynchus tshawytscha) quantified in three hatching areas of the Grande Ronde River Basin, Oregon USA. Fish densities were significantly higher in pools with a higher winter concealment habitat index than pools with a lower index. The mean fork length and mean growth rate of fish did not differ between pools with a higher or lower winter concealment habitat index, even though residual fish were significantly larger than fish that emigrated. Biomass–density was significantly higher in pools with a higher winter concealment habitat index than pools with a lower index in all three hatching areas. Biomass–density was positively associated with the amount of cobble substrate (10–24.9 cm/m2) in all three hatching areas, and inversely associated with embeddedness in two of the hatching areas. Results of this study indicate that enhancing winter concealment habitat could improve habitat quality resulting in increased carrying capacity and winter usage by juvenile spring Chinook salmon. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Handling editor: J. A. Cambray  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号