首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new series of amphiphilic heteroleptic ruthenium(II) sensitizers [Ru(H2dcbpy)(dhbpy)(NCS)2] (C1), [Ru(H2dcbpy)(bccbpy)(NCS)2] (C2), [Ru(H2dcbpy)(mpubpy)(NCS)2] (C3), [Ru(H2dcbpy)(bhcbpy)(NCS)2] (C4) have been synthesized and fully characterized by UV-Vis, emission, NMR and cyclic voltammetric studies (where dhbpy = 4,4′-dihexyl-2,2′-bipyridine, bccbpy = 4,4′-bis(cholesteroxycarbonyl)-2,2′-bipyridine, mpubpy = 4-methyl-4′-perfluoro-1H,1H,2H,2H,3H,3H-undecyl-2,2′-bipyridine, bhcbpy = 4,4′-Bis(hexylcarboxamido)-2,2′-bipyridine). The amphiphilic amide heteroleptic ruthenium(II) sensitizers, self-assembled on TiO2 surface from ethanol solution, reveal efficient sensitization in the visible window range yielding ≈80% incident photon-to-current efficiencies (IPCE). Under standard AM 1.5 sunlight, the C4 sensitizer gave 15 mA/cm2 short circuit photocurrent density, 0.66 fill factor and an open circuit voltage of 0.75 V, corresponding to an overall conversion efficiency of 7.4%.  相似文献   

2.
We report here the synthesis, characterisation, electrochemical, photophysical and protein-binding properties of four luminescent ruthenium(II) polypyridine indole complexes [Ru(bpy)2(L1)](PF6)2 (1), [Ru(bpy)2(L2)](PF6)2 (2), [Ru(L1)3](PF6)2 (1a), and [Ru(L2)3](PF6)2 (2a) (bpy = 2,2′-bipyridine; L1 = 4-(N-(2-indol-3-ylethyl)amido)-4′-methyl-2,2′-bipyridine; L2 = 4-(N-(6-N-(2-indol-3-ylethyl)hexanamidyl)amido)-4′-methyl-2,2′-bipyridine). Their indole-free counterparts, [Ru(bpy)2(L3)](PF6)2 (3) and [Ru(L3)3](PF6)2 (3a) (L3 = 4-(N-(ethyl)amido)-4′-methyl-2,2′-bipyridine), have also been synthesised for comparison purposes. Cyclic voltammetric studies revealed ruthenium-based oxidation at ca. +1.3 V versus SCE and diimine-based reductions at ca. −1.20 to −2.28 V. The indole moieties of complexes 1, 2, 1a and 2a displayed an irreversible wave at ca. +1.1 V versus SCE. All the ruthenium(II) complexes exhibited intense and long-lived orange-red triplet metal-to-ligand charge-transfer 3MLCT (dπ(Ru) → π*(L1-L3)) luminescence upon visible-light irradiation in fluid solutions at 298 K and in alcohol glass at 77 K. The binding of the indole-containing complexes to bovine serum album (BSA) has been studied by quenching experiments and emission titrations.  相似文献   

3.
A novel heteroleptic polypyridine ruthenium complex, cis-Ru(L1)(L2)(NCS)2, L1 = 4,4′-dicarboxylic acid-2,2′-bipyridine (dcbpy), L2 = 4,4′-bis[p-diethylamino]-α-styryl]-2,2′-bipyridine, was synthesized. The dye displays extremely high molar extinction coefficient, which is comparable with organic dye. Preliminary test shows the dye-sensitized TiO2 solar cell gives high conversion efficiency up to 8.65% under 1 Sun, while 8.35% is given for N3 based DSCs under the same condition. The dye will be further employed in solid state DSCs with hole transport material.  相似文献   

4.
Two new mononuclear mixed-ligand ruthenium(II) complexes with acetylacetonate ion (2,4-pentanedionate, acac) and functionalized bipyridine (bpy) in position 4, [Ru(bpyBr)2(acac)](PF6) (2; bpyBr = 4-Bromo-2,2′-bipyridine, acac = 2,4-pentanedionate ion) and [Ru(bpyOH)2(acac)](PF6) (3; bpyOH = 4-[2-methyl-3-butyn-2-ol]-2,2′-bipyridine) were prepared as candidates for building blocks. The 1H NMR, 13C NMR, UV-Vis, electrochemistry and FAB mass spectral data of these complexes are presented.  相似文献   

5.
The reaction of ruthenium carbonyl polymer ([Ru(CO)2Cl2]n) with azopyridyl compounds (2,2′-azobispyridine; apy or 2-phenylazopyridine; pap) generated new complexes, [Ru(azo)(CO)2Cl2] (azo = apy, pap). [Ru(apy)(CO)2Cl2] underwent photodecarbonylation to give a chloro-bridged dimer complex, whereas the corresponding pap complex ([Ru(pap)(CO)2Cl2]) was not converted to a dimer. The reactions of the chloro-bridged dimer containing the bpy ligand (bpy = 2,2′-bipyridine) with either apy or pap resulted in the formation of mixed polypyridyl complexes, [Ru(azo)(bpy)(CO)Cl]+. The novel complexes containing azo ligands were characterized by various spectroscopic measurements including the determination of X-ray crystallographic structures. Both [Ru(azo)(CO)2Cl2] complexes have two CO groups in a cis position to each other and two chlorides in a trans position. The azo groups are situated cis to the CO ligand in [Ru(azo)(bpy)(CO)Cl]+. All complexes have azo N-N bond lengths of 1.26-1.29 Å. The complexes exhibited azo-based two-electron reduction processes in electrochemical measurements. The effects of introducing azopyridyl ligands to the ruthenium carbonyl complexes were examined by ligand-based redox potentials, stretching frequencies and force constants of CO groups and bond parameters around Ru-CO moieties.  相似文献   

6.
Reaction of [Ru(2,2′-bipyridine)(2,2′:6′,2″-terpyridine)Cl]PF6 (abbreviated to [Ru(bipy)(terpy)Cl]PF6) with 0.5 equiv of the bidentate ligand L produces the dinuclear complexes [{Ru(bipy)(terpy)}2(μ-L)](PF6)4 (L = 4,4′-bipyridine 1, 1,4-diisocyanobenzene 2 and pyrazine 3) in moderate yields. Treating [Ru(bipy)(terpy)Cl]PF6 with equal molar of 1,4-diisocyanobenzene affords [Ru(bipy)(terpy)(CNC6H4NC)](PF6)2 (2a). These new complexes have been characterized by mass, NMR, and UV-Vis spectroscopy, and the structures of 1-3 determined by an X-ray diffraction study. Cyclic voltammetric studies suggest that metal communication between the two ruthenium ions increases from 1 to 2 to 3.  相似文献   

7.
A series of mononuclear acetonitrile complexes of the type [Ru(CH3CN)(L)(terpy)]2+ {L = phen (1), dpbpy (3), and bpm (5)}, and their reference complexes [RuCl(L)(terpy)]+ {L = phen (2), dpbpy (4), and dpphen (6)} were prepared and characterized by electrospray ionization mass spectrometry, UV-vis spectroscopy, and cyclic voltammograms (CV). Abbreviations of the ligands (Ls) are phen = 1,10-phenanthroline, dpbpy = 4,4′-diphenyl-2,2′-bipyridine, bpm = 2,2′-bipyrimidine, dpphen = 4,7-diphenyl-1,10-phenanthroline, bpy = 2,2′-bipyridine, and terpy = 2,2′:6′,2″-terpyridine. The X-ray structures of the two complexes 2 and 3 were newly obtained. The metal-to-ligand charge transfer (MLCT) bands in the visible region for 1, 3, and 5 in acetonitrile were blue shifted relative to those of the reference complexes [RuCl(L)(terpy)]+. CV for all the [Ru(CH3CN)(L)(terpy)]2+ complexes showed the first oxidation wave at around 0.95 V, being more positive than those of [RuCl(L)(terpy)]+. The time-dependent-density-functional-theory approach (TDDFT) was used to interpret the absorption spectra of 1 and 2. Good agreement between computed and experimental absorption spectra was obtained. The DFT approach also revealed the orbital interactions between Ru(phen)(terpy) and CH3CN or Cl. It is demonstrated that the HOMO-LUMO energy gap of the acetonitrile ligand is larger than that of the Cl one.  相似文献   

8.
The absorption spectra of Ru complexes of the type cis-[Ru(H2dcbpy)(L)(NCS)2], where H2dcbpy = 4,4′-dicarboxy-2,2′-bipyridine and L = 1,10-phenanthroline (phen) (1) or dipyrido[3,2-a:2′,3′-c]phenazine (dppz) (2), in water were calculated by means of the time-dependent density functional theory, and the calculated spectra were subjected to transition-component analysis. Comparison of the calculated spectra of protonated, partially and fully deprotonated, and electrostatically non-compensated and fully compensated forms of 1 and 2 in water with the corresponding experimental absorption spectra in 0.01 M aqueous NaOH indicated that the predominant molecular structures are fully deprotonated anionic structures that are fully compensated with counter cations. The shapes of the calculated absorption spectra well reproduce the shapes of the corresponding experimental spectra in detail over the entire visible region. The calculated results indicated that the difference between the performances of 1- and 2-sensitized solar cells is due to differences in the contributions of the various electronic excitations that make up the absorption spectra. Transition-component analysis provided a detailed, quantitative explanation of the components of the absorption spectra of 1 and 2 and may be useful for the design and synthesis of improved sensitizers for high-performance dye-sensitized solar cells.  相似文献   

9.
Hua Jin 《Inorganica chimica acta》2007,360(10):3347-3353
Three new organic-inorganic hybrid compounds [CuI(2,2′-bipy)(4,4′-bipy)0.5]2[CuI(2,2′-bipy)(4,4′-Hbipy)][CuI(4,4′-bipy)]2[P2W18O62] · 3H2O (1), [CuI(2,2′-bipy)(4,4′-bipy)0.5]2[CuI(4,4′-bipy)]2[PW12O40] · 0.25H2O (2), and[CuI(4,4′-bipy)]3[PMo12O40] · en · 3H2O (3) (2,2′- bipy = 2,2′-bipyridine, 4,4′-bipy = 4,4′-bipyridine), have been hydrothermally synthesized. Compound 1 represents the first 1D ladderlike structure formed by Dawson-type polyoxoanion [P2W18O62]6− and coordination polymer with mixed 4,4′-bipy and 2,2′-bipy ligands. The novel structure of 2 is composed of 1D hybrid zigzag chains linked by chains into a 3D framework. In compound 3, the [PMo12O40]3− clusters are hung on chains to form a new 1D chain.  相似文献   

10.
Two new organic-inorganic hybrid compounds, {[Cu(2,2′-bipy)2]2(Hbpy)[α-AlW12O40]}·H2O (1) and {[H2en][CuI(4,4′-bipy)]3(α-AlW12O40)}·4H2O (2) (2,2′-bipy = 2,2′-bipyridine, 4,4′-bipy = 4,4′-bipyridine, py = pyridine, en = ethylene dimine) based on Keggin-type α-[AlW12O40]5− polyoxoaions and transition-metal organoamine subunits, have been hydrothermally synthesized and characterized by elemental analysis, IR spectroscopy, thermal gravimetric analysis (TG), and single-crystal X-ray diffraction. In addition, the electrochemical properties and photocatalytic activity of compound 1 were studied. The structural analysis reveals that 1 shows a 1D infinite chain structure constructed from [α-AlW12O40]5− polyoxoanions and {[CuII(2,2′-bipy)2][CuII(2,2′-bipy)(py)]}4+ fragments, in which the remarkable aspect is that [α-AlW12O40]5− polyoxoanion is modified in a fascinating symmetrical mode. Compound 2 displays an unprecedented 2D extended structure constructed from [α-AlW12O40]5− polyoxoanions and 4,4′-bipy-CuI-4,4′-bipy linear chains, in which three - chain belts formed by three linear chains arranged Cu parallel connect alternately with [α-AlW12O40]5− polyoxoanions. As far as we know, compounds 1 and 2 represent the first 1D and 2D extended hybrid materials constructed from 3d transition metals and polyoxotungstoaluminates linked through covalent bonds.  相似文献   

11.
Four lead(II) complexes with substituted 2,2′-bipyridine adducts and β-diketonates ligands, [Pb(5,5′-dm-2,2′-bpy)(tfpb)2]21, [Pb(4,4′-dmo-2,2′-bpy)(tfpb)2]22, [Pb(4,4′-dm-2,2′-bpy)(tfnb)2]23 and [Pb(5,5′-dm-2,2′-bpy)(tfnb)2]24, (“4,4′-dm-2,2′-bpy”, “5,5′-dm-2,2′-bpy”, “4,4′-dmo-2,2′-bpy”, “Htfpb” and “Htfnb” are the abbreviations of 4,4′-dimethyl-2,2′-bipyridine, 5,5′-dimethyl-2,2′-bipyridine, 4,4′-dimethoxy-2,2′-bipyridine, 4,4,4-trifluoro-1-phenyl-1,3-butanedione and 4,4,4-trifluoro-1-(2-naphthyl)-1,3-butanedione, respectively) have been synthesized and characterized by elemental analysis, IR, 1H NMR and 13C NMR spectroscopy and also studied by thermal and electrochemical as well as X-ray crystallography. The supramolecular features in these complexes are guided/controlled by weak directional intramolecular interactions.  相似文献   

12.
13.
Four new Cu(II) complexes [Cu(pzda)(2,2′-bpy)(H2O)] · 2.5H2O (1), [Cu(pzda)(phen)(H2O)] · H2O (2), [Cu(pzda)(4,4′-bpy)] · H2O (3) and [Cu(pzda)(bpe)0.5(H2O)] (4) were synthesized by hydrothermal reactions of copper salt (acetate or sulphate) with pyrazine-2,6-dicarboxylic acid (H2pzda), and 2,2′-bipyridine (2,2′-bpy), 1,10-phenanthroline (phen), 4,4′-bipyridine (4,4′-bpy) or 1,2-bis(4-pyridyl)-ethane (bpe), respectively. For 1 and 2, they are both monomeric entities which are further assembled into 3D supramolecular networks by hydrogen bonds and π-π stacking interactions. Complex 3 has a 2D metal-organic framework which is connected into 3D supramolecular network by hydrogen bonds. However, for 4, the bpe ligand bridges two Cu(II) ions into binuclear unit, and then the binuclear molecules are assembled into 3D supramolecular network by hydrogen bonds between the coordination water molecule and the carboxylate oxygen atoms. The thermal decomposition mechanism of complexes 1 and 2 cooperated with powder XRD at different temperatures is discussed. The results reveal that once liberation of water molecules takes place the supramolecular network of 1 and 2 collapses.  相似文献   

14.
Reactions of 2-(arylazo)aniline, HL [H represents the dissociable protons upon orthometallation and HL is p-RC6H4N = NC6H4-NH2; R = H for HL1; CH3 for HL2 and Cl for HL3] with Ru(R1-tpy)Cl3 (where R1-tpy is 4′-(R1)-2,2′,6′′,2′′-terpyridine and R1 = H or 4-N,N-dimethylaminophenyl or 4-methylphenyl) afford a group of complexes of type [Ru(L)(R1-tpy)]·ClO4 each of which contains C,N,N coordinated L as a tridentate ligand along with a terpyridine. Structure of one such complex has been determined by X-ray crystallography. All the Ru(II) complexes are diamagnetic, display characteristic 1H NMR signals and intense dπ(RuII) → π∗(tpy) MLCT transitions in the visible region. Cyclic voltammetric studies on [Ru(L)(R1-tpy)]·ClO4 complexes show Ru(II)-Ru(III) oxidation within 0.63-0.67 V versus SCE.  相似文献   

15.
Reaction of ferrocenyl carboxylate H2bfcs with Cd(Ac)2 · 2H2O (H2bfcs = 1,1′-bis(3-carboxy-1-oxopropyl)ferrocene) gives the mononuclear tetrahydrate precursor Cd(Hbfcs)2(H2O)4 (1). Investigation on the substitution reactions of 1 with imidazole or 2,2′-bpy afforded two one-dimensional (1D) complexes {[Cd2(bfcs)2(C3H4N2)6] · 4H2O}n (2) and {[Cd(bfcs)(2,2′-bpy)(H2O)] · 2H2O}n (4) (2,2′-bpy = 2,2′-bipyridine), respectively. However, the one-step reactions of H2bfcs, Cd(Ac)2 · 2H2O with imidazole or 2,2′-bpy result in the formation of two different 1D complexes {[Cd(bfcs)(C3H4N2)2] · CH3OH · 2H2O}n (3) and [Cd(bfcs)(CH3OH)]n (5). It can be seen from the results that applying different synthetic routes produce dissimilar complexes from however the same materials and under the same reaction conditions. In addition, investigations of differential pulse voltammetry of these four 1D complexes indicate that their half-wave potentials are slightly higher than that of H2bfcs.  相似文献   

16.
A series of luminescent ruthenium(II) amidodipyridoquinoxaline biotin (dpq-B) complexes [Ru(N-N)2(N-N′)](PF6)2 (N-N = 2,2′-bipyridine (bpy), 1,10-phenanthroline (phen), 4,7-diphenyl-1,10-phenanthroline (Ph2-phen); N-N′ = 2-((2-biotinamido)ethyl)amidodipyrido[3,2-f:2′,3′-h]quinoxaline (dpq-C2-B), 2-((6-biotinamido)hexyl)amidodipyrido[3,2-f:2′,3′-h]quinoxaline (dpq-C6-B)) has been designed as new luminescent probes for avidin. The electrochemical and photophysical properties of these complexes have been investigated. Upon irradiation, all the complexes exhibited metal-to-ligand charge-transfer (3MLCT) (dπ(Ru) → π(diimine)) emission in fluid solutions at 298 K and in low-temperature glass. In aqueous buffer, the emission was extremely weak, probably a consequence of hydrogen-bonding interactions between the amide moiety of the dpq-B ligands and the water molecules. The avidin-binding properties of all the complexes have been studied by 4′-hydroxyazobenzene-2-carboxylic acid (HABA) assays, luminescence titrations, kinetics experiments and confocal microscopy using avidin-conjugated microspheres.  相似文献   

17.
A new polyoxomolybdenum compound [Mo4O12(2,2′-bpy)3]n (1) (2,2′-bpy = 2,2′-bipyridine) has been hydrothermally synthesized and characterized by elemental analysis, IR spectroscopy, TG analysis, and single crystal X-ray diffraction. The solid state structure is a 1D chain with a repeat unit of three corner-sharing {MoO4N2} octahedra and one {MoO4} tetrahedron.  相似文献   

18.
Two new heterobimetallic complexes of rhenium(I) and ruthenium(II) [(CO)3(NN)Re(4,4′-bpy)Ru(NN)2Cl](PF6)2 and already known monometallic complexes [Cl(NN)2Ru(4,4′-bpy)](PF6) and [(CO)3(NN)Re(4,4′-bpy)](PF6) and bimetallic complexes [Cl(NN)2Ru(4,4′-bpy)Ru(NN)2Cl](PF6)2, [(CO)3(NN)Re(4,4′-bpy)Re(NN)(CO)3](PF6)2 (NN = 2,2′-bipyridine, 1,10-phenanthroline; 4,4′-bpy = 4,4′-bipyridine) are synthesized and characterized by spectral techniques. The photophysical properties of all the complexes are studied. It is found that attachment of rhenium(I) altered the photophysical characteristics of ruthenium(II). Excited state energy transfer from the rhenium(I) chromophore to the ruthenium(II) is observed upon excitation at 355 nm.  相似文献   

19.
Nano-scale and single crystals of a new MnII complex, {[Mn(pyterpy)(H2O)(NCS)1.88Cl0.12] · DMF} (1) [pyterpy = 4′-(4-pyridyl)-2,2′:6′,2″-terpyridine] have been synthesized by the reaction of pyterpy and mixtures of manganese(II) acetate and potassium thiocyanate as well as potassium chloride using sonochemical and heat gradient methods, respectively. The nano-structure was characterized by IR spectroscopy and scanning electron microscopy (SEM), and the structure of compound 1 was determined by single-crystal X-ray diffraction. Thermal stability and catalytic properties of nanoparticles and single crystalline samples of compound 1 were studied and are compared with each other.  相似文献   

20.
Crystallisation of simple cyanoruthenate complex anions [Ru(NN)(CN)4]2− (NN = 2,2′-bipyridine or 1,10-phenanthroline) in the presence of Lewis-acidic cations such as Ln(III) or guanidinium cations results, in addition to the expected [Ru(NN)(CN)4]2− salts, in the formation of small amounts of salts of the dinuclear species [Ru2(NN)2(CN)7]3−. These cyanide-bridged anions have arisen from the combination of two monomer units [Ru(NN)(CN)4]2− following the loss of one cyanide, presumably as HCN. The crystal structures of [Nd(H2O)5.5][Ru2(bipy)2(CN)7] · 11H2O and [Pr(H2O)6][Ru2(phen)2(CN)7] · 9H2O show that the cyanoruthenate anions form Ru-CN-Ln bridges to the Ln(III) cations, resulting in infinite coordination polymers consisting of fused Ru2Ln2(μ-CN)4 squares and Ru4Ln2(μ-CN)6 hexagons, which alternate to form a one-dimensional chain. In [CH6N3]3[Ru2(bipy)2(CN)7] · 2H2O in contrast the discrete complex anions are involved in an extensive network of hydrogen-bonding involving terminal cyanide ligands, water molecules, and guanidinium cations. In the [Ru2(NN)2(CN)7]3− anions themselves the two NN ligands are approximately eclipsed, lying on the same side of the central Ru-CN-Ru axis, such that their peripheries are in close contact. Consequently, when NN = 4,4′-tBu2-2,2′-bipyridine the steric bulk of the t-butyl groups prevents the formation of the dinuclear anions, and the only product is the simple salt of the monomer, [CH6N3]2[Ru(tBu2bipy)(CN)4] · 2H2O. We demonstrated by electrospray mass spectrometry that the dinuclear by-product [Ru2(phen)2(CN)7]3− could be formed in significant amounts during the synthesis of monomeric [Ru(phen)(CN)4]2− if the reaction time was too long or the medium too acidic. In the solid state the luminescence properties of [Ru2(bipy)2(CN)7]3− (as its guanidinium salt) are comparable to those of monomeric [Ru(bipy)(CN)4]2−, with a 3MLCT emission at 581 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号