首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 95 毫秒
1.
黄土丘陵区小流域尺度土壤有机碳密度及储量   总被引:6,自引:0,他引:6  
通过对上黄小流域不同土地利用方式下114个样点的采样分析,结合地统计学原理对小流域不同土层土壤有机碳密度的空间变异程度进行研究。研究表明,除表层土壤有机碳密度的空间变异程度较弱外,其余两层均属于中等强度变异。并呈现东部天然草地分布区与中部带状灌丛林地分布区空间变异程度较强的分布特点。不同土层深度和土地利用方式下土壤有机碳密度存在明显差异,土壤有机碳含量随着土层深度的增加而逐渐减小,有机碳密度则表现为10-30cm最高,30-60cm其次,0-10cm最低。不同土地利用方式下,有机碳密度表现为:天然草地 > 果园 > 灌丛林地 > 河滩、河台地 > 撂荒地 > 人工草地 > 耕地。以土地利用方式为基本单元,对上黄小流域土壤有机碳储量进行估算。结果表明,上黄小流域土壤有机碳总储量为46527.12t,其中,灌丛林地(22052.81t)和天然草地(14573.14t)的储量最高,占总储量的78.72%。  相似文献   

2.
针对黄土丘陵区退耕还林(草)工程实施20年固碳效果研究薄弱的问题,以典型退耕小流域为对象,在不同地形(峁坡、沟肩、沟谷)和植被类型(次生草地、撂荒山杏林、撂荒坡耕地)共布设147个样点采集0—100 cm土层样品并测定,以研究土壤有机碳(SOC)分布特征及地形、植被对其的影响。结果表明:小流域峁坡剖面(0—100 cm)土层SOC含量平均为2.43 g/kg。地形和植被类型对小流域SOC分布特征产生了重要影响:沟肩表层和剖面SOC含量均最高且显著(P<0.05)高于沟谷,但与峁坡无显著差异;次生草地表层(0—20 cm)和亚表层(20—40 cm)SOC含量均显著(P<0.05)高于撂荒山杏林和撂荒坡耕地。地统计学分析显示小流域0—20 cm土层SOC含量有最大块金值且块金系数为49.6%,即表层SOC具有最大块金效应且受到结构因素与随机因素共同影响;剖面SOC分布格局表现出与表层土壤相似的特征。总之,退耕还林(草)碳汇效应显著,且在地形和植被类型作用下呈现显著的空间异质性特征。  相似文献   

3.
黄土丘陵区土壤有机碳固存对退耕还林草的时空响应   总被引:8,自引:0,他引:8  
许明祥  王征  张金  刘国彬 《生态学报》2012,32(17):5405-5415
研究了黄土丘陵区土壤有机碳固存对退耕还林草的时空响应特征,分析了退耕还林草对土壤有机碳的近期影响和长期效应。结果表明,1)从黄土丘陵区退耕还林草的土壤固碳效应整体而言,相对于坡耕地,退耕还林和退耕撂荒具有显著的土壤碳增汇效应,而退耕还草、退耕还果没有明显土壤碳增汇效应。以天然草地土壤有机碳密度为目标,撂荒地表层土壤有机碳增汇潜力可达8.3 t/hm2。2)以10a为界,退耕还林草的近期土壤碳增汇效应不明显,而10a后土壤碳增汇效应逐渐明显,退耕还林、还灌、撂荒和坡耕地的固碳效应差异显著。3)在评估黄土丘陵区退耕还林草的土壤固碳效应时应当注重长期固碳效应。4)退耕还林草的土壤固碳效应主要受还林草方式及年限的影响,二者分别可解释55.6%和24.1%的有机碳变异性;地形因子可解释8.5%的有机碳变异性。在评估该区退耕还林的土壤固碳效应时应当充分考虑退耕年限和地形因子的影响。5)人工刺槐林地、人工柠条林地以及撂荒地深层土壤(100—200 cm)有机碳密度占2 m土体有机碳密度的35%—40%,而且随着植被恢复深层土壤有机碳密度显著增加。6)在估算黄土丘陵区退耕还林土壤固碳效应时应该考虑深层碳累积。如果按1 m土层的土壤有机碳密度计算,会严重低估退耕还林草的土壤固碳量。  相似文献   

4.
水土流失治理措施对小流域土壤有机碳和全氮的影响   总被引:4,自引:0,他引:4  
张彦军  郭胜利  南雅芳  李俊超 《生态学报》2012,32(18):5777-5785
明确综合治理条件下小流域土壤有机碳(Soil organic carbon,SOC)和全氮(Total nitrogen,TN)的空间分布特征及其影响因素,对科学评价水土流失区土壤固碳潜力具有重要意义。以黄土高原丘陵沟壑区典型小流域(砖窑沟流域)为对象,基于流域内3种典型地貌类型(梁峁坡、沟坡、沟谷)和3种典型水土流失治理措施(水平梯田、林地和草地措施,坡耕地为对照),采集土壤样品737个,研究地貌类型和水土流失治理措施对小流域SOC和TN变化的影响。结果表明,同一地貌类型上,水平梯田、林地和草地措施的SOC和TN(0—10 cm土层)含量均显著高于坡耕地(P<0.1)。梁峁坡上,水平梯田、林地和草地措施条件下的SOC和TN含量较坡耕地依次提高了18%和24%、70%和59%、25%和21%;沟坡上,林地和草地措施的SOC和TN较坡耕地依次提高了76%和54%、25%和27%。同一治理措施在不同地貌类型间对0—10 cm土层SOC和TN的影响存在显著差异(P<0.1)。水平梯田条件下,沟谷的SOC和TN含量比峁坡提高了46%和43%;林地措施条件下,沟坡的SOC和TN含量比峁坡提高了18%和6%;草地措施条件下,沟坡的SOC和TN含量比峁坡提高了14%和18%。0—100 cm土层的SOC或TN在不同地貌类型或不同治理措施间的差异与土壤水分含量(Soil moisture,SM)的变化趋势基本一致,并且SOC或TN与SM呈指数关系y=aebx(y为SOC或TN,x为SM)。  相似文献   

5.
任荣秀  杜章留  孙义亨  宋学姝  陆森 《生态学报》2020,40(19):6991-6999
土地利用变化影响土壤团聚性及有机碳分布,进而改变土壤碳循环过程。对太行山南部50年刺槐人工林(R50)、17年刺槐人工林(R17)、自然恢复林(NR)和农田(CL)等不同土地利用方式下的表层土壤(0-20 cm)进行了系统研究,利用湿筛法对土壤团聚体进行分级,并计算土壤结构稳定性参数(平均重量直径MWD,团聚体比例AR)及不同粒径团聚体有机碳贡献率,进而分析弃耕后土壤团聚体分布及团聚体有机碳含量变化。结果表明,土地利用方式对土壤团聚体粒径分布及团聚体有机碳含量有显著影响,自然恢复林与刺槐林的大团聚体(>0.25 mm)含量都高于农田,且自然恢复林的大团聚体增加更显著。MWD的计算结果表明:自然恢复林 > 刺槐人工林 > 农田,说明该区域的自然恢复方式更容易促进大团聚体的形成,并显著改良土壤结构及增强土壤团聚体稳定性。弃耕后,不同土地利用方式0-10 cm土层各粒径团聚体有机碳含量均高于农田,且团聚体有机碳含量与团聚体稳定性呈正相关。这些结果说明,研究区域的自然植被恢复和人工造林都可以显著提高土壤的固碳能力,且储存的有机碳主要存于大团聚体中,而农田的有机碳大都存于粘粒+粉粒团聚体中。自然植被恢复和人工造林均提高了土壤结构稳定性,是改善团粒结构、提高土壤质量的有效方式。  相似文献   

6.
黄土丘陵区植被恢复的土壤碳水效应   总被引:3,自引:0,他引:3  
冯棋  杨磊  王晶  石学圆  汪亚峰 《生态学报》2019,39(18):6598-6609
黄土高原大规模植被恢复显著影响了这一区域土壤水分和有机碳(SOC),从而影响其承载的土壤水源涵养和固碳服务。明确深层土壤水分和有机碳对植被恢复的响应特征是当前黄土高原地区生态水文与生态系统服务研究的一个重要科学问题,其中植被类型以及生长年限是这一过程的重要影响因素。然而,目前关于深层土壤有机碳和土壤水分对植被恢复的响应及二者关系的研究较少。通过对陕北典型黄土丘陵区不同植被类型和生长年限下0—5 m土壤水分与有机碳的监测,分析了深层土壤水分和有机碳对植被恢复的响应及其特征。研究发现:(1)植被恢复后0—5 m土层均出现水分亏缺,土壤水分亏缺在表层1 m最低,2—3 m最高;对于不同恢复方式,林地土壤水分亏缺在恢复至21—30a时显著高于前一阶段(11—20a),而在恢复31a后水分开始恢复,而灌木、草地土壤水分亏缺程度则随恢复年限延长不断增加。(2)林地、灌木、草地0—5 m平均土壤有机碳含量为1.97、1.77、1.72 g/kg;林地土壤固碳量随恢复年限的增加而增加,并且在恢复20a时固碳量与对照农田相比出现净增;灌木土壤固碳量随恢复年限先增加后降低;草地土壤固碳量则随退耕年限增加呈下降趋势并且低于对照农田。(3)表层0—1 m土壤水分随恢复年限增加变化不显著,深层土壤水分则随恢复年限增加显著降低;相比而言,随恢复年限增加,土壤有机碳随年限的变化在各层土壤中均不显著。深层土壤水分与土壤有机碳呈现显著的正相关,且土壤有机碳的增加速率低于土壤水分,研究认为,深层土壤固碳与土壤水分关系密切,且深层土壤固碳需要充足水分参与。深层土壤水分亏缺可能限制植被细根的发展,使深层土壤有机碳输入减少。  相似文献   

7.
Agricultural management has received increased attention over the last decades due to its central role in carbon (C) sequestration and greenhouse gas mitigation. Yet, regardless of the large body of literature on the effects of soil erosion by tillage and water on soil organic carbon (SOC) stocks in agricultural landscapes, the significance of soil redistribution for the overall C budget and the C sequestration potential of land management options remains poorly quantified. In this study, we explore the role of lateral SOC fluxes in regional scale modelling of SOC stocks under three different agricultural management practices in central Belgium: conventional tillage (CT), reduced tillage (RT) and reduced tillage with additional carbon input (RT+i). We assessed each management scenario twice: using a conventional approach that did not account for lateral fluxes and an alternative approach that included soil erosion‐induced lateral SOC fluxes. The results show that accounting for lateral fluxes increased C sequestration rates by 2.7, 2.5 and 1.5 g C m?2 yr?1 for CT, RT and RT+i, respectively, relative to the conventional approach. Soil redistribution also led to a reduction of SOC concentration in the plough layer and increased the spatial variability of SOC stocks, suggesting that C sequestration studies relying on changes in the plough layer may underestimate the soil's C sequestration potential due to the effects of soil erosion. Additionally, lateral C export from cropland was in the same of order of magnitude as C sequestration; hence, the fate of C exported from cropland into other land uses is crucial to determine the ultimate impact of management and erosion on the landscape C balance. Consequently, soil management strategies targeting C sequestration will be most effective when accompanied by measures that reduce soil erosion given that erosion loss can balance potential C uptake, particularly in sloping areas.  相似文献   

8.
新银合欢篱对紫色土坡地土壤有机碳固持的作用   总被引:2,自引:0,他引:2  
土壤有机碳的固持对保持土壤肥力以及缓解全球温室效应具有重要意义。本研究通过田间定位试验,探讨了新银合欢(Leucaena Leucocephala)篱对10和15的紫色土农耕地(玉米地)和经济林地(油桃地)表层(0-20cm)土壤有机碳积累的影响。结果表明:种植3年的新银合欢篱的10和15农耕地、10经济林地土壤有机碳密度分别比相应的无植物篱的对照地提高41.53%、43.29%、32.15%。经济林处理土壤有机碳含量、有机碳密度、呼吸强度显著大于农耕地处理;10比15农耕地更有利于土壤有机碳、呼吸速率及微生物量碳提高;农耕地比经济林地更利于微生物生物量维持。各处理下坡比上坡更利于土壤有机碳蓄积,且土壤呼吸强度提高,但土壤微生物商基本相同。不同处理下,土壤有机碳与土壤理化性质相关性各不相同:定植新银合欢篱的10和15农耕地、10经济林地土壤有机碳与有机质含量、土壤微生物碳有极显著的相关性,与全钾呈正相关,与pH负相关;定植新银合欢篱的10和15农耕地呼吸强度与有机碳相关关系均达到了极显著性,10经济林地呼吸强度与有机碳显著相关;土壤微生物指标变化与有机碳的变化趋势一致,能反映土壤质量变化。阐明定植新银合欢篱利于土壤有机碳固持,且能增强土壤微生物活性,提高土壤质量。  相似文献   

9.
米亚罗林区土地利用变化对土壤有机碳和微生物量碳的影响   总被引:25,自引:3,他引:22  
张于光  张小全  肖烨 《应用生态学报》2006,17(11):2029-2033
为了解土地利用变化对土壤有机碳和微生物量碳的影响,分析了川西米亚罗林区原始冷杉林、20世纪60年代云杉人工林、20世纪80年代云杉人工林和农地的土壤有机碳和微生物量碳状况.结果表明,土地利用变化明显地影响了土壤有机碳和微生物量碳含量.土壤有机碳和微生物量碳含量原始林最高,其次为60年代人工林和80年代人工林,农地最低.农地土壤有机碳含量分别比原始林、60年代人工林和80年代人工林低83%、53%和52%,微生物量碳含量分别低23%、25%和21%.土壤有机碳和微生物量碳含量均随土壤深度的增加而降低,并且两者在不同土地利用类型的变化趋势基本一致.相关分析表明,土壤有机碳和土壤微生物量碳与全氮、水解氮、速效磷呈极显著相关(P<0.01),说明土壤微生物量碳可作为衡量土壤有机碳变化的敏感指标,而土壤有机碳和微生物量碳含量可作为衡量土壤肥力和土壤质量变化的重要指标.  相似文献   

10.
河西走廊中段绿洲退化土地退耕种植苜蓿的固碳效应   总被引:4,自引:0,他引:4  
苏永中  刘文杰  杨荣  范桂萍 《生态学报》2009,29(12):6385-6391
土地利用变化和耕作管理是人类影响陆地生态系统碳过程一个重要方面.对河西走廊中段张掖绿洲退化土地退耕种植苜蓿5a后土壤性状的分析表明, 49个退耕苜蓿地土壤与相邻未退耕农田土壤配对样本的比较,退耕苜蓿地0~15cm土层土壤粒级组成和容重并未发生显著变化,但土壤pH平均提高了0.11个单位,电导率降低34.8%,土壤有机碳(SOC)和全氮(全N)含量较对照农田土壤平均提高18.5%和9.3%,活性有机碳(labile C)增加53.3%.SOC含量受海拔高度和土壤粒粉粒含量的影响,退耕后SOC和全N的增加幅度沙壤土高于粉壤土,而labile C的增加幅度沙壤土低于粉壤土.退耕苜蓿地0~15cm土层SOC和全N储量较农田土壤分别增加2.84Mg hm~(-2)和0.21Mg hm~(-2),土壤C、N的固存率平均为0.57Mg hm~(-2)a~(-1)和0.04 Mg hm~(-2)a~(-1),表明退化土地由1年生作物向多年生牧草的转变有显著的固碳效应和潜力.活性有机碳的变化较总有机碳的变化更为显著,表明活性有机碳对土地利用变化的响应更为敏感.  相似文献   

11.
The break‐up of the Soviet Union in 1991 triggered cropland abandonment on a continental scale, which in turn led to carbon accumulation on abandoned land across Eurasia. Previous studies have estimated carbon accumulation rates across Russia based on large‐scale modelling. Studies that assess carbon sequestration on abandoned land based on robust field sampling are rare. We investigated soil organic carbon (SOC) stocks using a randomized sampling design along a climatic gradient from forest steppe to Sub‐Taiga in Western Siberia (Tyumen Province). In total, SOC contents were sampled on 470 plots across different soil and land‐use types. The effect of land use on changes in SOC stock was evaluated, and carbon sequestration rates were calculated for different age stages of abandoned cropland. While land‐use type had an effect on carbon accumulation in the topsoil (0–5 cm), no independent land‐use effects were found for deeper SOC stocks. Topsoil carbon stocks of grasslands and forests were significantly higher than those of soils managed for crops and under abandoned cropland. SOC increased significantly with time since abandonment. The average carbon sequestration rate for soils of abandoned cropland was 0.66 Mg C ha?1 yr?1 (1–20 years old, 0–5 cm soil depth), which is at the lower end of published estimates for Russia and Siberia. There was a tendency towards SOC saturation on abandoned land as sequestration rates were much higher for recently abandoned (1–10 years old, 1.04 Mg C ha?1 yr?1) compared to earlier abandoned crop fields (11–20 years old, 0.26 Mg C ha?1 yr?1). Our study confirms the global significance of abandoned cropland in Russia for carbon sequestration. Our findings also suggest that robust regional surveys based on a large number of samples advance model‐based continent‐wide SOC prediction.  相似文献   

12.
The present study provides an overview of existing literature on changes in soil organic carbon (SOC) of various terrestrial ecosystems in China. Datasets from the literature suggest that SOC stocks in forest, grassland, shrubland and cropland increased between the early 1980s and the early 2000s, amounting to (71±19) Tg·a−1. Conversion of marshland to cropland in the Sanjiang Plain of northeast China resulted in SOC loss of (6±2) Tg·a−1 during the same period. Nevertheless, large uncertainties exist in these estimates, especially for the SOC changes in the forest, shrubland and grassland. To reduce uncertainty, we suggest that future research should focus on: (i) identifying land use changes throughout China with high spatiotemporal resolution, and measuring the SOC loss and sequestration due to land use change; (ii) estimating the changes in SOC of shrubland and non-forest trees (i.e., cash, shelter and landscape trees); (iii) quantifying the impacts of grassland management on the SOC pool; (iv) evaluating carbon changes in deep soil layers; (v) projecting SOC sequestration potential; and (vi) developing carbon budget models for better estimating the changes in SOC of terrestrial ecosystems in China.  相似文献   

13.
土壤有机碳动态:风蚀效应   总被引:10,自引:0,他引:10  
苏永中  赵文智 《生态学报》2005,25(8):2049-2054
土壤风蚀是引起土壤退化最广泛的形式和原因之一。土壤风蚀对土壤碳动态的影响机制一方面是土壤风蚀引起土壤退化使土壤生产力下降,输入土壤的碳数量减少;另一方面是富含有机碳的细粒物质直接移出系统。风蚀土壤碳的去向包括:(1)就近沉积,(2)沉积于水渠和河流,输入水体;(3)以粉尘形式运移,在远离风蚀区的地域沉积;(4)氧化释放至大气。风蚀引起土壤碳的迁移和沉积不仅导致土壤有机碳在地域间的再分布,使土壤性状的空间异质性增加,也显著改变了土壤系统中碳矿化的生物学过程。土壤有机碳的保持可以促进团聚体的形成,使土壤物理稳定性增加,减缓风蚀。对易风蚀土地进行退耕还林还草、实行保护性耕作等措施可以有效增加土壤碳的固存。  相似文献   

14.
We present the most comprehensive pan‐European assessment of future changes in cropland and grassland soil organic carbon (SOC) stocks to date, using a dedicated process‐based SOC model and state‐of‐the‐art databases of soil, climate change, land‐use change and technology change. Soil carbon change was calculated using the Rothamsted carbon model on a European 10 × 10′ grid using climate data from four global climate models implementing four Intergovernmental Panel on Climate Change (IPCC) emissions scenarios (SRES). Changes in net primary production (NPP) were calculated by the Lund–Potsdam–Jena model. Land‐use change scenarios, interpreted from the narratives of the IPCC SRES story lines, were used to project changes in cropland and grassland areas. Projections for 1990–2080 are presented for mineral soil only. Climate effects (soil temperature and moisture) will tend to speed decomposition and cause soil carbon stocks to decrease, whereas increases in carbon input because of increasing NPP will slow the loss. Technological improvement may further increase carbon inputs to the soil. Changes in cropland and grassland areas will further affect the total soil carbon stock of European croplands and grasslands. While climate change will be a key driver of change in soil carbon over the 21st Century, changes in technology and land‐use change are estimated to have very significant effects. When incorporating all factors, cropland and grassland soils show a small increase in soil carbon on a per area basis under future climate (1–7 t C ha?1 for cropland and 3–6 t C ha?1 for grassland), but when the greatly decreasing area of cropland and grassland are accounted for, total European cropland stocks decline in all scenarios, and grassland stocks decline in all but one scenario. Different trends are seen in different regions. For Europe (the EU25 plus Norway and Switzerland), the cropland SOC stock decreases from 11 Pg in 1990 by 4–6 Pg (39–54%) by 2080, and the grassland SOC stock increases from 6 Pg in 1990 to 1.5 Pg (25%) under the B1 scenario, but decreases to 1–3 Pg (20–44%) under the other scenarios. Uncertainty associated with the land‐use and technology scenarios remains unquantified, but worst‐case quantified uncertainties are 22.5% for croplands and 16% for grasslands, equivalent to potential errors of 2.5 and 1 Pg SOC, respectively. This is equivalent to 42–63% of the predicted SOC stock change for croplands and 33–100% of the predicted SOC stock change for grasslands. Implications for accounting for SOC changes under the Kyoto Protocol are discussed.  相似文献   

15.
Agroecosystems have a critical role in the terrestrial carbon cycling process. Soil organic carbon (SOC) in cropland is of great importance for mitigating atmospheric carbon dioxide increases and for global food security. With an understanding of soil carbon saturation, we analyzed the datasets from 95 global long-term agricultural experiments distributed across a vast area spanning wide ranges of temperate, subtropical and tropical climates. We then developed a statistical model for estimating SOC sequestration potential in cropland. The model is driven by air temperature, precipitation, soil clay content and pH, and explains 58% of the variation in the observed soil carbon saturation (n=76). Model validation using independent data observed in China yielded a correlation coefficient R 2 of 0.74 (n=19, P<0.001). Model sensitivity analysis suggested that soils with high clay content and low pH in the cold, humid regions possess a larger carbon sequestration potential than other soils. As a case study, we estimated the SOC sequestration potential by applying the model in Henan Province. Model estimations suggested that carbon (C) density at the saturation state would reach an average of 32 t C ha−1 in the top 0–20 cm soil depth. Using SOC density in the 1990s as a reference, cropland soils in Henan Province are expected to sequester an additional 100 Tg C in the future.  相似文献   

16.
Land‐use changes are the second largest source of human‐induced greenhouse gas emission, mainly due to deforestation in the tropics and subtropics. CO2 emissions result from biomass and soil organic carbon (SOC) losses and may be offset with afforestation programs. However, the effect of land‐use changes on SOC is poorly quantified due to insufficient data quality (only SOC concentrations and no SOC stocks, shallow sampling depth) and representativeness. In a global meta‐analysis, 385 studies on land‐use change in the tropics were explored to estimate the SOC stock changes for all major land‐use change types. The highest SOC losses were caused by conversion of primary forest into cropland (?25%) and perennial crops (?30%) but forest conversion into grassland also reduced SOC stocks by 12%. Secondary forests stored less SOC than primary forests (?9%) underlining the importance of primary forests for C stores. SOC losses are partly reversible if agricultural land is afforested (+29%) or under cropland fallow (+32%) and with cropland conversion into grassland (+26%). Data on soil bulk density are critical in order to estimate SOC stock changes because (i) the bulk density changes with land‐use and needs to be accounted for when calculating SOC stocks and (ii) soil sample mass has to be corrected for bulk density changes in order to compare land‐use types on the same basis of soil mass. Without soil mass correction, land‐use change effects would have been underestimated by 28%. Land‐use change impact on SOC was not restricted to the surface soil, but relative changes were equally high in the subsoil, stressing the importance of sufficiently deep sampling.  相似文献   

17.
土地利用变化对土壤有机碳贮量的影响   总被引:97,自引:10,他引:87  
通过对比分析六盘山林区典型天然次生林(杂灌林、山杨和辽东栎林)与农田、草地及农田、草地与人工林(13、18和25年生华北落叶松)邻近样地土壤有机碳含量和密度及其在土壤剖面上分布的差异,研究了天然次生林变成农田或草地及农田或草地造林后对土壤有机碳贮量的影响,结果表明,土壤有机碳含量方面,农田和草地比天然次生林分别低54%和27%,差异主要在0~50cm土层;农田和草地比人工林分别低42%和26%,差异主要在0~40cm土层,土壤有机碳密度方面,农田和草地比天然次生林分别低35%和14%,差异主要在0~50cm土层;农田比人工林低23%,草地比人工林高4%,差异主要在0~30cm土层.天然次生林和人工林土壤有机碳含量和密度随土层加深而递减的幅度比农田或草地大.这些差异主要由土地利用变化引起的土壤有机碳输入与输出及根系分布的变化所致.结果说明六盘山林区天然次生林破坏变成草地或农田后土壤有机碳含量和密度(主要是0~50cm土层)将下降,而农田中造林后土壤有机碳含量和密度(主要是0~30cm土层)又将增加,草地上造林后土壤有机碳含量增加而密度变化不大。另外,土壤有机碳含量和密度在土壤剖面上的分布也将随土地利用变化而发生改变。  相似文献   

18.
Soil organic carbon (SOC) change can be a major impact of land use change (LUC) associated with biofuel feedstock production. By collecting and analyzing data from worldwide field observations of major LUCs from cropland, grassland, and forest to lands producing biofuel crops (i.e. corn, switchgrass, Miscanthus, poplar, and willow), we were able to estimate SOC response ratios and sequestration rates and evaluate the effects of soil depth and time scale on SOC change. Both the amount and rate of SOC change were highly dependent on the specific land transition. Irrespective of soil depth or time horizon, cropland conversions resulted in an overall SOC gain of 6–14% relative to initial SOC level, while conversion from grassland or forest to corn (without residue removal) or poplar caused significant carbon loss (9–35%). No significant SOC changes were observed in land converted from grasslands or forests to switchgrass, Miscanthus, or willow. The SOC response ratios were similar in both 0–30 and 0–100 cm soil depths in most cases, suggesting SOC changes in deep soil and that use of top soil only for SOC accounting in biofuel life cycle analysis (LCA) might underestimate total SOC changes. Soil carbon sequestration rates varied greatly among studies and land transition types. Generally, the rates of SOC change tended to be the greatest during the 10 years following land conversion and had declined to approach 0 within about 20 years for most LUCs. Observed trends in SOC change were generally consistent with previous reports. Soil depth and duration of study significantly influence SOC change rates and so should be considered in carbon emission accounting in biofuel LCA. High uncertainty remains for many perennial systems and forest transitions, additional field trials, and modeling efforts are needed to draw conclusions about the site‐ and system‐specific rates and direction of change.  相似文献   

19.
The establishment of either forest or grassland on degraded cropland has been proposed as an effective method for climate change mitigation because these land use types can increase soil carbon (C) stocks. This paper synthesized 135 recent publications (844 observations at 181 sites) focused on the conversion from cropland to grassland, shrubland or forest in China, better known as the ‘Grain‐for‐Green’ Program to determine which factors were driving changes to soil organic carbon (SOC). The results strongly indicate a positive impact of cropland conversion on soil C stocks. The temporal pattern for soil C stock changes in the 0–100 cm soil layer showed an initial decrease in soil C during the early stage (<5 years), and then an increase to net C gains (>5 years) coincident with vegetation restoration. The rates of soil C change were higher in the surface profile (0–20 cm) than in deeper soil (20–100 cm). Cropland converted to forest (arbor) had the additional benefit of a slower but more persistent C sequestration capacity than shrubland or grassland. Tree species played a significant role in determining the rate of change in soil C stocks (conifer < broadleaf, evergreen < deciduous forests). Restoration age was the main factor, not temperature and precipitation, affecting soil C stock change after cropland conversion with higher initial soil C stock sites having a negative effect on soil C accumulation. Soil C sequestration significantly increased with restoration age over the long‐term, and therefore, the large scale of land‐use change under the ‘Grain‐for‐Green’ Program will significantly increase China's C stocks.  相似文献   

20.
胡莹洁  李月  孔祥斌  段增强  陆明环 《生态学报》2018,38(13):4625-4636
分析北京市农用地碳储量对土地利用变化的响应,对快速城市化和工业化区域及全国农用地低碳利用调控具有重要意义。利用1980年第二次土壤普查数据与2010年测土配方施肥项目成果土壤数据核算北京市农用地表层土壤碳储量,利用生物量遥感信息(NDVI)模型反演林地、草地植被碳储量,对北京市土地利用变化造成的农用地碳储量变化进行研究,结果表明:1)1980-2010年,北京市农用地碳储量由75.29 Tg-C增至81.13Tg-C,增加5.83 Tg-C,其中,土壤碳储量减少7.51 Tg-C,植被碳储量增加13.34 Tg-C;2)30年间,北京市农用地面积减少14.11×104 hm2,其中,耕地流失最为显著,主要去向为建设用地和林地,林地面积略有增加;3)北京市用地类型保持不变的农用地土壤碳储量减少297.63×104 t,植被碳储量增加1095.21×104 t,共计增加797.58×104 t,其中,用地类型保持不变的耕地、林地碳储量增加,草地碳储量减少;4)30年间,土地利用类型转化使北京市农用地土壤碳储量减少75.71×104 t,植被碳储量增加212.49×104 t,共计增加136.78×104 t,其他用地类型转为林地使碳储量增加,有利于碳汇的形成,林地转出为其他用地类型均会造成一定碳排放;5)平原造林、退耕还林等工程有利于增加北京市农用地固碳量。未来北京市可通过控制农用地面积减少量,优化农用地内部结构,降低用地类型间的转换频率以提高农用地碳储量。研究可为其他区域及全国在快速城市化工业化过程中提升农用地碳储量提供一定参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号