首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Plant transgenesis often requires the use of tissue-specific promoters to drive the transgene expression exclusively in targeted tissues. Although the eukaryotic promoters are expected to stay silent in Escherichia coli, when the promoter-transgene units within the plant transformation vectors are constructed and propagated, some eukaryotic promoters have been reported to be active in prokaryotes. The potential activity of plant promoter in E. coli cells should be considered in cases of expression of proteins that are toxic for host cells, environmental risk assessment or the stability in E. coli of plant vectors for specific Cre/loxP applications. In this study, DNA fragments harbouring four embryo- and/or pollen-specific Arabidopsis thaliana promoters were investigated for their ability to drive heterologous gene expression in E. coli cells. For this, they were fused to gfp:gus reporter genes in the pCAMBIA1304 vector. Although BPROM, bacterial sigma70 promoter recognition program identified several sequences with characteristics similar to bacterial promoters including -10 and -35 sequences in each of tested fragments, the experimental approach showed that only one promoter fragment was able to drive relatively strong- and one promoter fragment relatively weak-GUS expression in E. coli cells. Remaining two tested promoters did not drive any transgene expression in bacteria. Our results also showed that cloning of a shorter plant promoter sequence into vectors containing lacZ α-complementation system can increase the probability of gene expression driven by upstream located lac promoter. This should be considered when cloning of plant expression units, the expression of which is unwanted in E. coli.  相似文献   

2.
3.
Summary Using the broad-host-range promoter probe vector pRS201 for cloning of phage Acm1 promoters, we established a convenient vector system for expression of heterologous genes in different Gram-negative bacteria. The usefulness of this system was demonstrated by expression of the HBV core gene in Acetobacter methanolicus. Plasmids carrying the HBV core gene downstream of different Acm1-phage promoters were transferred to A. methanolicus, a new potential host for recombinant DNA expression. Using enzyme immunoassay and immunoblot techniques, the amount and composition of core antigen produced in A. methanolicus were compared with that derived from Escherichia coli. The expression of immunoreactive core antigen in A. methanolicus exceeds by sevenfold that in E. coli using an expression system with tandemly arranged promoters. Morphological observations by electron microscopy show that the HBV core gene products isolated from both hosts are assembled into regular spherical particles with a diameter of about 28 nm that are comparable to original viral nucleocapsids. Offprint requests to: R. Schröder  相似文献   

4.
We report a new and improved pPZP vector (pPZP3425) for efficient plant transformation. This vector is derived from the widely used pPZP100 series of binary Agrobacterium vectors. One disadvantage of these vectors is the use of chloramphenicol resistance for selection in Escherichia coli and Agrobacteria. We have therefore included a kanamycin resistance gene for selection in Agrobacterium. Furthermore, the strong 35S CaMV promoter driving the plant resistance gene has been replaced by the weaker nos promoter because it has been shown that the 35S promoter driving the plant resistance marker can lead to ectopic expression of the transgene. During replacement of the 35S promoter, the NcoI site within the plant resistance gene has been removed, and NcoI can now be used for cloning purposes within the expression cassette which consists of an intron-containing gus gene driven by a strong constitutive promoter (35S promoter with doubled enhancer plus omega-element as translational enhancer). Thus, a single vector can conveniently be used for two purposes: (1) for overexpression of proteins by replacing the gus gene by the coding sequence of choice and (2) for creation of promoter:gus fusions by substituting the constitutive promoter by any other promoter. We demonstrate the usefulness of this vector for cloning a promoter:gus fusion and in planta transformation of Arabidopsis.  相似文献   

5.
Brevibacterium flavum is an important microorganism for the production of amino acids in industrial fermentation. Knowledge of promoters in B. flavum is essential for efficient modulation of gene expression in metabolic engineering. Here we have constructed a novel E. coli-B. flavum promoter-probe vector pDXW-11. The pDXW-11 habors an oriE for replication in E. coli, genes dso and sso for replication in B. flavum, a kan gene used as selected marker, a multiple cloning sites preceded by a rrnBT1T2 terminator and sequentially followed by stop codons, an SD sequence and a cat reporter gene. Using pDXW-11, activities of several promoters were evaluated in B. flavum. A strong promoter, the tac-M promoter, was designed. The tac-M promoter would be very useful for metabolic engineering research in B. flavum.  相似文献   

6.
The isolation of a small plasmid from Pasteurella multocida has enabled to construction of a shuttle vector for use between P. multocida and Escherichia coli. The vector pBAC64 contains the origin of replication from P. multocida, an antibiotic resistance gene which functions in P. multocida, and the E. coli vector pUC18. The presence of the pUC18 multiple cloning site together with the lacZ′ gene provides a screening method and allows cloning and manipulation in E. coli as well as cloning in P. multocida.  相似文献   

7.
D Dean 《Gene》1981,15(1):99-102
A plasmid cloning vector with ampicillin-resistance and streptomycin-sensitivity markers is suitable for the direct selection of strains carrying recombinant plasmids. The selection for plasmid transformants utilizes their ampicillin resistance whereas selection for recombinant plasmids is based on the inactivation of the rpsL gene contained on the plasmid. When streptomycin-resistant Escherichia coli strains are used as recipients in transformation, transformants carrying the parental plasmid are phenotypically sensitive to streptomycin while those carrying hybrid plasmids are resistant to streptomycin.  相似文献   

8.
One of a number of large nocardioform plasmids previously obtained by a primarily genetic approach was reduced in size to about ˜ 11 kb. This smaller plasmid possessed determinants for resistance to sodium arsenate and sodium arsenite, as well as immunity to nocardiophage Q4. It was joined to an Escherichia coli-positive selection vector constructed by M. Zabeau and colleagues, which had the EcoR1 endonuclease gene placed under the control of the PR promoter of λ as well as a bla determinant. The resulting shuttle vector of about 14.6 kb was maintained in E. coli and in several strains of Rhodococcus. The vector was efficient in cloning DNA without prior alkaline phosphatase treatment, as a result of the presence of the positive selection function. This function was not significantly expressed in Rhodococcus, and the presence of the nocardioform resistance determinants led to no increase in arsenate or arsenite resistance in E. coli. The presence of the bla gene resulted in an increase of about threefold in ampicillin resistance in Rhodococcus strains.  相似文献   

9.
Summary We have constructed promoter probe vectors with the Escherichia coli galactokinase monitoring system that can be used in Bacillus subtilis. In vivo studies with these vectors demonstrated that the E. coli trp and tac(trp::lac) promoter regions could be utilized in B. subtilis. These promoter regions and the promoter region for the erythromycin resistance gene originating from Staphylococcus aureus were preferentially utilized during the stationary growth phase of B. subtilis, whereas the B. subtilis P21K and P29K promoters were utilized during the exponential growth phase and decreased rapidly during the stationary phase. The apparent strength of these promoters of E. coli in B. subtilis, in terms of galactokinase units, was comparable with those of the B. subtilis promoters.  相似文献   

10.
Promoters belong to the most important regulatory domains in genomic sequences. A novel cloning method is described to produce various DNA fragments with the average size about 100 bp, which differ by 1 bp, for screening of the osmotic pressure-inducible promoters from the genome of Escherichia coli. An osmotic pressure-inducible promoter sequence was found. A mutation in this promoter sequence, introduced by site-specific mutagenesis, abolished its activity under the high osmotic pressure conditions. The method can thus be used for finding particular promoter sequences in the E. coli genome.  相似文献   

11.
12.
A promoter selection vector for Clostridium perfringens genes was constructed from a C. perfringens-Escherichia coli shuttle vector, pJIR418. The plasmid carries a promoterless chloramphenicol acetyltransferase gene (catP), derived from pIP401, downstream of the multiple cloning sites of pUC18. When a promoter region of the phospholipase C gene was inserted into one of the cloning sites, derivatives of C. perfringens strain 13 carrying the resultant plasmid acquired resistance to chloramphenicol. This plasmid should be a useful reporter system for C. perfringens genes.  相似文献   

13.
I Barák  M Koptides  M Jucovic  M Sisová  J Timko 《Gene》1990,95(1):133-135
We constructed a promoter-probe vector, pJUP05, for brevibacteria and Escherichia coli based on the promoterless neomycin-resistance (neoR) gene from Tn5. This gene confers resistance to the aminoglycosides, kanamycin and neomycin. The promoter of the neoR gene was deleted and replaced by a suitable multiple cloning site. There are translation stop codons in all three reading frames upstream from the neoR gene. The plasmid contains functional origins of DNA replication for both brevibacteria and E. coli, and permits selection for chloramphenicol- and/or ampicillin-resistance markers.  相似文献   

14.
The Escherichia coli sodA gene encoding the antioxidant enzyme Mn-containing superoxide dismutase (MnSOD), was cloned in the expression vector pMG36e. This vector has a multiple cloning site down-stream of a promoter and Shine-Dalgarno sequences derived from Lactococcus. The protein-coding region of sodA from E. coli was amplified by the polymerase chain reaction, using a thermocycler and Taq DNA polymerase before cloning into pMG36e. When introduced into E. coli, the recombinant plasmid expressed the predicted fusion protein, both in the presence and absence of oxygen. The expression of the fusion protein in E. coli was verified by SOD assays, activity gels and Western blots. The recombinant plasmid was also introduced into Lactococcus lactis, which contains a resident SOD, and into Lactobacillus gasseri, which is devoid of SOD. Transformed lactococci expressed an active SodA fusion protein plus an active hybrid protein composed of subunits of the Lactococcus and the recombinant E. coli enzymes. Transformants of L. gasseri expressed only the fusion SodA protein, which was enzymatically active.  相似文献   

15.
16.
The Bacillus subtilis subtilisin E gene was cloned into an expression vector of the extreme thermophile, Thermus thermophilus. Active subtilisin E was produced in E. coli, indicating that the Thermus promoter functions in E. coli. When the plasmid was further introduced into T. thermophilus, the subtilisin E gene was expressed and the gene product accumulated as an inactive pro-form, because the autoprocessing of the wild-type enzyme to the active-form did not occur at 50°C or above. Received 17 March 1999/ Accepted in revised form 28 June 1999  相似文献   

17.
With this work we demonstrate that murine leukemia virus (MLV)-based replication-defective retroviral vectors encapsidated with Gibbon ape leukemia virus (GaLV) envelopes are significantly more infectious to bovine embryonic trachea (EBTr) cells than vectors encapsidated with murine xenotropic envelope proteins. In a test of internal promoter activity in an MLV retroviral vector, the rat β-actin promoter was shown to be better than the herpes simplex virus type 1 thymidine kinase (TK) and human cytomegalovirus (CMV) immediate early promoters for the expression of an E. coli β-galactosidase marker gene in bovine target cells. By co-culture of bovine blastocysts and virus-producing cells, or by culture of embryos in the medium harvested from virus-producing cells, we transferred the E. coli β-galactosidase gene into trophoblasts and also into inner cell mass (ICM) cells of a bovine embryo through the infection of the MLV-based replication-defective retroviruses encapsidated with GaLV envelope proteins. The infection was confirmed by the expression of the E. coli β-galactosidase gene under a β-actin internal promoter. In addition, co-culture of ICM cells with virus-producing cells resulted in differentiation of ICM cells into embryoid bodies expressing the marker genes. © 1993 Wiley-Liss, Inc.  相似文献   

18.
The gene for a Geobacillus thermoleovorans CCR11 thermostable lipase was recovered by PCR and cloned. Four genetic constructions were designed and successfully expressed in E. coli: (i) the lipase structural gene (lipCCR11) in the PinPoint Xa vector; (ii) the lipase structural gene (lipACCR11) in the pET-28a(+) vector; (iii) the lipase structural gene minus the signal peptide (lipMatCCR11) in the pET-3b vector; and (iv) the lipase structural gene plus its own promoter (lipProCCR11) in the pGEM-T cloning vector. The lipase gene sequence analysis showed an open reading frame of 1,212 nucleotides coding for a mature lipase of 382 residues (40 kDa) plus a 22 residues signal peptide. Expression under T7 and T7lac promoter resulted in a 40- and 36-fold increase in lipolytic activity with respect to the original strain lipase. All recombinant lipases showed an optimal activity at pH 9.0, but variations were found in the temperature for maximum activity and the substrate specificity among them and when compared with the parental strain lipase, especially in the recombinant lipases that contained fusion tags. Therefore, it is important to find the appropriate expression system able to attain a high concentration of the recombinant lipase without compromising the proper folding of the protein.  相似文献   

19.
The construction of different plasmids reported here on the basis of a broad-host-range RSF1010 replicon allows an efficient expression of heterologous genes in the acidophilic methanol-assimilating bacterium Acetobacter methanolicus B58. The promoter-probe vector pRS201 was used for the identification and isolation of the promoter containing sequences derived from the DNA of the Acetobacter phage Acm1. Further, this plasmid was coupled with the Escherichia coli promoters tac and pr creating the expression vectors pRS201tac and pRS201pr, respectively. After the insertion of the chloramphenicol acetyltransferase (cat) gene of the cloned promoters downstream, the chloramphenicol acetyltransferase (CAT) was determined in a cell-free extract of both E. coli and A. methanolicus. Using E. coli promoters as well as promoters of the Acetobacter phage Acm1 arranged in tandem with the promoters of the heterologous genes to be expressed, the pectat lyase gene (ptlB) of Erwinia carotovora and the threonine A gene (thrA) of E. coli were successfully expressed in A. methanolicus. The stability of recombinant plasmids under various conditions in A. methanolicus strains was tested using antibiotic-free media.  相似文献   

20.
A newClostridium perfringens-Escherichia coli shuttle plasmid has been constructed and its complete DNA sequence compiled. The vector, pJIR418, contains the replication regions from theC. perfringens replicon pIP404 and theE. coli vector pUC18. The multiple cloning site and lacZ gene from pUC18 are also present, which means that X-gal screening can be used to select recombinants inE. coli. Both chloramphenicol and erythromycin resistance can be selected inC. perfringens andE. coli since pJIR418 carries theC. perfringens catP and ermBP genes. Insertional inactivation of either the catP or ermBP genes can also be used to directly screen recombinants in both organisms. The versatility of pJIR418 and its applicability for the cloning of toxin genes fromC. perfringens have been demonstrated by the manipulation of a cloned gene encoding the production of phospholipase C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号