首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Mammary-derived growth inhibitor (MDGI) has previously been localized in the mammary parencyma, dependent on the stage of differentiation of the mammary gland. Here, we have elucidated the distribution of MDGI in the mammary stroma by a combined immunohisto-and cytochemical analysis with antibodies raised against MDGI. Distinct staining of capillary endothelial cells has been revealed. Although its subcellular distribution resembles former observations in secretory epithelial cells, the expression of MDGI in capillary endothelial cells clearly precedes that in secretory epithelial cells. On the other hand, no endothelial MDGI staining has been detected in bovine heart, which contains a fatty acid-binding protein almost identical to MDGI. The localization of MDGI in the mammary capillary endothelium is discussed in terms of its possible involvement in the intracellular transport of hydrophobic ligands or in the regulation of endothelial cell proliferation.  相似文献   

2.
3.
《The Journal of cell biology》1994,127(4):1097-1109
Mammary gland development is controlled by systemic hormones and by growth factors that might complement or mediate hormonal action. Peptides that locally signal growth cessation and stimulate differentiation of the developing epithelium have not been described. Here, we report that recombinant and wild-type forms of mammary-derived growth inhibitor (MDGI) and heart-fatty acid binding protein (FABP), which belong to the FABP family, specifically inhibit growth of normal mouse mammary epithelial cells (MEC), while growth of stromal cells is not suppressed. In mammary gland organ culture, inhibition of ductal growth is associated with the appearance of bulbous alveolar end buds and formation of fully developed lobuloalveolar structures. In parallel, MDGI stimulates its own expression and promotes milk protein synthesis. Selective inhibition of endogenous MDGI expression in MEC by antisense phosphorothioate oligonucleotides suppresses appearance of alveolar end buds and lowers the beta-casein level in organ cultures. Furthermore, MDGI suppresses the mitogenic effects of epidermal growth factor, and epidermal growth factor antagonizes the activities of MDGI. Finally, the regulatory properties of MDGI can be fully mimicked by an 11-amino acid sequence, represented in the COOH terminus of MDGI and a subfamily of structurally related FABPs. This peptide does not bind fatty acids. To our knowledge, this is the first report about a growth inhibitor promoting mammary gland differentiation.  相似文献   

4.
Summary Based on sequence relationships the cytoplasmic fatty acid-binding proteins (FABPs) of mammalian origin are divided into at least three distinct types, namely the hepatic-, intestinal- and cardiac-type. Highly conserved sequences of FABPs within the same type correlate with immunological crossreactivities. Isoforms of hepatic-type FABP are found in several mammalian species and for bovine liver FABP specific shifts in isoelectric points upon lipidation with fatty acids are observed. Isoforms of intestinal-type FABP are not known and the occurrence of cardiac-type isoforms so far is confined to bovine heart tissue. A bovine mammary-derived growth inhibitor (MDGI) is 95% homologous to the cardiac-type FABP from bovine heart. Dissociation constants of FABP/fatty acid complexes are in the range of 1 M and 1:1 stoichiometries are usually found, but the neutral isoform of hepatic FABP from bovine liver binds 2 fatty acids. On subcellular levels hepatic- and cardiac-type FABPs are differently distributed. Though mainly cytosolic in either case, immunoelectron microscopy as well as a gelchromatographic immunofluorescence assay demonstrate the association of hepatic FABP in liver cells with microsomal and outer mitochondrial membranes and with nuclei, whereas in heart cells cardiac FABP is confined to mitochondria' matrix and nuclei. In mammary epithelial cells MDGI is associated with neither mitochondria nor endoplasmic reticulum, and is expressed in a strictly developmental-dependent spatial and temporal pattern. The specific role proposed for MDGI is to arrest growth of mammary epithelial cells when they become committed to differentiation in the mammary gland.  相似文献   

5.
The aim of the present study was to investigate the expression of the mammary-derived growth inhibitor (MDGI) and the subcellular localization of MDGI-related antigens in bovine mammary glands. Cell-free translation of poly(A+) = RNA, immunoprecipitation with rabbit anti-MDGI-antibodies, and estimation of the relative contents of MDGI by a radioimmunoassay in mammary tissue of different functional states revealed that the 13 kDa MDGI was dramatically increased in terminally differentiated mammary tissue compared with the proliferating tissue from pregnant animals. To address the question of tissue localization, polyclonal anti-MDGI antibodies and antibodies directed against a synthetic peptide corresponding to residues 69 to 78 of MDGI were used. Western blotting of tissue fractions revealed the cytosolic and microsomal localization of MDGI. Additionally, both types of antibodies detected a 70-kDa antigen in the nuclear fraction of differentiated mammary glands. Salt extraction and DNase I digestion of isolated nuclei, as well as chromatin purification, indicated an association of the 70-kDa antigen with the chromatin. By means of the immunogold technique, MDGI-related antigens were localized within euchromatic nuclear regions of epithelial cells in the intact differentiated mammary gland. The immunostaining was markedly diminished in the proliferating tissue. This finding raises the possibility that MDGI and the 70-kDa antigen influence cell proliferation by acting on gene expression within the nuclei of mammary glands.  相似文献   

6.
Cardiac fatty acid binding protein (cFABP) is abundantly expressed in the nondividing, functionally differentiated mammary ephithelium. It is very closely related, if not identical to, a previously described protein termed mammary derived growth inhibitor (MDGI). In vitro studies suggest that low concentrations of diffusible cFABP/MDGI may play a hormone-like role in limiting proliferative activity and promoting functional differentiation of this tissue, but no in vivo data to support this idea have been published. To test this hypothesis, we compared the levels of cFABP mRNA with both the epithelial DNA labelling index and levels of β-casein mRNA in wild-type mice. We also investigated the effect of a precocious experimental increase of cFABP levels in the mammary gland of transgenic mice on the labelling index and β-casein mRNA levels. This was accomplished by expressing a bovine cFABP cDNA under the control of the ovine β-lactoglobulin (BLG) gene promoter. We found that although both the DNA labelling index, β-casein mRNA levels, and cFABP mRNA levels in wild-type mice are developmentally regulated, they do not correlate with each other during early pregnancy in individual mice. Moreover, a three- to fourfold increase of total cFABP mRNA in two transgenic lines did not affect the DNA labelling index or the levels of β-casein mRNA, an established marker of differentiation of the mammary epithelium, at this developmental stage. These data suggest that epithelial DNA synthesis, β-casein gene expression, and expression of the cFABP gene are regulated independently in the proliferatively active mammary gland and that the rapidly dividing mammary epithelial cells are not susceptible to the action of cFABP during early pregnancy. © 1995 Wiley-Liss, Inc.  相似文献   

7.
Cellular fatty acid-binding proteins (FABP) are a highly conserved family of proteins consisting of several subtypes, among them the mammary-derived growth inhibitor (MDGI) which is quite homologous to or even identical with the heart-type FABP (H-FABP). The FABPs and MDGI have been suggested to be involved in intracellular fatty acid metabolism and trafficking. Recently, evidence for growth and differentiation regulating properties of MDGI and H-FABP was provided. Using four affinity-purified polyclonal antibodies against bovine and human antigen preparations, the cellular localization of MDGI/H-FABP in human and mouse tissues and organs was studied. The antibodies were weakly cross-reactive with adipose tissue extracts known to lack H-FABP, but failed to react by Western blot analysis with liver-type FABP (L-FABP) and intestinal-type FABP (I-FABP). MDGI/H-FABP protein was mainly detected in myocardium, skeletal and smooth muscle fibres, lipid and/or steroid synthesising cells (adrenals, Leydig cells, sebaceous glands, lactating mammary gland) and terminally differentiated epithelia of the respiratory, intestinal and urogenital tracts. The results provide evidence that expression of H-FABP is associated with an irreversibly postmitotic and terminally differentiated status of cells. Since all the antisera employed showed spatially identical and qualitatively equal immunostaining, it is suggested that human, bovine and mouse MDGI/H-FABP proteins share highly homologous epitopes.  相似文献   

8.
Summary We have established and partially characterized a spontaneously immortalized bovine mammary epithelial cell line, designated HH2a. The cells express the gene encoding for mammary derived growth inhibitor (MDGI) when grown on released collagen gels in the presence of lactogenic hormones. This is the first report of a cell line that expresses MDGI. Immunohistochemical studies showed that HH2a cells contain keratin intermediate filaments and desmosomes. When plated on confluent monolayer of live fibroblasts, HH2a cells extensively contacted with fibroblasts. When embedded in the collagen gels, they rearranged themselves to produce three-dimensional duct-like outgrowths extending into the matrix. The HH2a cell line should be useful in investigations of the roles of cell-cell and cell-extracellular interactions in regulation of breast epithelial cell proliferation, and of the hormonal regulation of MDGI gene expression.  相似文献   

9.
Heart fatty acid binding protein (H-FABP) is expressed abundantly in the mammary gland. A number of in vitro studies have shown that H-FABP is functionally indistinguishable from a factor isolated from this organ, termed mammary derived growth inhibitor (MDGI), which specifically inhibits the proliferation of mammary tissue. We have previously shown that over-expression of H-FABP/MDGI in the mammary gland of transgenic mice has no discernable effects on cell proliferation or differentiation. In this report we describe knockout mouse in which the H-FABP/MDGI gene has been specifically disrupted. The mice exhibit no overt phenotype in the mammary gland, and we conclude that this gene does not play a specific role in regulating the normal development or function of this tissue.  相似文献   

10.
Mammary gland differentiation inversely correlates with GDF-8 expression   总被引:1,自引:0,他引:1  
GDF-8 is recognised as an inhibitor of muscle cell growth and differentiation. Although initially thought to be restricted to muscle cells it is now accepted that GDF-8 expression has a broader tissue distribution. We demonstrate GDF-8 expression in the mouse mammary gland, which is predominantly associated with epithelial cells and displays an inverse correlation to the differentiated state of the gland. Specifically, the highest GDF-8 mRNA levels correlate with periods of maximal ductal growth, diminish as pregnancy progressed and are down-regulated to minimal levels by the onset of lactation as the epithelium differentiates. A similar profile is observed for both GDF-8 protein processing and reflects Smad2/3 phosphorylation profile. However, in contrast to muscle cells, GDF-8 neither reduces proliferation nor induces p21 expression levels in mammary epithelial cells. These data implicate a role for GDF-8 in mammary epithelial cell differentiation and demonstrate that GDF-8 has cell-type specific activities.  相似文献   

11.
With the use of specific antibodies against a previously purified [Boehmer, F.-D., Lehmann, W., Schmidt, H., Lange, P., & Grosse, R. (1984) Exp. Cell Res. 150, 466-477] and sequenced mammary-derived growth inhibitor (MDGI) [Boehmer, F.-D., Kraft, R., Otto, A., Wernstedt, C., Hellmann, U., Kurtz, A., Mueller, T., Rohde, K., Etzold, G., Lehmann, W., Langen, P., Heldin, C.-H., & Grosse, R. (1987) J. Biol. Chem. 262, 15137-15143], the localization and relative amount of immunoreactive 13-kilodalton (kDa) antigen in different fractions of bovine milk were determined. The highest amount of antigen was found to be associated with the milk fat globule membranes (MFGM). As revealed by a dot immunobinding assay, the amount of immunoreactive bovine and human MFGM-associated antigen increased dramatically with the onset of lactation after delivery. This finding corresponds to earlier data obtained for MDGI and indicates a relationship between the proliferative state of mammary epithelial cells and the amount of immunoreactive antigen. The 13-kDa antigen has been purified from MFGM to homogeneity by preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis and electroelution. The MFGM-derived 13-kDa polypeptide was found to be almost identical with MDGI as demonstrated by tryptic digestion and partial amino acid sequence analysis of tryptic fragments of both proteins. The results clearly show the presence of a membrane-bound MDGI-related 13-kDa protein, thus supporting the possible involvement of membrane-associated growth inhibitors in growth regulation of mammary epithelial cells.  相似文献   

12.
This study aimed to develop a bovine mammary epithelial (BME) cell line model, which provides a possibility to determine functional properties of the bovine mammary gland. The primary cell culture was derived from bovine mammary gland tissues and processed enzymatically to obtain cell colonies with epithelial-like morphology. The cultures of BME cells were purified and optimally cultured at 37 °C in DMEM/F12 medium supplemented with 10% fetal bovine serum. The BME cells were identified as epithelial cell line by the evaluating the expression of keratin-18 using immunofluorescence staining. A novel gene expression system strongly enhances the expression of telomerase, has been used to immortalize BME cell line termed hTBME cell line. Interestingly, telomerase remained active even after over 60 passages of hTBME cell line, required for immortalization of BME cells. In addition, the hTBME cell line was continuously subcultured with a spontaneous epithelial-like morphology, with a great proliferation activity, and without evidence of apoptotic and necrotic effects. Further characterization showed that hTBME cell line can be continuously propagated in culture with constant chromosomal features and without tumorigenic properties. Finally, established hTBME cell line was evaluated for mammary gland specific functions. Our results demonstrated that the hTBME cell line was able to retain functional-morphological structure, and functional differentiation by expression of beta (β)-casein as in the bovine mammary gland in vivo. Taken together, our findings suggest that the established hTBME cell line can serve as a valuable tool for the study of bovine mammary gland functions.  相似文献   

13.
Transforming growth factor (TGF) activity has been demonstrated in acid-ethanol extracts of bovine mammary gland, of Ehrlich Ascites Mammary Carcinoma Cells, and of the ascites fluid. The extracts differ in their activity in the soft agar test when using either human or rat fibroblasts. The most active extract obtained from mammary gland tissue was chromatographed and the TGF activity shown to be coeluting with EGF receptor-competing activity. The present data and our previous reports show that TGFs and a growth inhibitor for mammary epithelial cells coexist in bovine mammary gland as separate growth factors.  相似文献   

14.
Epidermal growth factor (EGF) is a multifunctional regulator of mammary epithelial cells (MEC) that transduces its signals through the EGF receptor (EGFR). To clarify the role of the EGFR in the mammary gland, EGFR expression, localization and function were examined during different developmental stages in rats. Immunoblot analysis demonstrated high levels of EGFR during puberty, pregnancy and involution as well as at sexual maturity, and low levels throughout lactation. An immunohistochemical assay was used to show that EGFR was distinctly expressed in a variety of cell types throughout mammary glands from virgin rats and rats during pregnancy and involution, and was down-regulated in all cell types throughout lactation. To examine the relationship between EGFR expression and function, primary MEC were cultured under conditions that induced physiologically relevant growth, morphogenesis and lactogenesis. Cultured MEC expressed an in vivo-like profile of EGFR. EGFR was high in immature MEC, down-regulated in functionally differentiated MEC, and then up-regulated in terminally differentiated and apoptotic MEC. An inhibitor of the tyrosine kinase domain of EGFR was used to demonstrate that EGFR signaling was required for growth and differentiation of immature MEC, and for survival of terminally differentiated MEC, but not for maintaining functional differentiation.  相似文献   

15.
In the present study, the analysis of epithelial cells derived from various sources was undertaken, beginning from the mammary gland tissue through the primary cultures and their subsequent passages. The objective of the study was the comparative analysis of the stage in which the epithelial cells obtained from individuals in different lactation cycles and disparate phases of cell culture growth are the most suitable for morphological research and analysis of gene expression activity. The cultures of primary bovine mammary epithelial cells and passages were identified morphologically using immunocytochemical methods. After positive identification, real-time PCRs were performed for the analysis of the expression level of casein genes, whey protein genes, and butyrophilin gene. The most stable reference genes in real-time PCRs for the mammary gland tissue and cell cultures were also determined. Of the reference genes, the UXT and GAPDH genes appeared to be the most stable ones for the mammary gland tissue samples and epithelial cell cultures. The results obtained allowed concluding that the mammary gland samples collected from heifers constituted the most effective material for the initiation of primary cultures. The primary cultures formed characteristic for the mammary gland tissue dome structures, which images were obtained using confocal microscopy. The highest levels of expression of the CSN1S1, CSN1S2, CSN2, and CSN3 genes were detected in primary cultures. The levels of expression of whey protein genes (LALBA and BGL) were highest in the second passage. The most abundant expression of the BTN1A1 gene was observed in primary cultures and the third passage. On the basis of the whole experiment, it can be concluded that primary cultures and cells of the second passage derived from heifer individuals appeared to be the best materials for the analysis of mammary gland function and gene expression activity.  相似文献   

16.
The present study was undertaken to screen immunochemically for MDGI-related proteins in the mammary gland. A new form, MDGI 2, not present in lactation could be detected in the bovine gland during pregnancy. It was further distinguished from MDGI by its lower molecular weight, its association with a complex binding to WGA, and by lacking immunoreactivity to an anti-MDGI antibody directed against the C-terminus of MDGI. MDGI 2 was purified by chromatography over DEAE-Sepharose, Bio-Gel P-30 in 1% acetic acid, Sephacryl S-200 in 6 M urea and Mono Q. Final purification included HPLC on TSK G-3000 SW and electroelution from SDS-gels. Cell-free translation of poly (A+)mRNA from glands of pregnant animal yielded one form identical with MDGI. We assume that posttranslational processing of MDGI is involved in its activities.  相似文献   

17.
Post utero development of the mammary gland is a complex developmental process characterized by states of rapid cell proliferation (branching morphogenesis) followed by functional differentiation (lactation) and the consequent apoptosis (involution) of the secretory mammary epithelial cell. This process is cyclical, such that involution returns the mammary gland to a near-virgin-like state capable of responding to morphogenic cues with each consecutive pregnancy. Importantly, many of the regulatory processes which oversee mammary gland development are corrupted or otherwise compromised during the development of breast cancer. For example, Interferon Regulatory Factor 6 (IRF6) is a novel protein with growth inhibitory properties that was initially identified in mammary epithelial cells through its interaction with maspin, a known tumor suppressor in normal breast tissue. Recent findings from our laboratory suggest that IRF6 functions synergistically with maspin to regulate mammary epithelial cell differentiation by acting on the cell cycle. This perspective focuses on the possible involvement of IRF6 in promoting differentiation by regulating exit from the cell cycle and entry into the G(0) phase of cellular quiescence, and how these new findings shed light on normal mammary gland development and the initiation and progression of breast cancer.  相似文献   

18.
In this study, attempts have been made to identify and characterize water buffalo (Bubalus bubalis) mammary derived growth inhibitor (MDGI) gene, isolated from a mammary gland cDNA library of lactating buffalo. The complete MDGI cDNA was of 698 nucleotides, consisting 61 nucleotides in 5′ UTR, coding region of 402 nucleotides, and 235 nucleotides representing the 3′ UTR. Comparison of nucleotide and deduced amino acid sequence data with that of MDGI//fatty acid binding protein (FABP) of other species shows three buffalo specific nucleotide changes while seven nucleotide changes were common to cattle and buffalo. Buffalo and cattle MDGI had 100% amino acid sequence similarity, which also shared three amino acid changes: 34 (Ala-Gly), 109 (Leu-Met), and 132 (Glu-Gln) as compared to other species. Comparison with FABPs reported from other cattle tissues revealed highest amino acid sequence similarity with FABP-heart (100%) and least with FABP-liver (20.5%). Phylogenetic analysis revealed cattle MDGI to be closest to buffalo, while mouse MDGI was distantly placed, whereas different tissue derived FABPs of cattle showed FABP-heart closest and FABP-epidermis most distantly placed from buffalo MDGI. This report also differs from the earlier findings that MDGI is intermediate of FABP-heart and adipose.  相似文献   

19.
Histamine is suggested to play a role in mammary gland growth regulation, differentiation and functioning during pregnancy and lactation. Two pools of histamine are thought to be involved in these processes: mastocyte- and epithelial cell related histamine. In the present study we focused on epithelial cells. Immunohistochemistry has shown that the epithelial cells positive for histamine and L-histidine decarboxylase (HDC), the primary enzyme regulating histamine biosynthesis, were mainly found in cells forming alveolar structures in the mammary gland. Cultured primary mouse mammary epithelial cells (MMEC) expressed strong HDC immunoreactivity, especially dividing cells and non-differentiated ones. Histidine decarboxylase activity undergoes significant changes during pregnancy and lactation. Pregnancy associated intensive growth of the mammary gland coincided with an increase and the first days of lactation with a decrease of HDC protein expression. Binding studies with mammary tissue membranes and epithelial cell membranes revealed the presence of H1 and H3 but not H2 receptors. Summarizing, our data have shown that mammary epithelial cells are capable of synthesizing and excreting histamine and they bear histamine receptors. These findings further substantiate the role of histamine in mammary gland physiology.  相似文献   

20.
In this study, attempts have been made to identify and characterize water buffalo (Bubalus bubalis) mammary derived growth inhibitor (MDGI) gene, isolated from a mammary gland cDNA library of lactating buffalo. The complete MDGI cDNA was of 698 nucleotides, consisting 61 nucleotides in 5' UTR, coding region of 402 nucleotides, and 235 nucleotides representing the 3' UTR. Comparison of nucleotide and deduced amino acid sequence data with that of MDGI/fatty acid binding protein (FABP) of other species shows three buffalo specific nucleotide changes while seven nucleotide changes were common to cattle and buffalo. Buffalo and cattle MDGI had 100% amino acid sequence similarity, which also shared three amino acid changes: 34 (Ala-Gly), 109 (Leu-Met), and 132 (Glu-Gln) as compared to other species. Comparison with FABPs reported from other cattle tissues revealed highest amino acid sequence similarity with FABP-heart (100%) and least with FABP-liver (20.5%). Phylogenetic analysis revealed cattle MDGI to be closest to buffalo, while mouse MDGI was distantly placed, whereas different tissue derived FABPs of cattle showed FABP-heart closest and FABP-epidermis most distantly placed from buffalo MDGI. This report also differs from the earlier findings that MDGI is intermediate of FABP-heart and adipose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号