首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Roots of six Cucurbitaceae species were exposed to low (14 °C), middle (24 °C), and high (34 °C) temperatures while aerial parts of plants were maintained at ambient temperatures between 23 and 33 °C. The highest dry mass (DM), photon-saturated rate of net photosynthesis (P Nsat), and stomatal conductance (g s) were found at 14 °C in figleaf gourd and turban squash plants, at 24 °C in cucumber and melon plants, while bitter melon and wax gourd plants had lower DM, P Nsat, and g s at 14 °C than at 24 or 34 °C. Sub-or supra-optimum root temperatures did not induce photoinhibition but induced slight changes in the quantum efficiency of photosystem 2, PS2 (ΦPS2) and photochemical quenching (qp). Meanwhile, xylem sap abscisic acid (ABA) concentration followed a contrasting change pattern to that of g s. Thus the change in P Nsat was mainly due to the change in g s and roots played an important role in the regulation of stomatal behaviour by delivering increased amount of ABA to shoots at sub-or supra-optimum root temperatures.  相似文献   

2.
We studied low-temperature adaptation of cold-sensitive tobacco plants in relation to peroxidation of lipids (POL) in their leaves and roots. Experiments were performed with tobacco plants (Nicotiana tabacum L., cv. Samsun). Cold hardening (6 days at 8°C) exerted principally different action on tobacco leaves and roots. In the leaves, the contents of dienoic conjugates and MDA was reduced, and tissue cold tolerance, even to below zero temperatures, was improved. In contrast, in the roots, POL was activated and root cold tolerance decreased. It is suggested that an incapability of the tobacco root system to adapt to low temperature was a limiting factor determining the low potential of this and other cold-sensitive plants to hypothermia.  相似文献   

3.
The shoots of cultivated tomato (Lycopersicon esculentum cv. T5) wilt if their roots are exposed to chilling temperatures of around 5 °C. Under the same treatment, a chilling‐tolerant congener (Lycopersicon hirsutum LA 1778) maintains shoot turgor. To determine the physiological basis of this differential response, the effect of chilling on both excised roots and roots of intact plants in pressure chambers were investigated. In excised roots and intact plants, root hydraulic conductance declined with temperature to nearly twice the extent expected from the temperature dependence of the viscosity of water, but the response was similar in both species. The species differed markedly, however, in stomatal behaviour: in L. hirsutum, stomatal conductance declined as root temperatures were lowered, whereas the stomata of L. esculentum remained open until the roots reached 5 °C, and the plants became flaccid and suffered damage. Grafted plants with the shoots of one genotype and roots of another indicated that the differential stomatal behaviour during root chilling has distinct shoot and root components.  相似文献   

4.
Activated oxygen species such as superoxide radicals, singlet oxygen, hydrogen peroxide and hydroxyl radicals can be produced in plants exposed to low, non-freezing, non-injurious temperatures. To prevent or alleviate oxidative injury, plants have evolved several mechanisms which include scavenging by natural antioxidants and enzymatic antioxidant systems such as superoxide dismutases, catalase and peroxidases. Although overproduction of hydrogen peroxide and increased tolerance to oxidative stress can be induced in wheat by low-temperature treatments, data concerning changes in the enzymatic antioxidant systems are almost absent. With the aim to provide this information, antioxidant enzyme (superoxide dismutases, catalase and peroxidases) activities were analysed in leaves and roots of Triticum aestivum cvs Brasilia (frost resistant in field) and Eridano (less frost resistant in field) seedlings grown at day/night temperatures of 24/22°C (control treatment) and 12/5°C (low-temperature treatment). Our data showed that superoxide dismutase activities were unaffected by low-temperature treatment both in leaves and roots. Catalase activity in leaves and roots was decreased in 12/5°C-grown seedlings, but Brasilia maintained higher catalase activity than Eridano. Differences were also observed in guaiacol peroxidase activities between control and acclimated seedlings: Higher guaiacol peroxidase activities were found in the leaves of 12/5°C-grown seedlings while in roots these activities were lower. Moreover, Brasilia guaiacol peroxidase activities were higher than Eridano. Superoxide dismutase and peroxidase zymogram analyses showed that synthesis of new isoforms was not induced by low-temperature treatment. Changes in the activities of antioxidant enzymes induced by cold acclimation support the hypothesis that a frost-resistant wheat cultivar, in comparison with a less frost-resistant one, maintains a better defence against activated oxygen species during low-temperature treatment.  相似文献   

5.
Abstract Soil surface temperatures in deserts can reach 70 °C, far exceeding the high-temperature tolerance of most vascular plants of about 55 °C. In this study a computer model indicated that the maximum temperatures of small spherical cacti would approach soil surface temperatures, in agreement with measurements on seedlings of Ferocactus acanthodes. Shortwave radiation was the most important environmental variable affecting maximum cactus temperatures: a 70% reduction in shortwave radiation by shading lowered both predicted and measured stem surface temperatures by 17 °C for plants 2 cm in diameter. High-temperature tolerance, measured as the temperature that halved the fraction of cells taking up a vital stain after a 1 h high-temperature treatment, could reach 60 °C for the detached stems of Opuntia bigelovii, which appears crucial for its vegetative reproduction, and 70 °C for O. ficus-indica, apparently the greatest high-temperature tolerance so far reported for higher vascular plants. Two-fold increases in shortwave absorptance from Epithelantha bokei to Mammillaria lasiacantha to Ariocarpus fissuratus led to a 5 °C predicted increase in maximum temperature. However, compensatory differences in high-temperature tolerances occurred for these dwarf cacti, helping to explain their occurrence in the same open habitat in the Chihuahuan Desert. All six species showed acclimation of their high-temperature tolerance as ambient temperatures were increased, including acclimation by the roots of the dwarf cacti, where the greater sensitivity to high temperatures of roots would exclude them from the upper 2 cm of the soil. Using the model, the observed high-temperature acclimation, and the temperatures needed to reduce stain uptake to zero, the three dwarf cacti were predicted to be able to survive soil surface temperatures of up to 74 °C.  相似文献   

6.
Abstract. The activities of five active-oxygen scavenging enzymes were compared for cold-lability and three were compared for chilling induction in two Zea genotypes of contrasting susceptibility to photoinhibition during chilling. Activities of superoxide dismutase (SOD, EC 1.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11), monodehydroascorbate reductase (MDHAR, EC 1.6.5.4), dehydroascorbate reductase (DHAR, EC 1.8.5.1), and glutathione reductase (GTR, EC 1.6.4.2) in leaf extracts from plants grown without chilling stress were assayed at 19°C and 5°C. Enzymes from the chilling-susceptible Z. Mays cv. LG11 had lower specific activities at 5°C than did enzymes from the chilling-tolerant Z. diploperennis, except for MDHAR where no significant differences were observed. The activities of SOD and APX from Z. diploperennis were double those of Z. mays at both assay temperatures. Monodehydroa-scrobate reductase and glutathione reductase activities in both species were reduced by 63–78% at a 5°C assay temperature. The dehydroascorbate reductase (DHAR) showed the greatest low-temperature lability losing 96% (Z. diploperennis) and 100% (Z. mays) of its activity at 5°C. To examine possible chilling-induced changes in levels of enzyme activity, plants of both Zea genotypes were transferred to growth chambers at 10°C at moderate light intensities. Glutathione reductase activity was found to increase within 24h in Z. diploperennis, but it decreased slightly in Z. mays. MDHAR activity decreased by 50% in Z. diploperennis but showed only a transient increase in activity in Z. mays.  相似文献   

7.
To understand the effects of low temperature stress on Kappaphycus alvarezii and the responses of antioxidant systems and photosystem II (PSII), behaviour in K. alvarezii thalli exposed to low temperatures (20°C, 17°C and 14°C) for 2 hours was evaluated. Compared with the control at 26°C, activities of some antioxidant enzymes including superoxide dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APX) and the level of antioxidant substance (reduced glutathione) increased in K. alvarezii thalli when exposed to lowered temperatures (20°C, 17°C). Hydroxyl free radical (·OH) scavenging activity of K. alvarezii thalli also increased at 20°C and 17°C compared with the control. This indicated that the resistance to low temperature stress in the antioxidant system of K. alvarezii increased at lowered temperatures of 20°C and 17°C. However, at the lowest temperature (14°C), no significant increases of this algal antioxidant were observed. Under low temperature stress, the maximum quantum yield of PSII photochemistry (FV/FM) and PSII actual photochemical efficiency (ΦPSII) decreased in K. alvarezii thalli, suggesting that the photosynthetic capacity declined. Components of the photosynthetic apparatus (such as the oxygen-evolving complex, light absorption antennas, reaction centres, electron acceptor sides and electron donor sides of PSII) were damaged by low temperature stress to varying degrees. In addition, it was found that low temperature stress led to decreases of both D1 protein and Rubisco LSU (Rubisco large subunit) protein levels. This work is a significant contribution towards understanding the basic mechanism involved in the resistance and the adaptation of K. alvarezii to low temperature stress conditions.  相似文献   

8.
The ability of the primitive red alga Cyanidioschyzon merolae to adapt to high temperatures was utilized to produce thermotolerant transgenic plants. C. merolae inhabits an extreme environment (42°C, pH 2.5) and the nuclear, mitochondrial, and plastid genomes have been sequenced. We analyzed expressed sequence tag (EST) data to reveal mechanisms of tolerance to high temperatures. The stromal ascorbate peroxidase (CmstAPX) that scavenges reactive oxygen species (ROS) was expressed at high levels (4th of 4,479 entries), thus, it offers clues to understanding high-temperature tolerance. CmstAPX has a chloroplast transit peptide (cTP) and a peroxidase domain. The peroxidase domain of CmstAPX has deletions and insertions when compared with that of Arabidopsis thaliana stromal APX (AtstAPX). To clarify aspects of tolerance to oxidative and high-temperature stress, we produced transgenic A. thaliana plants overexpressing CmstAPX and AtstAPX. CmstAPX plants showed higher activities of soluble APX than those of wild-type and AtstAPX plants. Fluorescence signals of a GFP fusion protein, immuno-fluorescence, and immunogold electron microscopy showed that CmstAPX was localized in the stroma of chloroplasts. Compared with wild-type plants and AtstAPX plants, CmstAPX plants were more tolerant to oxidative stress induced by methylviologen (MV, 0.4 μM) and high-temperature stress (33°C). CmstAPX plants retained the highest chlorophyll content when treated with MV and high temperature, and their stroma and chloroplasts remained intact in their chloroplasts, whereas they disintegrated in wild-type plants. Our results suggest that the increased activity of APX in the chloroplasts of CmstAPX plants increased thermotolerance by increasing ROS-scavenging capacity at high temperatures.  相似文献   

9.
We studied changes in biochemical and physiological status, level of oxidative damage, and antioxidant enzyme activities in detached leaves of cucumber plants (Cucumis sativus L. cv. Pyunggangnaebyungsamchuk) that were exposed to a low temperature (4°C). Chlorophyll fluorescence (Fv/Fm) declined during the chilling treatment, but was slowly restored after the tissues were returned to 25°C. Likewise, the fluorescence quenching coefficient and relative water content decreased during the stress period, but then increased during recovery. In contrast, we detected a significant rise in protein and hydrogen peroxide contents in the chilled leaves, as well as higher activities for superoxide dismutase, ascorbate peroxidase, peroxidase, and glutathione reductase. However, the level of catalase decreased not only during chilling but also after 24 h of recovery. These results indicate that exposure to low temperatures acts as an oxidative stress. Moreover, we propose that a regulating mechanism exists in the detached cucumber leaves and contains an antioxidant defense system that induces active oxygen species, thereby alleviating the effects of chilling stress within 12 h.  相似文献   

10.
Dunaliella species accumulate carotenoids and their role in protection against photooxidative stress has been investigated extensively. By contrast, the role of other antioxidants in this alga, has received less attention. Therefore, the components of the ascorbate–glutathione cycle, along with superoxide dismutase (E.C. 1.15.1.1) and peroxidase (E.C. 1.11.1.11) activity were compared in two strains of Dunaliella salina. Strain IR‐1 had two‐fold higher chlorophyll and β‐carotene concentration than Gh‐U. IR‐1 had around four‐fold higher superoxide dismutase, ascorbate peroxidase and pyrogallol peroxidase activities than Gh‐U on a protein basis. Ascorbate and glutathione concentrations and redox state did not differ between strains and there was little difference in the activity of ascorbate–glutathione cycle enzymes (monodehydroascorbate reductase [E.C. 1.6.5.4], dehydroascorbate reductase [E.C. 1.8.5.1] and glutathione reductase [E.C. 1.8.1.7]). The response of these antioxidants to high light and low temperature was assessed by transferring cells from normal growth conditions (28°C, photon flux density of 100 μmol m?2 s?1)to 28°C/1200 μmol m?2 s?1; 13°C/100 μmol m?2 s?1; 13°C/1200 μmol m?2 s?1 and 28°C/100 μmol m?2 s?1 for 24 h. Low temperature and combined high light‐low temperature decreased chlorophyll and β‐carotene in both strains indicating that these treatments cause photooxidative stress. High light, low temperature and combined high light‐low temperature treatments increased the total ascorbate pool by 10–50% and the total glutathione pool by 20–100% with no consistent effect on their redox state. Activities of ascorbate–glutathione cycle enzymes were not greatly affected but all the treatments increased superoxide dismutase activity. It is concluded that D. salina can partially adjust to photooxidative conditions by increasing superoxide dismutase activity, ascorbate and glutathione.  相似文献   

11.
The effect of repeated midday temperature stress on the photosynthetic performance and biomass production of seagrass was studied in a mesocosm setup with four common tropical species, including Thalassia hemprichii, Cymodocea serrulata, Enhalus acoroides, and Thalassodendron ciliatum. To mimic natural conditions during low tides, the plants were exposed to temperature spikes of different maximal temperatures, that is, ambient (29–33°C), 34, 36, 40, and 45°C, during three midday hours for seven consecutive days. At temperatures of up to 36°C, all species could maintain full photosynthetic rates (measured as the electron transport rate, ETR) throughout the experiment without displaying any obvious photosynthetic stress responses (measured as declining maximal quantum yield, Fv/Fm). All species except T. ciliatum could also withstand 40°C, and only at 45°C did all species display significantly lower photosynthetic rates and declining Fv/Fm. Biomass estimation, however, revealed a different pattern, where significant losses of both above‐ and belowground seagrass biomass occurred in all species at both 40 and 45°C (except for C. serrulata in the 40°C treatment). Biomass losses were clearly higher in the shoots than in the belowground root–rhizome complex. The findings indicate that, although tropical seagrasses presently can cope with high midday temperature stress, a few degrees increase in maximum daily temperature could cause significant losses in seagrass biomass and productivity.  相似文献   

12.
Three species of Arctic to cold-temperate amphi-Atlantic algae, all occurring also in the North Pacific, were tested for growth and/or survival at temperatures of −20 to 30°C. When isolates from both western and eastern Atlantic shores were tested side-by-side, it was found that thermal ecotypes may occur in such Arctic algae.Chaetomorpha melagonium was the most eurythermal of the 3 species. Isolates of this alga were alike in temperature tolerance and growth rate but Icelandic plants were more sensitive to the lethal temperature of 25°C than were more southerly isolates from both east and west. With regard toDevaleraea ramentacea, one Canadian isolate grew extraordinarily well at −2 and 0°C, and all tolerated temperatures 2–3°C higher than the lethal limit (18–20°C) of isolates from Europe. ConcerningPhycodrys rubens, both eastern and western isolates died at 20°C but European plants tolerated the lethal high temperature longer, were more sensitive to freezing, and attained more rapid growth at optimal temperatures. The intertidal species,C. melagonium andD. ramentacea, both survived freezing at −5 and −20°C, at least for short time periods.C. melagonium was more susceptible thanD. ramentacea to desiccation. Patterns of thermal tolerance may provide insight into the evolutionary history of seaweed species.  相似文献   

13.
Crofton weed is an invasive weed in southwestern China. The activities of several antioxidative enzymes involved in plant protection against oxidative stress were assayed to determine physiological aspects of the crofton weed that might render the plant vulnerable to environmental stress. Stresses imposed on crofton weed were heat (progressively increasing temperatures: 25 ℃, 30 ℃, 35 ℃, 38℃ and 42 ℃ at 24 h intervals), cold (progressively decreasing temperatures: 25 ℃, 20 ℃, 15℃, 10 ℃ and 5℃ at 24h intervals), and drought (without watering up to 4days). The three stresses induced oxidative damage as evidenced by an increase in lipid peroxidation. The effect varied with the stress imposed and the length of exposure. The activity of superoxide dismutase (SOD) increased in response to all stresses but was not significantly different from the controls (P 〈 0.05) when exposed to cold stress. Catalase (CAT) activity decreased in response to heat and drought stress but increased when exposed to cold conditions. Guaiacol peroxidase (POD) and glutathione reductase (GR) activities increased in response to cold and drought but decreased in response to heat stress. The activity of ascorbata peroxidase (APX) responded differently to all three stresses. Monodehydroascorbate reductase (MDHAR) activity decreased in response to heat and drought, and slightly increased in response to the cold stress but was not significantly different from the controls (P 〈 0.05). The activity of dehydroascorbata reductase (DHAR) increased in response to all three stresses. Taken together, the co-ordinate increase of the oxygen-detoxifying enzymes might be more effective to protect crofton weed from the accumulation of oxygen radicals at low temperatures rather than at high temperatures.  相似文献   

14.
Four-day-old rice (Oryza sativa L.) seedlings were subjected to varying temperatures of 30/20, 35/25, and 42/37 °C [light/dark (15/9 h); light intensity: 350 μmol m?2 s?1, RH 65–70 %] in glass Petri dishes for 10 days in the absence (control) or the presence of γ-aminobutyric acid (GABA) 1 mM under the controlled conditions of a growth chamber. With rise in temperature, the length of both shoots and roots was inhibited severely and there was a marked decrease in survival, especially at 42/37 °C. Endogenous GABA content increased more than twofold in moderately stressed (MS) 35/25 °C plants, whereas it decreased sevenfold in severely stressed (SS) 42/37 °C plants compared to MS plants, and this decrease was associated with marked reduction in growth and survival. Exogenous application of GABA to the heat-stressed plants significantly improved growth as well as survival. It was linked to reduction in damage to membranes, improvement in cellular reducing ability, chlorophyll content, and photochemical efficiency in shoots. Relative leaf water content and stomatal conductance were also improved with the application of GABA and their improvement was related to increased accumulation of the osmolytes proline and trehalose. In the presence of GABA, the shoots suffered less oxidative damage in terms of malondialdehyde and hydrogen peroxide contents. The activities of enzymatic antioxidants such as superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase were severely inhibited in plants growing at 42/37 °C compared to those growing at 35/25 °C. The nonenzymatic antioxidants like ascorbate and glutathione followed a similar pattern. GABA-treated SS plants showed enhanced levels of enzymatic and nonenzymatic antioxidants compared to untreated controls. Thus, GABA appears to impart partial protection from heat stress to rice plants by elevating leaf turgor due to increased accumulation of osmolytes and reduction of oxidative damage by stimulation of antioxidants. These findings provided evidence about the involvement of GABA in governing heat sensitivity in rice.  相似文献   

15.
Following leaf application of salicylic acid (SA), calcium chloride, hydrogen peroxide and 6-benzylaminopurine (BA), Manila grass (Zoysia matrella) plants were exposed to day/night temperature of 7/2 °C for 120 h in a growth chamber. The lower content of malondialdehyde (MDA) and H2O2 and higher activities of ascorbate peroxidase (APX), guaiacol peroxidase (POD) and catalase (CAT) during exposure to low temperature in pre-treated plants in comparison with control plants demonstrated that these compounds improved the chilling tolerance of Manila grass.  相似文献   

16.
Progeny production increased and adult longevity decreased with rising temperature within the range 18°C to 30°C for the 3 mealybug parasitoidsAnagyrus pseudococci (Girault),Leptomastix dactylopii Howard andLeptomastidea abnormis (Girault). The Weibull distribution gave a good fit to survival curves for the 3 parasitoids and statistical comparison of Weibullb andc parameters at different temperatures allowed changes in the scale and shape of the curves to be detected. In general, ♀♀ lived longer than ♂♂ for all 3 species, except at high temperature. FemaleL. abnormis attained their maximum progeny production at 24°C and maintained this level up to 34°C. They lived longer than the other 2 parasitoid species at 30°C and showed a type I survival curve throuhout the range of temperatures examined.A. pseudococci andL. dactylopii both required high temperatures (30°C) to attain their maximal progeny production, but werepseudococci tended towards type II, with a larger proportion of the population dying within the first few days.L. dactylopii lived longest at 26°C, with ♀♀ showing a type I survival curve at all temperatures and ♂ survival curves changing from type I to type II at 30°C. The implications of these findings for the population dynamics of the different parasitoids are briefly discussed.   相似文献   

17.
We investigated the extent to which leaf and root respiration (R) differ in their response to short‐ and long‐term changes in temperature in several contrasting plant species (herbs, grasses, shrubs and trees) that differ in inherent relative growth rate (RGR, increase in mass per unit starting mass and time). Two experiments were conducted using hydroponically grown plants. In the long‐term (LT) acclimation experiment, 16 species were grown at constant 18, 23 and 28 °C. In the short‐term (ST) acclimation experiment, 9 of those species were grown at 25/20 °C (day/night) and then shifted to a 15/10 °C for 7 days. Short‐term Q10 values (proportional change in R per 10 °C) and the degree of acclimation to longer‐term changes in temperature were compared. The effect of growth temperature on root and leaf soluble sugar and nitrogen concentrations was examined. Light‐saturated photosynthesis (Asat) was also measured in the LT acclimation experiment. Our results show that Q10 values and the degree of acclimation are highly variable amongst species and that roots exhibit lower Q10 values than leaves over the 15–25 °C measurement temperature range. Differences in RGR or concentrations of soluble sugars/nitrogen could not account for the inter‐specific differences in the Q10 or degree of acclimation. There were no systematic differences in the ability of roots and leaves to acclimate when plants developed under contrasting temperatures (LT acclimation). However, acclimation was greater in both leaves and roots that developed at the growth temperature (LT acclimation) than in pre‐existing leaves and roots shifted from one temperature to another (ST acclimation). The balance between leaf R and Asat was maintained in plants grown at different temperatures, regardless of their inherent relative growth rate. We conclude that there is tight coupling between the respiratory acclimation and the temperature under which leaves and roots developed and that acclimation plays an important role in determining the relationship between respiration and photosynthesis.  相似文献   

18.
A common cylindropuntia in the northwestern Sonoran Desert, Opuntia acanthocarpa, was investigated for the following hypotheses: its lower elevational limit is set by high temperatures, so its seedlings require nurse plants; its upper elevational limit is set by freezing; spine shading is the least at intermediate elevations; and changes in plant size and frequency with elevation reflect net CO2 uptake ability. For four elevations ranging from 230 m to 1,050 m, the mean height of O. acanthocarpa approximately doubled and its frequency increased 14-fold. Nurse plants were associated with only 4% of O. acanthocarpa less than 20 cm tall at the two lower elevations compared with 57% at 1,050 m, where putative freezing damage was especially noticeable, suggesting that nurse plants protect from low temperature damage. Spine shading of the stem doubled from the lowest to the highest elevation. Net CO2 uptake, which followed a Crassulacean acid metabolism pattern, was maximal at day/night air temperatures of 25/15°C and was halved by 4 weeks of drought and by reducing the photosynthetic photon flux from 30 to 12 mol m-2 day-1. The root system of O. acanthocarpa was shallow, with a mean depth of only 9 cm for the largest plants. Root growth was substantial and similar for plants at 25/15°C and 35/25°C, decreasing over 70-fold at 15/5°C and 45/35°C. Based on cellular uptake of the vital stain neutral red, neither roots nor stems tolerated tissue temperatures below -5°C for 1 h while both showed substantial high temperature acclimation, roots tolerating 1 h at 61°C and stems 1 h at 70°C for plants grown at 35/25°C. The increase in height and frequency of O. acanthocarpa with elevation apparently reflected both a greater ability for net CO2 uptake and greater root growth and hence water uptake. This species achieves its greatest ecological success at elevations where it becomes vulnerable to low temperature damage.  相似文献   

19.
Arabidopsis plants show an increase in freezing tolerance in response to exposure to low nonfreezing temperatures, a phenomenon known as cold acclimation. In the present study, we evaluated the physiological and morphological responses of various Arabidopsis ecotypes to continuous growth under chilling (14°C) and cold (6°C) temperatures and evaluated their basal freezing tolerance levels. Seedlings of Arabidopsis plants were extremely sensitive to low growth temperatures: the hypocotyls and petioles were much longer and the angles of the second pair of true leaves were much greater in plants grown at 14°C than in those grown at 22°C, whereas just intermediate responses were observed under the cold temperature of 6°C. Flowering time was also markedly delayed at low growth temperatures and, interestingly, lower growth temperatures were accompanied by longer inflorescences. Other marked responses to low temperatures were changes in pigmentation, which appeared to be both ecotype specific and temperature dependent and resulted in various visual phenotypes such as chlorosis, necrosis or enhanced accumulation of anthocyanins. The observed decreases in chlorophyll contents and accumulation of anthocyanins were much more prominent in plants grown at 6°C than in those grown at 14°C. Among the various ecotypes tested, Mt‐0 plants markedly accumulated the highest levels of anthocyanins upon growth at 6°C. Freezing tolerance examination revealed that among 10 ecotypes tested, only C24 plants were significantly more sensitive to subzero temperatures. In conclusion, Arabidopsis ecotypes responded differentially to cold (6°C), chilling (14°C) and freezing temperatures, with specific ecotypes being more sensitive in particular traits to each low temperature.  相似文献   

20.
  • Morphological and functional seed traits have important roles in characterising the species regeneration niche and help to understand the reproductive biology of rare and threatened plants, which can thus support appropriate plant conservation measures.
  • Seed morphometric and dispersal kinetics of the critically endangered Dioscorea strydomiana were measured and compared with those of four other Dioscorea species, and seed germination response under constant temperatures (5–35 °C) was compared with that of the congeneric and widespread D. sylvatica.
  • Seed mass of D. strydomiana (ca. 14 mg) was twice that of D. sylvatica, but similar to or smaller than the other species examined. Seeds of D. strydomiana have the lowest speed of descent and lowest variability in most of the morphological traits considered, suggesting lower phenotypic plasticity but higher variance in the wing‐loading value. Seeds of D. strydomiana reached maximum germination at 15 °C (ca. 47%), which decreased slightly to ca. 37% at 25 °C and was completely inhibited at 35 °C. D. sylvatica seeds started to germinate at 10 °C (ca. 3%), reached 75–80% germination at 15–20 °C and maximum (ca. 90%) at 25–30 °C. Base temperatures for germination (Tb) were 9.3 and 5.7 °C, for D. strydomiana and D. sylvatica, respectively. Due to the higher germination percentages of D. sylvatica, ceiling and optimum temperatures could also be modelled for this species, suggesting higher sensitivity to high temperature for seeds of D. strydomiana.
  • The detected poor seed lot quality of D. strydomiana suggests difficulties in reproduction from seed, highlighting the need for further investigation and conservation actions for this threatened yam species.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号