首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 445 毫秒
1.
2.
3.
4.
5.
Glutamate (Glu), the major excitatory amino acid, activates a wide variety of signal transduction cascades. Synaptic plasticity relies on activity-dependent differential protein expression. Glu receptors have been critically involved in long-term synaptic changes, although recent findings suggest that Na+-dependent Glu transporters participate in Glu-induced signalling. Within the cerebellum, Bergmann glia cells are in close proximity to glutamatergic synapses and through their receptors and transporters, sense and respond to neuronal glutamatergic activity. Translational control represents the fine-tuning stage of protein expression regulation and Glu modulates this event in glial cells. In this context, we decided to explore the involvement of Glu receptors and transporters in the regulation of the initiation phase of protein synthesis. To this end, Bergmann glia cells were exposed to glutamatergic ligands and the serine 51-phosphorylation pattern of the main regulator of the initiation phase of translation, namely the α subunit of eukaryotic initiation factor 2 (eIF2α), determined. A time and dose-dependent increase in eIF2α phosphorylation was detected. The signalling cascade included Ca2+ influx, activation of the Ca2+/calmodulin-dependent protein kinase II and protein kinase C. These results provide an insight into the molecular targets of the Glu effects at the translational level and strengthen the notion of the critical involvement of glia cells in glutamatergic synaptic function.  相似文献   

6.
7.
8.
Glial glutamate receptors are likely to be involved in neuronal differentiation, migration, and plasticity. Dystrophin, the protein defective in Duchenne muscular dystrophy (DMD) is widely expressed in the Central Nervous System. Activation of internal promoters of the DMD gene leads to the production of several proteins, the Dystrophin-71 (Dp-71) being the most abundant in the encephalon. This protein is known to stabilize neurotransmitter receptors in clusters and its absence has been correlated with cognitive deficits in a mouse model. Using cultured chick Bergmann glia cells and mouse cerebellar fusiform astrocytes, we demonstrate here that glutamate receptor activation results in a time and dose dependent decrease of Dp-71 levels. This effect is mediated through amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. The present results suggest an involvement of Dp-71 in glutamate receptor signaling and possibly clustering and further support the notion of an active role of glia in the physiology of glutamatergic transmission.  相似文献   

9.
10.
Glutamate is involved in gene expression regulation in neurons and glial cells through the activation of a diverse array of signaling cascades. In Bergmann glia, Ca2+-permeable α-hydroxy-5-methyl-4-isoazole-propionic acid (AMPA) receptors become tyrosine phosphorylated after ligand binding and by these means form multiprotein signaling complexes. Of the various proteins that associate to these receptors, the phosphatidylinositol 3-kinase (PI-3K) deserves special attention since D3-phosphorylated phosphoinositides are docking molecules for signaling proteins with a pleckstrin homology domain. In order to characterize the role of PI-3K in AMPA receptors signaling, in the present report we analyze the involvement of the serine/threonine protein kinase B in this process. Our results demonstrate an augmentation in protein kinase B phosphorylation and activity after glutamate exposure. Interestingly, the effect is independent of Ca2+ influx, but sensitive to Src blockers. Our present findings broaden our current knowledge of glial glutamate receptors signaling and their involvement glutamatergic neurotransmission.Special issue dedicated to Miklós Palkovits.  相似文献   

11.
12.
13.
14.
15.
16.
17.

Glutamate is the major excitatory amino acid neurotransmitter in the vertebrate brain. It exerts its actions through the activation of specific plasma membrane receptors expressed in neurons and glial cells. Overactivation of glutamate receptors results in neuronal death, known as excitotoxicity. A family of sodium-dependent glutamate transporters enriched in glial cells are responsible of the vast majority of the removal of this amino acid form the synaptic cleft. Therefore, a precise and exquisite regulation of these proteins is required not only for a proper glutamatergic transmission but also for the prevention of an excitotoxic insult. Manganese is a trace element essential as a cofactor for several enzymatic systems, although in high concentrations is involved in the disruption of brain glutamate homeostasis. The molecular mechanisms associated to manganese neurotoxicity have been focused on mitochondrial function, although energy depletion severely compromises the glutamate uptake process. In this context, in this contribution we analyze the effect of manganese exposure in glial glutamate transporters function. To this end, we used the well-established model of chick cerebellar Bergmann glia cultures. A time and dose dependent modulation of [3H]-d-aspartate uptake was found. An increase in the transporter catalytic efficiency, most probably linked to a discrete increase in the affinity of the transporter was detected upon manganese exposure. Interestingly, glucose uptake was reduced by this metal. These results favor the notion of a direct effect of manganese on glial cells, this in turn alters their coupling with neurons and might lead to changes in glutamatergic transmission.

  相似文献   

18.
SoxLZ/Sox6, a member of the Sox protein family, contains a leucine zipper motif in addition to an HMG box, which is its DNA binding domain. Here we have identified a novel SoxLZ/Sox6 binding protein, termed Solt, which we obtained independently using both a far-Western blot and a yeast two-hybrid screen. Like SoxLZ/Sox6 mRNA, Solt mRNA was exclusively expressed in the testis in mouse. Solt contains an unusual leucine zipper, which bound to the leucine zipper region of SoxLZ/Sox6 in vitro. In transient transfection assays in CHO cells with SoxLZ/Sox6 containing the transactivational region of herpes simplex virus VP16, expression of a reporter gene that carries a cis binding region for Sox proteins was significantly enhanced by the co-expression of Solt and Ca(2+)/calmodulin-dependent protein kinase IV.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号