首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Depressive disorders are the most common form of mental illness in America, affecting females twice as often as males. The great variability of symptoms and responses to therapeutic treatment emphasize the complex underlying neurobiology of disease onset and progression. Evidence from human and animal studies reveals a vital link between individual stress sensitivity and the predisposition toward mood disorders. While the stress response is essential for maintenance of homeostasis and survival, chronic stress and maladaptive responses to stress insults can lead to depression or other affective disorders. A key factor in the mediation of stress responsivity is the neuropeptide corticotropin-releasing factor (CRF). Studies in animal models of heightened stress sensitivity have illustrated the involvement of CRF downstream neurotransmitter targets, including serotonin and norepinephrine, in the profound neurocircuitry failure that may underlie maladaptive coping strategies. Stress sensitivity may also be a risk factor in affective disorder development susceptibility. As females show an increased stress response and recovery time compared to males, they may be at an increased vulnerability for disease. Therefore, examination of sex differences in CRF and downstream targets may aid in the elucidation of the underlying causes of the increased disease presentation in females. While we continue to make progress in our understanding of mood disorder etiology, we still have miles to go before we sleep. As an encouraging number of new animal models of altered stress sensitivity and negative stress coping strategies have been developed, the future looks extremely promising for the possibility of a new generation of drug targets to be developed.  相似文献   

2.
Depression is a term that has been used to describe a variety of ailments, ranging from minor to incapacitating. Clinically significant depression, termed as major depression, is a serious condition characterized not only by depressed mood but also by a cluster of somatic, cognitive, and motivational symptoms. Significant research efforts are aimed to understand the neurobiological as well as psychiatric disorders, and the evaluation of treatment of these disorders is still based solely on the assessment of symptoms. In order to identify the biological markers for depression, we have focused on gathering information on different factors responsible for depression including stress, genetic variations, neurotransmitters, and cytokines and chemokines previously suggested to be involved in the pathophysiology of depression. The present review illustrates the potential of biomarker profiling for psychiatric disorders, when conducted in large collections. The review highlighted the biomarker signatures for depression, warranting further investigation.  相似文献   

3.
This article is part of a Special Issue “SBN 2014”.Stress is a potential etiology contributor to both post-traumatic stress disorders (PTSD) and major depression. One stress-related neuropeptide that is hypersecreted in these disorders is corticotropin releasing factor (CRF). Dysregulation of CRF has long been linked to the emotion and mood symptoms that characterize PTSD and depression. However, the idea that CRF also mediates the cognitive disruptions observed in patients with these disorders has received less attention. Here we review literature indicating that CRF can alter cognitive functions. Detailed are anatomical studies revealing that CRF is poised to modulate regions required for learning and memory. We also describe preclinical behavioral studies that demonstrate CRF’s ability to alter fear conditioning, impair memory consolidation, and alter a number of executive functions, including attention and cognitive flexibility. The implications of these findings for the etiology and treatment of the cognitive impairments observed in stress-related psychiatric disorders are described.  相似文献   

4.
The crucial role of dopamine (DA) in movement control is illustrated by the spectrum of motor disorders caused by either a deficiency or a hyperactivity of dopaminergic transmission in the basal ganglia. The degeneration of nigrostriatal DA neurons in Parkinson's disease causes poverty and slowness of movement. These symptoms are greatly improved by pharmacological DA replacement with L-3,4-dihydroxy-phenylalanine (L-DOPA), which however causes excessive involuntary movements in a majority of patients. L-DOPA-induced dyskinesia (abnormal involuntary movements) provides a topic of investigation at the interface between clinical and basic neuroscience. In this article, we review recent studies in rodent models, which have uncovered two principal alterations at the basis of the movement disorder, namely, an abnormal pre-synaptic handling of exogenous L-DOPA, and a hyper-reactive post-synaptic response to DA. Dysregulated nigrostriatal DA transmission causes secondary alterations in a variety of non-dopaminergic transmitter systems, the manipulation of which modulates dyskinesia through mechanisms that are presently unclear. Further research on L-DOPA-induced dyskinesia will contribute to a deeper understanding of the functional interplay between neurotransmitters and neuromodulators in the motor circuits of the basal ganglia.  相似文献   

5.
While both sleep and optimism have been found to be predictive of well-being, few studies have examined their relationship with each other. Neither do we know much about the mediators and moderators of the relationship. This study investigated (1) the causal relationship between sleep quality and optimism in a college student sample, (2) the role of symptoms of depression, anxiety, and stress as mediators, and (3) how circadian preference might moderate the relationship. Internet survey data were collected from 1,684 full-time university students (67.6% female, mean age = 20.9 years, SD = 2.66) at three time-points, spanning about 19 months. Measures included the Attributional Style Questionnaire, the Pittsburgh Sleep Quality Index, the Composite Scale of Morningness, and the Depression Anxiety Stress Scale-21. Moderate correlations were found among sleep quality, depressive mood, stress symptoms, anxiety symptoms, and optimism. Cross-lagged analyses showed a bidirectional effect between optimism and sleep quality. Moreover, path analyses demonstrated that anxiety and stress symptoms partially mediated the influence of optimism on sleep quality, while depressive mood partially mediated the influence of sleep quality on optimism. In support of our hypothesis, sleep quality affects mood symptoms and optimism differently for different circadian preferences. Poor sleep results in depressive mood and thus pessimism in non-morning persons only. In contrast, the aggregated (direct and indirect) effects of optimism on sleep quality were invariant of circadian preference. Taken together, people who are pessimistic generally have more anxious mood and stress symptoms, which adversely affect sleep while morningness seems to have a specific protective effect countering the potential damage poor sleep has on optimism. In conclusion, optimism and sleep quality were both cause and effect of each other. Depressive mood partially explained the effect of sleep quality on optimism, whereas anxiety and stress symptoms were mechanisms bridging optimism to sleep quality. This was the first study examining the complex relationships among sleep quality, optimism, and mood symptoms altogether longitudinally in a student sample. Implications on prevention and intervention for sleep problems and mood disorders are discussed.  相似文献   

6.
The mammalian forebrain is characterized by the presence of several parallel cortico‐basal ganglia circuits that shape the learning and control of actions. Among these are the associative, limbic and sensorimotor circuits. The function of all of these circuits has now been implicated in responses to drugs of abuse, as well as drug seeking and drug taking. While the limbic circuit has been most widely examined, key roles for the other two circuits in control of goal‐directed and habitual instrumental actions related to drugs of abuse have been shown. In this review we describe the three circuits and effects of acute and chronic drug exposure on circuit physiology. Our main emphasis is on drug actions in dorsal striatal components of the associative and sensorimotor circuits. We then review key findings that have implicated these circuits in drug seeking and taking behaviors, as well as drug use disorders. Finally, we consider different models describing how the three cortico‐basal ganglia circuits become involved in drug‐related behaviors. This topic has implications for drug use disorders and addiction, as treatments that target the balance between the different circuits may be useful for reducing excessive substance use.  相似文献   

7.
Based on brain imaging findings, we present a model according to which addiction emerges as an imbalance in the information processing and integration among various brain circuits and functions. The dysfunctions reflect (a) decreased sensitivity of reward circuits, (b) enhanced sensitivity of memory circuits to conditioned expectations to drugs and drug cues, stress reactivity, and (c) negative mood, and a weakened control circuit. Although initial experimentation with a drug of abuse is largely a voluntary behavior, continued drug use can eventually impair neuronal circuits in the brain that are involved in free will, turning drug use into an automatic compulsive behavior. The ability of addictive drugs to co‐opt neurotransmitter signals between neurons (including dopamine, glutamate, and GABA) modifies the function of different neuronal circuits, which begin to falter at different stages of an addiction trajectory. Upon exposure to the drug, drug cues or stress this results in unrestrained hyperactivation of the motivation/drive circuit that results in the compulsive drug intake that characterizes addiction.  相似文献   

8.
Microarrays offer the possibility of screening in parallel virtually all genes expressed in a given tissue or to study the molecular signature associated with available treatments. As such, this technology has been increasingly used to investigate multifactorial and polygenic complex traits such as psychiatric disorders, in particular, schizophrenia and mood disorders. This review focuses on microarray studies investigating mood disorders. Study designs, methodologic approaches and limitations, subsequent follow-up strategies, and confirmation of results are discussed. Despite the apparent disparate and not always concordant results, it appears evident that this technology is a powerful and inevitable approach for the study of mood disorders, especially when phenotype-specific confounders are properly accounted for. Thus, alterations of mitochondrial, oligodendrocyte, and myelin related genes in bipolar disorder, of signaling and olidendroglial related genes in depression, and of GABA-glutamate related genes in depression and suicide have been observed and have confirmed new avenues for the study and the treatment of these complex disorders.  相似文献   

9.
Site-specific deamination of five adenosine residues in the pre-mRNA of the serotonin 2C receptor, 5HT2CR, alters the amino acid sequence of the encoded protein. Such RNA editing can produce 32 mRNA variants, encoding 24 protein isoforms that vary in biochemical and pharmacological properties. Because serotonin functions in the regulation of mood and behaviour, modulation of serotonin signalling by RNA editing may be relevant to such psychiatric disorders as anxiety and depression. Several recent human studies have reported changes in 5HT2CR editing in schizophrenia, major depression or suicide, but results are variable and not conclusive. Rodent studies have begun to examine effects of drug treatments and stress. Understanding the importance of 5HT2CR editing in mood and behaviour will be assisted by experiments designed to analyse multiple strains of mice, in different behavioural tests, with optimal evaluation of the time course of molecular changes.  相似文献   

10.
Altered inflammatory cytokine profiles are often observed in individuals suffering from major depression. Recent clinical work reports on elevated IL-6 and decreased IL-10 in depression. Elevated IL-6 has served as a consistent biomarker of depression and IL-10 is proposed to influence depressive behavior through its ability to counterbalance pro-inflammatory cytokine expression. Clinical and animal studies suggest a role for IL-10 in modifying depressive behavior. Murine restraint stress (RST) is regularly employed in the study of behavioral and biological symptoms associated with depressive disorders. While responses to acute RST exposure have been widely characterized, few studies have examined the ongoing and longitudinal effects of extended RST and fewer still have examined the lasting impact during the post-stress period. Consistent with clinical data, we report that a protocol of prolonged murine RST produced altered cytokine profiles similar to those observed in major depressive disorder. Parallel to these changes in circulating cytokines, IL-10 mRNA expression was diminished in the cortex and hippocampus throughout the stress period and following cessation of RST. Moreover, chronic RST promoted depressive-like behavior throughout the 28-day stress period and these depressive-like complications were maintained weeks after cessation of RST. Because of the correlation between IL-10 suppression and depressive behavior and because many successful antidepressant therapies yield increases in IL-10, we examined the effects of IL-10 treatment on RST-induced behavioral changes. Behavioral deficits induced by RST were reversed by exogenous administration of recombinant IL-10. This work provides one of the first reports describing the biological and behavioral impact following prolonged RST and, taken together, this study provides details on the correlation between responses to chronic RST and those seen in depressive disorders.  相似文献   

11.
Many neuropsychiatric disorders exhibit differences in prevalence, age of onset, symptoms or course of illness between males and females. For the most part, the origins of these differences are not well understood. In this article, we provide an overview of sex differences in psychiatric disorders including autism spectrum disorder (ASD), attention deficit/hyperactivity disorder (ADHD), anxiety, depression, alcohol and substance abuse, schizophrenia, eating disorders and risk of suicide. We discuss both genetic and nongenetic mechanisms that have been hypothesized to underlie these differences, including ascertainment bias, environmental stressors, X‐ or Y‐linked risk loci, and differential liability thresholds in males and females. We then review the use of twin, family and genome‐wide association approaches to study potential genetic mechanisms of sex differences and the extent to which these designs have been employed in studies of psychiatric disorders. We describe the utility of genetic epidemiologic study designs, including classical twin and family studies, large‐scale studies of population registries, derived recurrence risks, and molecular genetic analyses of genome‐wide variation that may enhance our understanding sex differences in neuropsychiatric disorders.  相似文献   

12.
Understanding the interaction between fear and reward at the circuit and molecular levels has implications for basic scientific approaches to memory and for understanding the etiology of psychiatric disorders. Both stress and exposure to drugs of abuse induce epigenetic changes that result in persistent behavioral changes, some of which may contribute to the formation of a drug addiction or a stress‐related psychiatric disorder. Converging evidence suggests that similar behavioral, neurobiological and molecular mechanisms control the extinction of learned fear and drug‐seeking responses. This may, in part, account for the fact that individuals with post‐traumatic stress disorder have a significantly elevated risk of developing a substance use disorder and have high rates of relapse to drugs of abuse, even after long periods of abstinence. At the behavioral level, a major challenge in treatments is that extinguished behavior is often not persistent, returning with changes in context, the passage of time or exposure to mild stressors. A common goal of treatments is therefore to weaken the ability of stressors to induce relapse. With the discovery of epigenetic mechanisms that create persistent molecular signals, recent work on extinction has focused on how modulating these epigenetic targets can create lasting extinction of fear or drug‐seeking behavior. Here, we review recent evidence pointing to common behavioral, systems and epigenetic mechanisms in the regulation of fear and drug seeking. We suggest that targeting these mechanisms in combination with behavioral therapy may promote treatment and weaken stress‐induced relapse.  相似文献   

13.
The well described trend of population ageing results in a dramatic increase in the number of elderly, reporting symptoms of depression, the most common mood disorder today. Various intrinsic and extrinsic factors are discussed to be responsible for this increase of mood disorders. In the present study the association patterns between mild geriatric depression and the individual reproductive history are analyzed. 264 subjects, 167 females and 97 males, ageing between 60 and 95 years (mean 72.3, SD 8.1 yrs) were enrolled in the present study. The prevalence of depression was tested by mean of the geriatric depression scale (GDS), additionally reproductive history was documented. It turned out, that with increasing number of offspring the depression score decreased. Childless women exhibited the highest prevalence of mild depression and the highest mean depression score. These association patterns between reproductive history and depressive disorders during old age were discussed by means of Darwinian psychiatry. A low number of offspring or childlessness and a lack of social networks for support are new in the evolutionary history of Homo sapiens. Mild geriatric depression may be interpreted as a result of a mismatch or dysregulation because the recent social environment of elderly is completely different from that in which Homo sapiens evolved. The occurrence of geriatric depression may be an adaptation to this new situation.  相似文献   

14.
It has been hypothesized that abnormalities in the molecular clock underlie the development of mood disorders, in the direction of higher prevalence in individuals with a reduced flexibility to adapt to important regulations of mood in response to changes in seasons, stress levels, sleep schedules, and time zones. In particular, a T/C change (rs1801260) at the 3111 position of the circadian locomotor output cycles kaput (CLOCK) gene has been explored in psychiatry disorders. This meta-analysis has been undertaken to investigate the association between rs1801260 and both mood disorders and depression severity, shedding light on previous controversial results and providing better power to detect smaller effect sizes. PubMed and ISI databases were searched for studies focused on the association between rs1801260 and mood disorders spectrum. Quality of studies was assessed. We found no association between CLOCK genotypes and mood disorders, even when we separately investigated ethnical homogeneous or unipolar disorder studies. No association was found regarding severity of depression either. The methodological quality of the studies has been found to be medium-high. Our meta-analysis shows no association between rs1801260 and mood disorders (as a complete phenotype) or depression severity and points out the necessity of further research in order to better understand the underlying biological machinery of circadian dysfunction in subjects affected by mood disorders. (Author correspondence: )  相似文献   

15.
This article is part of a Special Issue “Parental Care”. Pregnancy and postpartum are associated with dramatic alterations in steroid and peptide hormones which alter the mothers' hypothalamic pituitary adrenal (HPA) and hypothalamic pituitary gonadal (HPG) axes. Dysregulations in these endocrine axes are related to mood disorders and as such it should not come as a major surprise that pregnancy and the postpartum period can have profound effects on maternal mood. Indeed, pregnancy and postpartum are associated with an increased risk for developing depressive symptoms in women. Postpartum depression affects approximately 10–15% of women and impairs mother–infant interactions that in turn are important for child development. Maternal attachment, sensitivity and parenting style are essential for a healthy maturation of an infant's social, cognitive and behavioral skills and depressed mothers often display less attachment, sensitivity and more harsh or disrupted parenting behaviors, which may contribute to reports of adverse child outcomes in children of depressed mothers. Here we review, in honor of the “father of motherhood”, Jay Rosenblatt, the literature on postnatal depression in the mother and its effect on mother–infant interactions. We will cover clinical and pre-clinical findings highlighting putative neurobiological mechanisms underlying postpartum depression and how they relate to maternal behaviors and infant outcome. We also review animal models that investigate the neurobiology of maternal mood and disrupted maternal care. In particular, we discuss the implications of endogenous and exogenous manipulations of glucocorticoids on maternal care and mood. Lastly we discuss interventions during gestation and postpartum that may improve maternal symptoms and behavior and thus may alter developmental outcome of the offspring.  相似文献   

16.
Dopamine (DA) and its metabolites containing two hydroxyl residues exert cytotoxicity in dopaminergic neuronal cells, primarily due to the generation of highly reactive DA and DOPA quinones. Quinone formation is closely linked to other representative hypotheses such as mitochondrial dysfunction, inflammation, oxidative stress, and dysfunction of the ubiquitin-proteasome system, in the pathogenesis of neurodegenerative diseases such as Parkinson’s disease and methamphetamine-induced neurotoxicity. Therefore, pathogenic effects of the DA quinone have focused on dopaminergic neuron-specific oxidative stress. Recently, various studies have demonstrated that some intrinsic molecules and several drugs exert protective effects against DA quinone-induced damage of dopaminergic neurons. In this article, we review recent studies on some neuroprotective approaches against DA quinone-induced dysfunction and/or degeneration of dopaminergic neurons. Special issue article in honor of Dr. Akitane Mori.  相似文献   

17.
Depression is a commonly occurring neuropsychiatric disease with an increasing incidence rate. Saikosaponin A (SA), a major bioactive component extracted from Radix Bupleuri, possesses anti‐malignant cell proliferation, anti‐inflammation, anti‐oxidation and liver protective effects. However, few studies have investigated SA’s antidepressant effects and pharmacological mechanisms of action. Our study aimed to explore the anti‐depression effect of SA and screen the target proteins regulated by SA in a rat model of chronic unpredictable mild stress (CUMS)‐induced depression. Results showed that 8‐week CUMS combined with separation could successfully produce depressive‐like behaviours and cause a decrease of dopamine (DA) in rat hippocampus, and 4‐week administration of SA could relieve CUMS rats’ depressive symptoms and up‐regulated DA content. There were 15 kinds of significant differentially expressed proteins that were detected not only between the control and CUMS groups, but also between the CUMS and SA treatment groups. Proline‐rich transmembrane protein 2 (PRRT2) was down‐regulated by CUMS while up‐regulated by SA. These findings reveal that SA may exert antidepressant effects by up‐regulating the expression level of PRRT2 and increasing DA content in hippocampus. The identification of these 15 differentially expressed proteins, including PRRT2, provides further insight into the treatment mechanism of SA for depression.  相似文献   

18.
Changes in dopamine (DA) signaling have been implicated in a number of human neurologic and psychiatric disorders. Similarly, defects in DA signaling in the fruit fly, Drosophila melanogaster, have also been associated with several behavioral defects. As most genes involved in DA synthesis, transport, secretion, and signaling are conserved between species, Drosophila is a powerful genetic model organism to study the regulation of DA signaling in vivo. In this review, we will provide an overview of the genes and drugs that regulate DA biology in Drosophila. Furthermore, we will discuss the behavioral paradigms that are regulated by DA signaling in flies. By analyzing the genes and neuronal circuits that govern such behaviors using sophisticated genetic, pharmacologic, electrophysiologic, and imaging approaches in Drosophila, we will likely gain a better understanding about how this neuromodulator regulates motor tasks and cognition in humans.  相似文献   

19.
The issue of the severity of psychiatric disorders has great clinical importance. For example, severity influences decisions about level of care, and affects decisions to seek government assistance due to psychiatric disability. Controversy exists as to the efficacy of antidepressants across the spectrum of depression severity, and whether patients with severe depression should be preferentially treated with medication rather than psychotherapy. Measures of severity are used to evaluate outcome in treatment studies and may be used as meaningful endpoints in clinical practice. But, what does it mean to say that someone has a severe illness? Does severity refer to the number of symptoms a patient is experiencing? To the intensity of the symptoms? To symptom frequency or persistence? To the impact of symptoms on functioning or on quality of life? To the likelihood of the illness resulting in permanent disability or death? Putting aside the issue of how severity should be operationalized, another consideration is whether severity should be conceptualized similarly for all illnesses or be disorder specific. In this paper, we examine how severity is characterized in research and contemporary psychiatric diagnostic systems, with a special focus on depression and personality disorders. Our review shows that the DSM‐5 has defined the severity of various disorders in different ways, and that researchers have adopted a myriad of ways of defining severity for both depression and personality disorders, although the severity of the former was predominantly defined according to scores on symptom rating scales, whereas the severity of the latter was often linked with impairments in functioning. Because the functional impact of symptom‐defined disorders depends on factors extrinsic to those disorders, such as self‐efficacy, resilience, coping ability, social support, cultural and social expectations, as well as the responsibilities related to one's primary role function and the availability of others to assume those responsibilities, we argue that the severity of such disorders should be defined independently from functional impairment.  相似文献   

20.
The long-term replacement therapy with the dopamine (DA) precursor 3,4-dihydroxy-l-phenylalanine (L-DOPA) is a milestone in the treatment of Parkinson''s disease (PD). Although this drug precursor can be metabolized into the active neurotransmitter DA throughout the brain, its therapeutic benefit is due to restoring extracellular DA levels within the dorsal striatum, which lacks endogenous DA as a consequence of the neurodegenerative process induced by the disease. In the early phases of PD, L-DOPA treatment is able to restore both long-term depression (LTD) and long-term potentiation (LTP), two major forms of corticostriatal synaptic plasticity that are altered by dopaminergic denervation. However, unlike physiological DA transmission, this therapeutic approach in the advanced phase of the disease leads to abnormal peaks of DA, non-synaptically released, which are supposed to trigger behavioural sensitization, namely L-DOPA-induced dyskinesia. This condition is characterized by a loss of synaptic depotentiation, an inability to reverse previously induced LTP. In the advanced stages of PD, L-DOPA can also induce non-motor fluctuations with cognitive dysfunction and neuropsychiatric symptoms such as compulsive behaviours and impulse control disorders. Although the mechanisms underlying the role of L-DOPA in both motor and behavioural symptoms are still incompletely understood, recent data from electrophysiological and imaging studies have increased our understanding of the function of the brain areas involved and of the mechanisms implicated in both therapeutic and adverse actions of L-DOPA in PD patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号