首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 344 毫秒
1.
Abstract We report on the effects of almost a decade of 1080‐fox baiting on a lizard community in a mosaic Australian habitat. Replicated comparisons of baited versus non‐baited control areas with near‐identical histories of bush fires, grazing and climate showed a higher density of red fox tracks (Canis vulpes) in the non‐baited areas. Furthermore, the fox‐baited areas showed a more than five times higher density of sand goannas (Varanus gouldii), a species that strongly overlaps the red fox in food niche breadth and is itself a direct target of fox predation, in particular its eggs and young. Exclusion of predators from a natural habitat led to significant increases in the density of small lizards, suggesting that predation can drive lizard population dynamics in this ecosystem. Replicated pitfall‐trapping in three habitats in the control areas (with high fox and low goanna density) versus the baited areas (with low fox and high goanna density) showed that fox baiting had positive effects on the density of diurnal scincid lizards in open grassland, whereas the control areas showed higher density of nocturnal gecko lizards. Our interpretation is that fox removal may result in a shift in the top predator towards the sand goanna. Historically, this indigenous, endemic species was the natural top predator. It has co‐evolved with its prey and that may have moulded it into a more efficient lizard predator per encounter than the introduced fox.  相似文献   

2.
The stone marten (Martes foina) and the pine marten (M. martes) are closely related mammalian carnivores potentially subject to exploitative competition. The recent expansion of the pine marten into the intensively cultivated plain of the River Po (NW Italy), where previously only stone marten occurred, offered an interesting opportunity to analyse their relationships. We studied the distribution and diet of Martes species and trophic niche overlap between martens and red foxes (Vulpes vulpes) in two study areas, each with two pseudoreplicates, by analysing genotyped faeces. Our results seem to confirm the displacement of the stone marten from one study area, the pine marten being the only Martes species occurring where previously the stone marten had been reported. We found a large food niche overlap between red fox and both stone and pine martens, but with evidence of size-related differences in the consumption of some food items. We hypothesised that, due to the poor prey-base of the environment, highly altered by intensive crop cultivation, intense interspecific competition originally occurred between the red fox and stone marten. The heightening of interspecific competition caused by the entry of the pine marten in the predator guild may have caused the displacement of the stone marten, at least temporarily. The mechanism of such displacement needs to be clarified through further surveys in areas where the three species occur sympatrically.  相似文献   

3.
Abstract Coevolution is thought to have led to many small mammal species avoiding the scent marks of their main mammalian predators, as they provide a reliable cue to predation risk. Most support for this hypothesis comes from northern hemisphere predator/prey systems, however, it is unclear whether this avoidance of predator faecal odour occurs in Australia's mammalian fauna, which has evolved in relative isolation from the rest of the world, and is dominated by marsupials rather than placentals. We tested this theory for an Australian system with marsupial and placental predators and prey, that share a long‐term (>1 million years) or short‐term (<150 years) exposure to each other. The predators were the native marsupial tiger quoll Dasyurus maculatus and the introduced placental red fox Vulpes vulpes. The potential prey were three native rodent species, the bush rat Rattus fuscipes, the swamp rat Rattus lutreolus, the eastern chestnut mouse Pseudomys gracilicaudatus, and the marsupial brown antechinus Antechinus stuartii. Small mammals were captured in Elliott traps with 1/3 of traps treated with fox faeces, 1/3 treated with quoll faeces and the remainder left untreated. The native rodent species all showed avoidance of both tiger quoll and red fox odours whereas the marsupial antechinus showed no responses to either odour. Either predator odour avoidance has not evolved in this marsupial or their reaction to predator odours may be exhibited in ways which are not recognizable through trapping. The avoidance by the rodents of fox odour as well as quoll odour indicates this response may either be due to common components in fox and quoll odour, or it may be a recently evolved response.  相似文献   

4.
Top predators may induce extensive cascading effects on lower trophic levels, for example, through intraguild predation (IGP). The impacts of both mammalian and avian top predators on species of the same class have been extensively studied, but the effects of the latter upon mammalian mesopredators are not yet as well known. We examined the impact of the predation risk imposed by a large avian predator, the golden eagle (Aquila chrysaetos, L.), on its potential mammalian mesopredator prey, the red fox (Vulpes vulpes, L.), and the pine marten (Martes martes, L.). The study combined 23 years of countrywide data from nesting records of eagles and wildlife track counts of mesopredators in Finland, northern Europe. The predation risk of the golden eagle was modeled as a function of territory density, density of fledglings produced, and distance to nearest active eagle territory, with the expectation that a high predation risk would reduce the abundances of smaller sized pine martens in particular. Red foxes appeared not to suffer from eagle predation, being in fact most numerous close to eagle nests and in areas with more eagle territories. This is likely due to similar prey preferences of the two predators and the larger size of foxes enabling them to escape eagle predation risk. Somewhat contrary to our prediction, the abundance of pine martens increased from low to intermediate territory density and at close proximity to eagle nests, possibly because of similar habitat preferences of martens and eagles. We found a slightly decreasing trend of marten abundance at high territory density, which could indicate that the response in marten populations is dependent on eagle density. However, more research is needed to better establish whether mesopredators are intimidated or predated by golden eagles, and whether such effects could in turn cascade to lower trophic levels, benefitting herbivorous species.  相似文献   

5.
Predation risk influences foraging decisions and time allocation of prey species, and may result in habitat shifts from potentially dangerous to safer areas. We examined a wild population of western grey kangaroos (Macropus fuliginosus) to test the efficacy of predator faecal odour in influencing time allocated to different behaviours and inducing changes in habitat use. Kangaroos were exposed to fresh faeces of a historical predator, the dingo (Canis lupus dingo), a recently introduced predator, the red fox (Vulpes vulpes), a herbivore (horse, Equus caballus) and an unscented control simultaneously. Kangaroos did not increase vigilance in predator‐scented areas. However, they investigated odour sources by approaching and sniffing; more time was spent investigating fox odour than control odours. Kangaroos then exhibited a clear anti‐predator response to predator odours, modifying their space use by rapidly escaping, then avoiding fox and dingo odour sources. Our results demonstrate that wild western grey kangaroos show behavioural responses to predator faeces, investigating then avoiding these olfactory cues of potential predation risk, rather than increasing general vigilance. This study contributes to our understanding of the impact of introduced mammalian predators on marsupial prey and demonstrates that a native Australian marsupial can recognize and respond to the odour of potential predators, including one that has been recently introduced.  相似文献   

6.
Autumn and winter predation on bank vole Clethrtonomys glareolus and yellow-necked mouse Apodemus flavicollis was studied in 1985/86-88/89 in an 11 2 km2 area of the Bialowieza National Park Rodents regularly increased in numbers from spring to autumn and decreased throughout winter Out of 23 species of predators, the most common were tawny owl Strix aluco (43-57 adult ind 10 km−2) weasel Mustela ntvahs (17-27 ind), buzzard Buteo buteo (12-16) and pine marten Martes martes (5-8) Voles and mice were the staple food for two specialists the stoat Mustela erminea and the weasel, and two generahsts the tawny owl and the pine marten The generalists exploited different alternative prey when rodents were scarce tawny owl -amphibians, marten - small mammals, and the red fox Vulpes vulpes - ungulate carcasses and hares The depth of snow and abundance of voles were two major factors shaping the contribution of voles to tawny owl and marten diets No such relationships were found for mice and generalist predators The predation by 8 species (tawny owl, buzzard, marten, weasel, stoat, polecat Mustela putortus fox, and raccoon dog Nyctereutes procyonoides) from 1 October to 15 April in 1986/87, 87/88, and 88/89 was estimated to be on average 28-35 voles and 14-17 mice ha Estimates suggested that three species were responsible for 86-95% of the total predation impact tawny owl (56-71%), weasel (11-21%) and marten (10-15%) The predation impact was similar to the annual decrease in rodent numbers from autumn till spring voles 35 (SD 111) lnds ha-1in autumn and 8 (SD 2 6) lnds ha-1in spring, and mice 24 (SD 16 3) mds ha−1 in autumn and 3 (SD 2 5) in spring Predation, therefore, was regarded as the main agent of rodent mortality throughout autumn and winter  相似文献   

7.
Camera traps deployed at a badger Meles meles set in mixed pine forest in north-eastern Poland recorded interspecific killing of red fox Vulpes vulpes cubs by pine marten Martes martes. The vixen and her cubs settled in the set at the beginning of May 2013, and it was abandoned by the badgers shortly afterwards. Five fox cubs were recorded playing in front of the den each night. Ten days after the first recording of the foxes, a pine marten was filmed at the set; it arrived in the morning, made a reconnaissance and returned at night when the vixen was away from the set. The pine marten entered the den several times and killed at least two fox cubs. It was active at the set for about 2 h. This observation proves that red foxes are not completely safe from predation by smaller carnivores, even those considered to be subordinate species in interspecific competition.  相似文献   

8.
Australia has had the highest rate of mammal extinctions in the past two centuries when compared to other continents. Frequently cited threats include habitat loss and fragmentation, changed fire regimes and the impact of introduced predators, namely the red fox (Vulpes vulpes) and the feral cat (Felis catus). Recent studies suggest that Australia's top predator, the dingo (Canis dingo), may have a suppressive effect on fox populations but not on cat populations. The landscape of fear hypothesis proposes that habitat used by prey species comprises high to low risk patches for foraging as determined by the presence and ubiquity of predators within the ecosystem. This results in a landscape of risky versus safe areas for prey species. We investigated the influence of habitat and its interaction with predatory mammals on the occupancy of medium‐sized mammals with a focus on threatened macropodid marsupials (the long‐nosed potoroo [Potorous tridactylous] and red‐legged pademelon [Thylogale stigmatica]). We assumed that differential use of habitats would reflect trade‐offs between food and safety. We predicted that medium‐sized mammals would prefer habitats for foraging that reduce the risk of predation but that predators would have a positive relationship with medium‐sized mammals. We variously used data from 298 camera trap sites across nine conservation reserves in subtropical Australia. Both dingoes and feral cats were broadly distributed, whilst the red fox was rare. Long‐nosed potoroos had a strong positive association with dense ground cover, consistent with using habitat complexity to escape predation. Red‐legged pademelons showed a preference for open ground cover, consistent with a reliance on rapid bounding to escape predation. Dingoes preferred areas of open ground cover whereas feral cats showed no specific habitat preference. Dingoes were positively associated with long‐nosed potoroos whilst feral cats were positively associated with red‐legged pademelons. Our study highlights the importance of habitat structure to these threatened mammals and also the need for more detailed study of their interactions with their predators.  相似文献   

9.
Trophic interactions and disturbance events can shape the structure and function of ecosystems. However, the effects of drivers such as predation, fire and climatic variables on species distributions are rarely considered concurrently. We used a replicated landscape‐scale predator management experiment to compare the effects of red fox Vulpes vulpes control, time‐since‐fire, vegetation type and other environmental variables on native herbivore distributions. Occurrence data for four native herbivores and an invasive predator – the red fox – were collected from 240 sites across three baited (for lethal fox control) and three unbaited forest blocks (4659–9750 ha) in south‐western Victoria, Australia, and used to build species distribution models. The herbivore taxa were as follows: red‐necked wallaby Macropus rufogriseus, black wallaby Wallabia bicolour, grey kangaroo Macropus fuligenosus and Macropus giganteus and common brushtail possum Trichosurus vulpecula. Fox control and fire had little effect on herbivore occurrence, despite the literature suggesting it can influence abundance, while climate, proximity to farmland and topography were more influential. This may be because the region’s high productivity and agricultural pastures subsidise food resources for both predators and prey within the forest blocks and so dampen trophic interactions. Alternatively, these drivers may affect herbivore abundance, but not herbivore occurrence. Understanding the drivers of herbivore distributions is an important step in predicting the effects of herbivory on other species, particularly after management interventions such as predator control and prescribed burns.  相似文献   

10.
Introduced mammalian predators may pose a high risk for native and naïve prey populations, but little is known about how native fish species may recognize and respond to scents from introduced mammalian predators. We investigated the role of diet‐released chemical cues in facilitating predator recognition, hypothesizing that native brown trout (Salmo trutta) would exhibit antipredator behaviours to faeces scents from the introduced American mink (Neovision vison) fed conspecifics, but not to non‐trout diets. In treatments‐control and replicate stream tank experiments, brown trout showed significant antipredator responses to faeces scent from mink fed conspecifics, but not to faeces scent from mink fed a non‐trout diet (chicken), or the non‐predator food control, Eurasian beaver (Castor fiber). We conclude that native and naïve brown trout show relevant antipredator behaviours to an introduced mammalian predator, presumably based on diet‐released conspecific alarm cues and thereby estimate the predation risk.  相似文献   

11.
In transitional mixed forests in northern and central Belarus the influence of intensified felling on the diets of red foxes Vulpes vulpes L. and pine martens Martes martes L. was investigated in two model forested terrains with sandy and clay top-grounds. A total of 1904 scats of red foxes and 1624 scats of pine martens were analysed over two periods differed by logging rate. When logging rate was conservative, red fox and pine marten diets were found to be similar, but under heavy logging feeding of the predator species shifted. In both model woodlands we found the same pronounced dietary trend of higher consumption of rodents, first of all, Microtus voles. The dietary changes were well related to the registered increase in Microtus vole numbers and total number of rodents in felling areas. The increased preying on rodents caused lower consumption of other food items, particularly medium-sized mammals (year-round) or/and birds or/and fruits (in the warm season) or/and mammalian carrion (in the cold season). In the conditions of intensified felling the food niches of the red fox and pine marten diverged mostly because of the great difference in the species structure of rodents consumed. Red foxes turned to preying on Microtus voles more frequently, but less on bank voles Myodes glareolus; while pine martens increased their taking of Microtus voles, continued foraging for bank voles and began taking slightly more of Apodemus mice. Before heavy logging dietary similarity between the red fox and pine marten was high and did not vary considerably through seasons and study areas, whereas after felling was intensified their diet overlap became lower.  相似文献   

12.
Ascertaining the relative effects of factors such as weather and predation on population dynamics, and determining the time scales on which they operate, is important to our understanding of basic ecology and pest management. In this study, we sampled the pine engraver Ips pini (Say) (Coleoptera: Scolytidae) and its predominant predators Thanasimus dubius (F.) (Coleoptera: Cleridae) and Platysoma cylindrica (Paykull) (Coleoptera: Histeridae) in red pine plantations in Wisconsin, USA, over 2 years. We sampled both the prey and predators using flight traps baited with the synthetic aggregation pheromone of I. pini. Flight models were constructed using weather variables (temperature and precipitation), counts of bark beetles and their predators, and temporal variables to incorporate possible effects of seasonality. The number of I. pini per weekly collection period was temperature dependent and decreased with the number of predators, specifically T. dubius in 2001 and P. cylindrica in 2002. The number of predators captured each week was also weather dependent. The predators had similar seasonal phenologies, and the number of each predator species was positively correlated with the other. Including a term for the number of prey did not improve the model fits for either predator for either year. Our results suggest that exogenous weather factors strongly affect the flight activity of I. pini, but that its abundance is also affected by direct density-dependent processes acting over weekly time scales. Adult predation during both colonization and dispersal are likely processes yielding these dynamics.  相似文献   

13.
14.
The mesopredator release hypothesis (MRH) predicts that reduced abundance of top‐order predators results in an increase in the abundance of smaller predators (mesopredators) due to a reduction in intra‐guild predation and competition. The irruption of mesopredators that follows the removal of top‐order predators can have detrimental impacts on the prey of the mesopredators. Here we investigated the mechanisms via which the presence of a top‐order predator can benefit prey species. We tested predictions made according to the MRH and foraging theory by contrasting the abundances of an invasive mesopredator (red fox Vulpes vulpes) and an endangered prey species (dusky hopping mouse Notomys fuscus), predator diets, and N. fuscus foraging behaviour in the presence and absence of a top‐predator (dingo Canis lupus dingo). As predicted by the MRH, foxes were more abundant where dingoes were absent. Dietary overlap between sympatric dingoes and foxes was extensive, and fox was recorded in 1 dingo scat possibly indicating intra‐guild predation. Notomys fuscus were more likely to occur in fox scats than dingo scats and as predicted by the MRH N. fuscus were less abundant in the absence of dingoes. The population increase of N. fuscus following rainfall was dampened in the absence of dingoes suggesting that mesopredator release can attenuate bottom‐up effects, although it remains conceivable that differences in grazing regimes associated with dingo exclusion could have also influenced N. fuscus abundance. Notomys fuscus exhibited lower giving‐up densities in the presence of dingoes, consistent with the prediction that their perceived risk of predation would be lower and foraging efficiency greater in the presence of a top‐predator. Our results suggest that mesopredator suppression by a top predator can create a safer environment for prey species where the frequency of fatal encounters between predators and prey is reduced and the non‐consumptive effects of predators are lower.  相似文献   

15.
Spatial variation in habitat riskiness has a major influence on the predator–prey space race. However, the outcome of this race can be modulated if prey shares enemies with fellow prey (i.e., another prey species). Sharing of natural enemies may result in apparent competition, and its implications for prey space use remain poorly studied. Our objective was to test how prey species spend time among habitats that differ in riskiness, and how shared predation modulates the space use by prey species. We studied a one‐predator, two‐prey system in a coastal dune landscape in the Netherlands with the European hare (Lepus europaeus) and European rabbit (Oryctolagus cuniculus) as sympatric prey species and red fox (Vulpes vulpes) as their main predator. The fine‐scale space use by each species was quantified using camera traps. We quantified residence time as an index of space use. Hares and rabbits spent time differently among habitats that differ in riskiness. Space use by predators and habitat riskiness affected space use by hares more strongly than space use by rabbits. Residence time of hare was shorter in habitats in which the predator was efficient in searching or capturing prey species. However, hares spent more time in edge habitat when foxes were present, even though foxes are considered ambush predators. Shared predation affected the predator–prey space race for hares positively, and more strongly than the predator–prey space race for rabbits, which were not affected. Shared predation reversed the predator–prey space race between foxes and hares, whereas shared predation possibly also released a negative association and promoted a positive association between our two sympatric prey species. Habitat riskiness, species presence, and prey species’ escape mode and foraging mode (i.e., central‐place vs. noncentral‐place forager) affected the prey space race under shared predation.  相似文献   

16.
Global warming is predicted to change ecosystem functioning and structure in Arctic ecosystems by strengthening top‐down species interactions, i.e. predation pressure on small herbivores and interference between predators. Yet, previous research is biased towards the summer season. Due to greater abiotic constraints, Arctic ecosystem characteristics might be more pronounced in winter. Here we test the hypothesis that top‐down species interactions prevail over bottom‐up effects in Scandinavian mountain tundra (Northern Sweden) where effects of climate warming have been observed and top‐down interactions are expected to strengthen. But we test this ‘a priori’ hypothesis in winter and throughout the 3–4 yr rodent cycle, which imposes additional pulsed resource constraints. We used snowtracking data recorded in 12 winters (2004–2015) to analyse the spatial patterns of a tundra predator guild (arctic fox Vulpes lagopus, red fox Vulpes vulpes, wolverine Gulo gulo) and small prey (ptarmigan, Lagopus spp). The a priori top‐down hypothesis was then tested through structural equation modelling, for each phase of the rodent cycle. There was weak support for this hypothesis, with top‐down effects only discerned on arctic fox (weakly, by wolverine) and ptarmigan (by arctic fox) at intermediate and high rodent availability respectively. Overall, bottom‐up constraints appeared more influential on the winter community structure. Cold specialist predators (arctic fox and wolverine) showed variable landscape associations, while the boreal predator (red fox) appeared strongly dependent on productive habitats and ptarmigan abundance. Thus, we suggest that the unpredictability of food resources determines the winter ecology of the cold specialist predators, while the boreal predator relies on resource‐rich habitats. The constraints imposed by winters and temporary resource lows should therefore counteract productivity‐driven ecosystem change and have a stabilising effect on community structure. Hence, the interplay between summer and winter conditions should determine the rate of Arctic ecosystem change in the context of global warming.  相似文献   

17.
Abstract Predation is recognized as a major selective pressure influencing population dynamics and evolutionary processes. Prey species have developed a variety of predator avoidance strategies, not least of which is olfactory recognition. However, within Australia, European settlement has brought with it a number of introduced predators, perhaps most notably the red fox (Vulpes vulpes) and domestic cat (Felis catus), which native prey species may be unable to recognize and thus avoid due to a lack of coexistence history. This study examined the response of native Tasmanian swamp rats (Rattus lutreolus velutinus) to predators of different coexistence history (native predator‐ spotted‐tail quoll (Dasyurus maculatus), domestic cats and the recently introduced red fox). We used an aggregate behavioural response of R. l. velutinus to predator integumental odour in order to assess an overall behavioural response to predation risk. Rattus lutreolus velutinus recognized the integumental odour of the native quoll (compared with control odours) but did not respond to either cat or fox scent (compared with control odur). In contrast, analyses of singular behaviours resulted in the conclusion that rats did not respond differentially to either native or introduced predators, as other studies have concluded. Therefore, measuring risk assessment behaviours at the level of overall aggregate response may be more beneficial in understanding and analysing complex behavioural patterns such as predator detection and recognition. These results suggest that fox and cat introductions (and their interactive effects) may have detrimental impacts upon small native Tasmanian mammals due to lack of recognition and thus appropriate responses.  相似文献   

18.
  • 1 We reviewed patterns of fruit consumption amongst 10 species of mesocarnivores: red fox Vulpes vulpes, weasel Mustela nivalis, stoat Mustela erminea, polecat Mustela putorius, stone marten Martes foina, pine marten Martes martes, Eurasian badger Meles meles, common genet Genetta genetta, Egyptian mongoose Herpestes ichneumon and wildcat Felis silvestris in Mediterranean Europe.
  • 2 The 65 reviewed studies recorded 79 different fruits eaten by carnivores, 58 of which were identified to species. Most records (63%) were of fleshy fruits with high pulp content. The frequency of occurrence of fruit items varied widely amongst species and regions. Four of the carnivore species (red fox, stone marten, badger and common genet) included more than 30 fruit species in their diet.
  • 3 A longitudinal pattern was detected in the consumption of fruit in the Mediterranean region, with the frequency of occurrence of fruit consumption increasing towards the east.
  相似文献   

19.
During times of high activity by predators and competitors, herbivores may be forced to forage in patches of low‐quality food. However, the relative importance in determining where and what herbivores forage still remains unclear, especially for small‐ and intermediate‐sized herbivores. Our objective was to test the relative importance of predator and competitor activity, and forage quality and quantity on the proportion of time spent in a vegetation type and the proportion of time spent foraging by the intermediate‐sized herbivore European hare (Lepus europaeus). We studied red fox (Vulpes vulpes) as a predator species and European rabbit (Oryctolagus cuniculus) as a competitor. We investigated the time spent at a location and foraging time of hare using GPS with accelerometers. Forage quality and quantity were analyzed based on hand‐plucked samples of a selection of the locally most important plant species in the diet of hare. Predator activity and competitor activity were investigated using a network of camera traps. Hares spent a higher proportion of time in vegetation types that contained a higher percentage of fibers (i.e., NDF). Besides, hares spent a higher proportion of time in vegetation types that contained relatively low food quantity and quality of forage (i.e., high percentage of fibers) during days that foxes (Vulpes vulpes) were more active. Also during days that rabbits (Oryctolagus cuniculus) were more active, hares spent a higher proportion of time foraging in vegetation types that contained a relatively low quality of forage. Although predation risk affected space use and foraging behavior, and competition affected foraging behavior, our study shows that food quality and quantity more strongly affected space use and foraging behavior than predation risk or competition. It seems that we need to reconsider the relative importance of the landscape of food in a world of fear and competition.  相似文献   

20.
Habitat use of animals is influenced by a combination of factors including food abundance and interactions with other species. Animals typically must forage while simultaneously avoiding predation from multiple potential predators, but habitat use in tropical forest ecosystems that assesses effects of both predation risk and resources has rarely been conducted. We used camera traps and occupancy analyses to document small mammalian carnivore occurrence in relation to food abundance and interactions with large predators. We hypothesized that habitat use of six small mammalian carnivores (≤15 kg) would be influenced by (1) abundance of resources (fruit, rodents, and streams) and/or (2) large predators. Predictions regarding food and habitat resources were only supported for one species (crab-eating mongoose, Urva urva), which was positively associated with rodents and streams. Three small carnivores (masked palm civet Paguma larvata, common palm civet Paradoxurus hermaphroditus, yellow-throated marten Martes flavigula) were affected negatively by leopard and mesopredators as predicted. Counter to our predictions, two species (masked palm civet and yellow-throated marten) showed spatial avoidance of tiger suggesting that an apex predator might also pose predation risk to small carnivores. The focal small carnivores and large predators of this study appeared to have moderately to highly overlapping temporal activity indicating no temporal avoidance. In conclusion, food resources appeared to have minimal effects for six small carnivores in this ecosystem probably due to continuous resource availability. Predation risk appeared to affect some species in terms of spatial occupancy but not in temporal activity, indicating perhaps complex, but not entirely negative interactions between larger carnivores and this guild of small carnivores. The mechanisms which facilitate co-occurrence between small carnivores and large predators may, however, operate at finer spatiotemporal scales than we investigated here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号