首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Female remating rate dictates the level of sperm competition in a population, and extensive research has focused on how sperm competition generates selection on male ejaculate allocation. Yet the way ejaculate allocation strategies in turn generate selection on female remating rates, which ultimately influence levels of sperm competition, has received much less consideration despite increasing evidence that both mating itself and ejaculate traits affect multiple components of female fitness. Here, we develop theory to examine how the effects of mating on female fertility, fecundity and mortality interact to generate selection on female remating rate. When males produce more fertile ejaculates, females are selected to mate less frequently, thus decreasing levels of sperm competition. This could in turn favour decreased male ejaculate allocation, which could subsequently lead to higher female remating. When remating simultaneously increases female fecundity and mortality, females are selected to mate more frequently, thus exacerbating sperm competition and favouring male traits that convey a competitive advantage even when harmful to female survival. While intuitive when considered separately, these predictions demonstrate the potential for complex coevolutionary dynamics between male ejaculate expenditure and female remating rate, and the correlated evolution of multiple male and female reproductive traits affecting mating, fertility and fecundity.  相似文献   

2.
Male ornaments and armaments that mediate success in mate acquisition and ejaculate traits influencing competitive fertilization success are under intense sexual selection. However, relative investment in these pre‐ and post‐copulatory traits depends on the relative importance of either selection episode and on the energetic costs and fitness gains of investing in these traits. Theoretical and empirical work has improved our understanding of how precopulatory sexual traits and investments in sperm production covary in this context. It has recently also been suggested that male weapon size may trade off with sperm length as another post‐copulatory sexual trait, but the theoretical framework for this suggestion remains unclear. We evaluated the relationship between precopulatory armaments and sperm length, previously reported in ungulates, in five taxa as well as meta‐analytically. Within and between taxa, we found no evidence for a negative or positive relationship between sperm length and male traits that are important in male–male contest competition. It is important to consider pre‐ and post‐copulatory sexual selection together to understand fitness, and to study investments in different reproductive traits jointly rather than separately. A trade‐off between pre‐ and post‐copulatory sexual traits may not manifest itself in sperm length but rather in sperm number or function. Particularly in large‐bodied taxa such as ungulates, sperm number is more variable interspecifically and likely to be under more intense selection than sperm length. We discuss our and the previous results in this context.  相似文献   

3.
The outcome of male–male contest competition is known to affect male mating success and is believed to confer fitness benefits to females through preference for dominant males. However, by mating with contest winners, females can incur significant costs spanning from decreased fecundity to negative effects on offspring. Hence, identifying costs and benefits of male dominance on female fitness is crucial to unravel the potential for a conflict of interests between the sexes. Here, we investigated males' pre‐ and post‐copulatory reproductive investment and its effect on female fitness after a single contest a using the field cricket Gryllus bimaculatus. We allowed males to fight and immediately measured their mating behaviour, sperm quality and offspring viability. We found that males experiencing a fight, independently of the outcome, delayed matings, but their courtship effort was not affected. However, winners produced sperm of lower quality (viability) compared to losers and to males that did not experience fighting. Results suggest a trade‐off in resource allocation between pre‐ and post‐mating episodes of sexual selection. Despite lower ejaculate quality, we found no fitness costs (fecundity and viability of offspring) for females mated to winners. Overall, our findings highlight the importance of considering fighting ability when assessing male reproductive success, as winners may be impaired in their competitiveness at a post‐mating level.  相似文献   

4.
Sperm competition theory assumes a trade‐off between precopulatory traits that increase mating success and postcopulatory traits that increase fertilization success. Predictions for how sperm competition might affect male expenditure on these traits depend on the number of competing males, the advantage gained from expenditure on weapons, and the level of sperm competition. However, empirical tests of sperm competition theory rarely examine precopulatory male expenditure. We investigated how variation in male density affects precopulatory sexual selection on male weaponry and the level of sperm competition in the chorusing frog Crinia georgiana, where males use their arms as weapons in male–male combat. We measured body size and arm girth of 439 males, and recorded their mating success in the field. We found density‐dependent selection acting on arm girth. Arm girth was positively associated with mating success, but only at low population densities. Increased male density was associated with higher risk and intensity of sperm competition arising from multimale amplexus, and a reversal in the direction of selection on arm girth. Opposing patterns of pre‐ and postcopulatory selection may account for the negative covariation between arm girth and testes across populations of this species.  相似文献   

5.
Competition between males creates potential for pre‐ and postcopulatory sexual selection and conflict. Theory predicts that males facing risk of sperm competition should evolve traits to secure their reproductive success. If those traits are costly to females, the evolution of such traits may also increase conflict between the sexes. Conversely, under the absence of sperm competition, one expectation is for selection on male competitive traits to relax thereby also relaxing sexual conflict. Experimental evolution studies are a powerful tool to test this expectation. Studies in multiple insect species have yielded mixed and partially conflicting results. In this study, we evaluated male competitive traits and male effects on female costs of mating in Drosophila melanogaster after replicate lines evolved for more than 50 generations either under enforced monogamy or sustained polygamy, thus manipulating the extent of intrasexual competition between males. We found that in a setting where males competed directly with a rival male for access to a female and fertilization of her ova polygamous males had superior reproductive success compared to monogamous males. When comparing reproductive success solely in double mating standard sperm competition assays, however, we found no difference in male sperm defense competitiveness between the different selection regimes. Instead, we found monogamous males to be inferior in precopulatory competition, which indicates that in our system, enforced monogamy relaxed selection on traits important in precopulatory rather than postcopulatory competition. We discuss our findings in the context of findings from previous experimental evolution studies in Drosophila ssp. and other invertebrate species.  相似文献   

6.
Female sexual promiscuity can have significant effects on male mating decisions because it increases the intensity of competition between ejaculates for fertilization. Because sperm production is costly, males that can detect multiple matings by females and allocate sperm strategically will have an obvious fitness advantage. The presence of rival males is widely recognized as a cue used by males to assess sperm competition. However, for species in which males neither congregate around nor guard females, other more cryptic cues might be involved. Here, we demonstrate unprecedented levels of sperm competition assessment by males, which is mediated via the use of chemical cues. Using the cricket Teleogryllus oceanicus, we manipulated male perception of sperm competition by experimentally coating live unmated females with cuticular compounds extracted from males. We found that males adjusted their ejaculate allocation in response to these compounds: the viability of sperm contained within a male's ejaculate decreased as the number of male extracts applied to his virgin female partner was increased. We further show that males do not respond to the relative concentration of male compounds present on females, but rather to the number of distinct signature odours of individual males. Our results conform to sperm competition theory, and show for the first time, to our knowledge, that males can detect different intensities of sperm competition by using distinct chemical cues of individual males present on females.  相似文献   

7.
The prevailing viewpoint in the study of sperm competition is that male sperm-allocation strategies evolve in response to the degree of sperm competition an ejaculate can expect to experience within a given mating. If males cannot assess the degree of sperm competition their ejaculate will face and/or they are unable to facultatively adjust sperm investment in response to perceived levels of competition, high sperm allocation (per mating) is predicted to evolve in the context of high sperm competition. An implicit assumption of the framework used to derive this result is that the degree of sperm competition is unaffected by changes in sperm-allocation strategies. We present theory based on an alternative perspective, in which the degree of sperm competition and the sperm-allocation strategy are coupled traits that coevolve together. Our rationale is that the pattern of sperm allocation in the population will, in part, determine the level of sperm competition by affecting the number of ejaculates per female in the population. In this setting, evolution in sperm-allocation strategies is driven by changes in underlying environmental parameters that influence both the degree of sperm competition and sperm allocation. This change in perspective leads to predictions that are qualitatively different from those of previous theory.  相似文献   

8.
Sperm competition theory predicts that males should invest prudently in ejaculates according to levels of female promiscuity. Males may therefore be sensitive to cues in their social environment associated with sexual competition, and tailor investment in sperm production accordingly. We tested this idea experimentally for the first time, to our knowledge, in a mammal by comparing reproductive traits of male house mice (Mus musculus domesticus) that had experienced contrasting encounter regimes with potential sexual competitors. We found that daily sperm production and numbers of sperm in the caput epididymis were significantly higher in subjects that had experienced a high encounter rate of social cues from three other males compared to those that had experienced a low encounter rate of social cues from just one other male. Epididymal sperm counts were negatively correlated with the frequency of scent-marking behaviour across all males in our study, suggesting that investment in ejaculate production may be traded off against traits that function in gaining copulations, although there was no difference in overall levels of scent marking between treatment groups. We conclude that social experience-mediated phenotypic plasticity in mammalian spermatogenesis is likely to be adaptive under sperm competition, enabling males to balance the energetic costs and paternity-enhancing benefits of ejaculate production, and is a potentially widespread explanation for intraspecific variation in ejaculate expenditure.  相似文献   

9.
A common mechanism through which males can enhance their successin postcopulatory contests over paternity is to inseminate moresperm than their rivals. However, ejaculate production is costlyand the evolution of prudent sperm allocation strategies sensitiveto variation in local levels of sperm competition has now beendemonstrated in diverse taxa, including mammals. Theory predictsan increased sperm allocation in response to an elevated riskof sperm competition, but here we show that male house mice(Mus musculus domesticus) instead ejaculate fewer sperm perejaculate when mating in the presence of a rival male. Thissurprising sperm allocation pattern may be a necessary consequenceof adaptive changes in copulatory behavior, enabling males toachieve more rapid sperm transfer and/or to ejaculate repeatedlyunder risk of sexual competition. The size of a second ejaculatecomponent, the copulatory plug, is unaffected by sperm competitionrisk. Our results highlight how the often complex interplaybetween different reproductive traits can affect the evolutionof sperm competition phenotypes.  相似文献   

10.
Reproductive males face a trade‐off between expenditure on precopulatory male–male competition—increasing the number of females that they secure as mates—and sperm competition—increasing their fertilization success with those females. Previous sperm allocation models have focused on scramble competition in which males compete by searching for mates and the number of matings rises linearly with precopulatory expenditure. However, recent studies have emphasized contest competition involving precopulatory expenditure on armaments, where winning contests may be highly dependent on marginal increases in relative armament level. Here, we develop a general model of sperm allocation that allows us to examine the effect of all forms of precopulatory competition on sperm allocation patterns. The model predicts that sperm allocation decreases if either the “mate‐competition loading,”a, or the number of males competing for each mating, M, increases. Other predictions remain unchanged from previous models: (i) expenditure per ejaculate should increase and then decrease, and (ii) total postcopulatory expenditure should increase, as the level of sperm competition increases. A negative correlation between a and M is biologically plausible, and may buffer deviations from the previous models. There is some support for our predictions from comparative analyses across dung beetle species and frog populations.  相似文献   

11.
Among a variety of fish mating systems, promiscuity with random-mating seems to be most prevalent. However, detailed studies of promiscuity have been rare due partly to the peculiar difficulty in examination of male mating and reproductive success in the random mating. Females of the armoured catfish Corydoras aeneus (no sexual dimorphism other than size of males > females) spawn 10–20 egg-clutches with multiple males at a time, but an entire egg clutch is inseminated by sperm of a single male. We studied mating system of this fish in aquarium. Males had neither mating territories nor monopolized females, never being aggressive against rival males. Evidence of female preference for certain male traits including size was not detected. Females mated a male in proportion to his relative courtship frequency among males. Courtship frequency was not related to male size, and male mating success was not different between small and large males. Clutch size and insemination rate were different neither between small and large males nor between frequently and less frequently courting males. Thus, the male reproductive success will not be related to the male size, but directly to courtship frequency, indicating the random mating in this fish. There seemed to be fecundity advantage with size in female, and the consequent sexual difference in energy allocation will be responsible to the sexual dimorphism. We also discuss the low male-GSI in this promiscuous fish in which sperm competition hardly occurred.  相似文献   

12.
To capture how sexual selection shapes male reproductive success across different stages of reproduction in Tribolium castaneum (Coleoptera, Tenebrionidae), we combined sequential sperm defence (P1) and sperm offence (P2) trials with additional trials where both males were added simultaneously to the female. We found a positive correlation between the relative paternity share in simultaneous male–male competition trials and the P2 trial. This suggests that males preferred by females as sires achieve superior fertilization success during sperm competition in the second male position. In simultaneous male–male competition trials, where pre‐, peri‐ and postcopulatory sexual selection were all allowed to act, the relative paternity share of preferred males was more than 20% higher than in P2 sperm competition trials where precopulatory female choice was disabled. Additional behavioural observations revealed that mating with more attractive males resulted significantly more frequently in offspring production than mating with less attractive males. Thus, by comparing male fertilization success in trials where precopulatory choice was turned off with more inclusive estimates of fertilization success where pre‐ and pericopulatory choice could occur, we show that female mate choice may effectively inhibit sperm competition. Female mate choice and sperm competition (P2) are positively correlated, which is consistent with directional sexual selection in this species. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 112 , 67–75.  相似文献   

13.
We examined evolutionary stable sperm allocation and included stochastic variation in male mating frequency, not included in previous models examining sperm allocation strategies. We assumed sperm mixing and variation in female quality and used a genetic algorithm to analyse the evolution of male sperm allocation. Our results show that males should invest more sperm in initial copulations than in subsequent copulations as a male might fail to mate again. The inclusion of variation in female fecundity had no influence on the evolutionary stable sperm allocation strategy if males were unable to recognize female quality. If males were assumed to allocate sperm in response to female quality, the proportion of sperm allocated was positively correlated with female quality. Moreover, with increasing variance in female quality, males conserved more sperm for later copulations. Literature data on sperm allocation from diverse taxa show a good fit with the predictions given by our model.  相似文献   

14.
Sperm competition occurs when the sperm of more than one male compete to fertilize the eggs of a female. In reptiles, sperm competition is particularly prevalent and is an important agent of sexual selection in males. Spermatogenesis in reptiles can be energetically expensive, suggesting that there may be costs to producing high-quality ejaculates. The northern watersnake Nerodia sipedon has a mating system characterized by aggregations in which a single female mates with multiple males, resulting in high levels of multiple paternities. Under these circumstances sperm competition is likely important, and selection should favour sperm and ejaculate traits that enhance a male's reproductive success. In this study, we examined intraspecific variation in ejaculate quality (sperm length, motility, sperm density, spermactocrit) in male watersnakes and determined whether ejaculate traits varied with body size and condition, using both size-corrected mass and haematocrit as indices of condition. We found large variation among males in all these traits, except for sperm length. Although there was significant variation in sperm length among males, the majority of variation in sperm length occurred within rather than among individuals. Males with high haematocrit had sperm that were less variable with respect to length, and large males produced ejaculates that were less concentrated with respect to sperm than small males. The lack of condition dependence of most ejaculate traits is consistent with previous studies that indicate that male reproductive effort in this species is generally not energy limited, perhaps because of opportunistic foraging during the mating season.  相似文献   

15.
Sperm competition was identified in 1970 as a pervasive selective force in post‐copulatory sexual selection that occurs when the ejaculates of different males compete to fertilise a given set of ova. Since then, sperm competition has been much studied both empirically and theoretically. Because sperm competition often favours large ejaculates, an important challenge has been to understand the evolution of strategies through which males invest in sperm production and economise sperm allocation to maximise reproductive success under competitive conditions. Sperm competition mechanisms vary greatly, depending on many factors including the level of sperm competition, space constraints in the sperm competition arena, male mating roles, and female influences on sperm utilisation. Consequently, theoretical models of ejaculate economics are complex and varied, often with apparently conflicting predictions. The goal of this review is to synthesise the theoretical basis of ejaculate economics under sperm competition, aiming to provide empiricists with categorised model assumptions and predictions. We show that apparent contradictions between older and newer models can often be reconciled and there is considerable consensus in the predictions generated by different models. We also discuss qualitative empirical support for some of these predictions, and detail quantitative matches between predictions and observations that exist in the yellow dung fly. We argue that ejaculate economic theory represents a powerful heuristic to explain the diversity in ejaculate traits at multiple levels: across species, across males and within individual males. Future progress requires greater understanding of sperm competition mechanisms, quantification of trade‐offs between ejaculate allocation and numbers of matings gained, further knowledge of mechanisms of female sperm selection and their associated costs, further investigation of non‐sperm ejaculate effects, and theoretical integration of pre‐ and post‐copulatory episodes of sexual selection.  相似文献   

16.
Sperm competition theory suggests that female remating rate determines the selective regime that dictates the evolution of male ejaculate allocation. To test for correlated evolution between female remating behaviour and male ejaculate traits, we subjected detailed experimental data on female and male reproductive traits in seven-seed beetle species to phylogenetic comparative analyses. The evolution of a larger first ejaculate was positively correlated with the evolution of a more rapid decline in ejaculate size over successive matings. Further, as predicted by theory, an increase in female remating rate correlated with the evolution of larger male testes but smaller ejaculates. However, an increase in female remating was associated with the evolution of a less even allocation of ejaculate resources over successive matings, contrary to classic sperm competition theory. We failed to find any evidence for coevolution between the pattern of male ejaculate allocation and variation in female quality and we conclude that some patterns of correlated evolution are congruent with current theory, whereas some are not. We suggest that this may reflect the fact that much sperm competition theory does not fully incorporate other factors that may affect the evolution of male and female traits, such as trade-offs between ejaculate expenditure and other competing demands and the evolution of resource acquisition.  相似文献   

17.
The phenotype‐linked fertility hypothesis proposes that male fertility is advertised via phenotypic signals, explaining female preference for highly sexually ornamented males. An alternative view is that highly attractive males constrain their ejaculate allocation per mating so as to participate in a greater number of matings. Males are also expected to bias their ejaculate allocation to the most fecund females. We test these hypotheses in the African stalk‐eyed fly, Diasemopsis meigenii. We ask how male ejaculate allocation strategy is influenced by male eyespan and female size. Despite large eyespan males having larger internal reproductive organs, we found no association between male eyespan and spermatophore size or sperm number, lending no support to the phenotype‐linked fertility hypothesis. However, males mated for longer and transferred more sperm to large females. As female size was positively correlated with fecundity, this suggests that males gain a selective advantage by investing more in large females. Given these findings, we consider how female mate preference for large male eyespan can be adaptive despite the lack of obvious direct benefits.  相似文献   

18.
The idea that male reproductive strategies evolve primarily in response to sperm competition is almost axiomatic in evolutionary biology. However, externally fertilizing species, especially broadcast spawners, represent a large and taxonomically diverse group that have long challenged predictions from sperm competition theory—broadcast spawning males often release sperm slowly, with weak resource‐dependent allocation to ejaculates despite massive investment in gonads. One possible explanation for these counter‐intuitive patterns is that male broadcast spawners experience strong natural selection from the external environment during sperm dispersal. Using a manipulative experiment, we examine how male reproductive success in the absence of sperm competition varies with ejaculate size and rate of sperm release, in the broadcast spawning marine invertebrate Galeolaria caespitosa (Polychaeta: Serpulidae). We find that the benefits of Fast or Slow sperm release depend strongly on ejaculate size, but also that the per‐gamete fertilization rate decreases precipitously with ejaculate size. Overall, these results suggest that, if males can facultatively adjust ejaculate size, they should slowly release small amounts of sperm. Recent theory for broadcast spawners predicts that sperm competition can also select for Slow release rates. Taken together, our results and theory suggest that selection often favours Slow ejaculate release rates whether males experience sperm competition or not.  相似文献   

19.
Multiple mating or group spawning leads to post‐copulatory sexual selection, which generally favours ejaculates that are more competitive under sperm competition. In four meta‐analyses we quantify the evidence that sperm competition (SC) favours greater sperm number using data from studies of strategic ejaculation. Differential investment into each ejaculate emerges at the individual level if males exhibit phenotypic plasticity in ejaculate properties in response to the likely risk and/or intensity of sperm competition after a given mating. Over the last twenty years, a series of theoretical models have been developed that predict how ejaculate size will be strategically adjusted in relation to: (a) the number of immediate rival males, with a distinction made between 0 versus 1 rival (‘risk’ of SC) and 1 versus several rivals (‘intensity’ of SC); (b) female mating status (virgin or previously mated); and (c) female phenotypic quality (e.g. female size or condition). Some well‐known studies have reported large adjustments in ejaculate size depending on the relevant social context and this has led to widespread acceptance of the claim that strategic sperm allocation occurs in response to each of these factors. It is necessary, however, to test each claim separately because it is easy to overlook studies with weak or negative findings. Compiling information on the variation in outcomes among species is potentially informative about the relevance of these assumptions in different taxa or mating systems. We found strong evidence that, on average, males transfer larger ejaculates to higher quality females. The effect of female mating status was less straightforward and depended on how ejaculate size was measured (i.e. use of proxy or direct measure). There is strong evidence that ejaculate size increased when males were exposed to a single rival, which is often described as a response to the risk of SC. There is, however, no evidence for the general prediction that ejaculate size decreases as the number of rivals increases from one to several males (i.e. in response to a higher intensity of SC which lowers the rate of return per sperm released). Our results highlight how meta‐analysis can reveal unintentional biases in narrative literature reviews. We note that several assumptions of theoretical models can alter an outcome's predicted direction in a given species (e.g. the effect of female mating status depends on whether there is first‐ or last‐male sperm priority). Many studies do not provide this background information and fail to make strong a priori predictions about the expected response of ejaculate size to manipulation of the mating context. Researchers should be explicit about which model they are testing to ensure that future meta‐analyses can better partition studies into different categories, or control for continuous moderator variables.  相似文献   

20.
Where sperm competition occurs, the number and quality of sperm males inseminate relative to rival males influences fertilization success. The number of sperm males produce, however, is limited, and theoretically males should allocate sperm according to the probability of gaining future reproductive opportunities and the reproductive benefits associated with copulations. However, the reproductive opportunities and value of copulations males obtain can change over their lifetime, but whether individuals respond to such changes by adjusting the way they allocate sperm is unclear. Here we show that, in the fowl, Gallus gallus, dominant males, which have preferential access to females, modulate the number of sperm they ejaculate according to the availability of females. When presented with two females, dominant males allocated more sperm to higher quality females, whereas when females were on their own, only copulation order had an affect on their sperm numbers. In contrast, subordinate males, whose mating activity is restricted by dominant males, allocated high numbers of sperm to initial copulations, irrespective of female availability. We further show, by manipulating male social status, that sperm allocation is both phenotypically plastic, with males adjusting their patterns of sperm allocation according to their dominance rank, and intrinsic, with males being consistently different in the way they allocate sperm, once the effects of social status are taken into account. This study suggests that males have evolved sophisticated patterns of sperm allocation to respond to frequent fluctuations in the value and frequency of reproductive opportunities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号