首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quenching effects of bergenin, based on the electrochemiluminescence (ECL) of the tris(2,2′‐bipyridyl)‐ruthenium(II) (Ru(bpy)32+)/tri‐n‐propylamine (TPrA) system in aqueous solution, is been described. The quenching behavior can be observed with a 100‐fold excess of bergenin over Ru(bpy)32+. In the presence of 0.1 m TPrA, the Stern–Volmer constant (KSV) of the ECL quenching is as high as 1.16 × 104 M?1 for bergenin. The logarithmic plot of the inhibited ECL versus logarithmic plot of the concentration of bergenin was linear over the range 3.0 × 10?6–1.0 × 10?4 mol/L. The corresponding limit of detection was 6.0 × 10?7 mol/L for bergenin (S/N = 3). In the mechanism of quenching it is believed that the competition of the active free radicals between Ru(bpy)32+/TPrA and bergenin was the key factor for the ECL inhibition of the system. Photoluminescence, cyclic voltammetry, coupled with bulk electrolysis, supports the supposition mechanism of the Ru(bpy)32+/TPrA–bergenin system. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
This study describes the quenching effects of p‐aminobenzenesulfonic acid (p‐ABSA) based on electrochemiluminescence (ECL) of the tris (2,2‐bipyridyl)‐ruthenium(II)(Ru(bpy)32+)/tri‐n‐propylamine (TPrA) system in aqueous solution. Quenching behaviours were observed with a 200‐fold excess of p‐ABSA over Ru(bpy)32+. In the presence of 0.1 M TPrA, the Stern‐Volmer constant (KSV) of ECL quenching was as high as 1.39 × 104 M‐1 for p‐ABSA. The logarithmic plot of inhibited ECL versus concentration of p‐ABSA was linear over the range of 6.0 × 10‐6 ‐3.0 × 10‐4 mol/L. The corresponding limit of detection was 1.2 × 10‐6 mol/L for p‐ABSA (S/N = 3). The mechanism of quenching is believed to involve an energy transfer from the excited‐state luminophore to a dimer of p‐ABSA and the adsorption of free radicals of p‐ABSA at the electrode surface that impeded the oxidation of the Ru(bpy)32+/TPrA system. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
An electrochemiluminescence (ECL) approach for methamphetamine determination was developed based on a glassy carbon electrode modified with a Ru(bpy)32+‐doped silica nanoparticles/Nafion composite film. The monodispersed nanoparticles, which were about 50 nm in size, were synthesized using the water‐in‐oil microemulsion method. The ECL results revealed that Ru(bpy)32+ doped in silica nanoparticles retained its original photo‐ and electrochemical properties. The ECL intensity was found to be proportional to methamphetamine concentration over the range from 1.0 × 10?7 to 1.0 × 10?5 mol L?1, and the detection limit was found to be 2.6 × 10?8 mol L?1. The proposed ECL approach was used to analyze the methamphetamine content in drugs. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
On the basis of an europium (III)‐doped Prussian blue analog film modifying platinum electrode as the working electrode, a Ru(bpy)32+‐based electrochemiluminescence (ECL) assay coupled with capillary electrophoresis has been first established for the determination of ketotifen fumarate (KTF). Analytes were injected onto a separation capillary of 50 cm length (50 μm i.d., 360 μm o.d.) by electrokinetic injection for 10 s at 10 kV. Parameters related to the separation and detection were discussed and optimized. It was proved that 15 mm phosphate buffer at pH 8.0 could achieve the most favorable resolution, and the highest sensitivity of detection was obtained using the detection potential at 1.25 V and 5 mm Ru(bpy)32+ in 100 mm phosphate buffer at pH 8.0 in the detection reservoir. Under the optimized conditions, the ECL intensity was in proportion to KTF concentration over the range from 3.0 × 10?8 to 5.0 × 10?6 g mL?1 with a detection limit of 2.1 × 10?8 g mL?1 (3σ). The relative standard deviations of the ECL intensity and the migration time were 0.95 and 0.26%, respectively. The developed method was successfully applied to determine KTF contents in pharmaceuticals and human urine with recoveries between 99.5 and 107.0%. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Flavones such as morin, rutin, quercitrin, quercetin and wogonin were found to be able to strongly enhance the electrochemiluminescence (ECL) of the Ru(bpy)32+ system. Based on this, a novel ECL method with good stability and reproducibility could be developed for determination of flavones. Under the optimum conditions, the enhanced ECL intensity was linear with the flavones concentration in a wide range. The detection limits (defined as S:N = 3) for morin, rutin, quercitrin, quercetin and wogonin were 3.2 × 10–7 mol/L, 4.3 × 10–7, 1.8 × 10–7, 8.0 × 10–8 and 1.0 × 10–7 mol/L, respectively. In addition, the possible mechanism for the Ru(bpy)32+ ECL system in the presence of flavones is also discussed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
Huimin Liu  Heyou Han 《Luminescence》2009,24(5):300-305
Perturbation of the tris(2,2′‐bipyridine)ruthenium(II) [Ru(bpy)32+]‐catalyzed Belousov–Zhabotinsky (BZ) oscillating chemiluminescence (CL) reaction induced by l ‐cysteine was observed in the closed system. It was found that the CL intensity was decreased in the presence of l ‐cysteine. Meanwhile, oscillation period and oscillating induction period were prolonged. The sufficient reproducible induction period was used as parameter for the analytical application of oscillating CL reaction. Under the optimum conditions, the changes in the oscillating CL induction period were linearly proportional to the concentration of l ‐cysteine in the range from 8.0 × 10?7 to 5.0 × 10?5 mol L?1 (r = 0.997) with a detection limit of 4.3 × 10?7 mol L?1. The possible mechanism of l ‐cysteine perturbation on the oscillating CL reaction was also discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
A tris(2,2‐bipyridyl)ruthenium(II) (Ru(bpy)32+)‐based electrochemiluminescence (ECL) detection coupled with capillary electrophoresis (CE) method has been established for the sensitive determination of ephedrine for the first time. Under the optimized conditions [ECL detection at 1.15 V, 25 mmol/L phosphate buffer solution (PBS), pH 8.0, as running buffer, separation voltage 12.5 kV, 5 mmol/L Ru(bpy)32+ with 60 mmol/L PBS, pH 8.5, in the detection cell] linear correlation (r = 0.9987) between ECL intensity and ephedrine concentration was obtained in the range 6.0 × 10–8–6.0 × 10–6 g/mL. The detection limit was 4.5 × 10–9 g/mL (S:N = 3). The developed method was successfully applied to the analysis of ephedrine in human urine and the investigation of its interactions with three proteins, including bovine serum albumin (BSA), cytochrome C (Cyt‐C) and myoglobin (Mb). The number of binding sites and the binding constants between ephedrine and BSA, Cyt‐C and Mb were 8.52, 12.60, 10.66 and 1.55 × 104 mol/L, 6.58 × 103 mol/L and 1.59 × 104 mol/L, respectively. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Based on the strong electrochemiluminescence (ECL) reaction between thiamazole and tris(2,2′‐bipyridine)ruthenium(II) (Ru(bpy)32+), a sensitive, simple and rapid flow injection analysis method for the determination of thiamazole was developed. When a Pt working electrode was maintained at a potential of +1.50 V (vs Ag/AgCl) in pH 12.0 H3PO4–NaOH solution containing thiamazole and Ru(bpy)32+ at a flow rate of 1.0 mL/min, a linear range of 2.0 × 10−7–1.0 × 10−4 mol/L with a detection limit of 5.0 × 10−8 mol/L was obtained for the detection of thiamazole. The method showed good reproducibility with a relative standard deviation (RSD) of 0.75%. The method has been successfully applied to the determination of thiamazole in spiked animal feeds. In addition, a co‐reactant ECL mechanism was proposed for the thiamazole–Ru(bpy)32+ system. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
In our present work, it was found that the electrooxidation of folic acid (FA) was accompanied by electrogenerated chemiluminescence (ECL) emission. Out of the four inorganic salts, NaNO3 solution was found to be a suitable supporting electrolyte for the ECL emission of FA. Coupled with high‐performance liquid chromatography separation, this simple ECL method was used for post‐column determination of FA. Under the optimal conditions, the ECL intensity has a linear relationship with the concentration of FA in the range of 1.0 × 10?7 to 1.0 × 10?5 g/mL and the detection limit was 5 × 10?8 g/mL (signal‐to‐noise ratio = 3). Application of the present method to the analysis of FA in human urine proved feasible. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
A novel molecular imprinting electrochemiluminescence sensor for detecting chiral cinchonine molecules was developed with a molecularly imprinted polymer membrane on the surfaces of magnetic microspheres. Fe3O4@Au nanoparticles modified with 6‐mercapto‐beta‐cyclodextrin were used as a carrier, cinchonine as a template molecule, methacrylic acid as a functional monomer and N ,N ′‐methylenebisacrylamide as a cross‐linking agent. Cinchonine was specifically recognized by the 6‐mercapto‐beta‐cyclodextrin functional molecularly imprinted polymer and detected based on enhancement of the electrochemiluminescence intensity caused by the reaction of tertiary amino structures of cinchonine molecules with Ru(bpy)32+. Cinchonine concentrations of 1 × 10?10 to 4 × 10?7 mol/L showed a good linear relationship with changes of the electrochemiluminescence intensity, and the detection limit of the sensor was 3.13 × 10?11 mol/L. The sensor has high sensitivity and selectivity, and is easy to renew. It was designed for detecting serum samples, with recovery rates of 98.2% to 107.6%.  相似文献   

11.
We investigated the effects of zinc or lead on growth and on exudation of fluorescent dissolved organic matter (FDOM) by the marine toxic dinoflagellate Alexandrium catenella (Whedon & Kofoid) Balech. The species was exposed to increasing free zinc (1.34 × 10?7 M–3.98 × 10?6 M) or lead (5.13 × 10?9 M–1.82 × 10?7 M) concentra‐tions. Low metal levels ([Zn2+] = 1.34 × 10?7 M; [Pb2+] = 5.13 × 10?9 M) had no effect on cell growth. Toxic effects were observed from higher metal contamination ([Zn2+] = 3.98 × 10?6 M; [Pb2+] = 6.54 × 10?8 M), as a conversion of vegetative cells into cysts. Analysis of the released FDOM by three‐dimensional (3‐D) fluorescence spectroscopy was achieved, using the parallel factor analysis (PARAFAC). The PARAFAC modeling revealed four components associated with two contributions: one related to the biological activity; the other linked to the organic matter decomposition in the culture medium. The C1 component combined a tryptophan peak and characteristics of humic substances, whereas the C2 component was considered as a tryptophan protein fluorophore. The two others C3 and C4 components were associated with marine organic matter production. Relea‐sed fluorescent substances were induced by low ([Zn2+]= 1.34 × 10?7 M; [Pb2+] = 5.13 × 10?9 M) and moderate ([Zn2+] = 6.21 × 10?7 M; [Pb2+] = 2.64× 10?9 M) metal concentrations, suggesting the activation of cellular mechanisms in response to metal stress, to exudate FDOM that could complex metal cations and reduce their toxicity toward A. catenella cells.  相似文献   

12.
A sensitive electrochemiluminescence (ECL) detection of etimicin at Tris(2,2′‐bipyridyl)ruthenium(II) [Ru(bpy)32+]–Nafion modified carbon paste electrodes was developed. The immobilized Ru(bpy)32+ shows good electrochemical and photochemical activities. Electrochemical and electrochemiluminescence characterizations of the modified carbon electrodes were made by means of cyclic voltammetry and electrochemical impendence spectroscopy. The modified electrode showed an electrocatalytic response to the oxidation of etimicin, producing a sensitized ECL signal. The ECL sensor showed a linear response to etimicin in the range of 8.0–160.0 ng mL?1 with a detection limit of 6.7 ng mL?1. This method for etimicin determination possessed good sensitivity and reproducibility with a coefficient of variation of 5.1% (n = 7) at 100 ng mL?1. The ECL sensor showed good selectivity and long‐term stability. Its surface could be renewed quickly and reproducibly by a simple polish step. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
An electrochemiluminescence (ECL) sensor based on reduced graphene oxide–CdTe quantum dots (RGO–CdTe QDs) composites for detecting copper ion (Cu2+) was proposed. The ECL behaviours of the RGO–CdTe QD modified electrode were investigated with H2O2 as the co‐reactant. Quantitative detection of Cu2+ was realized as Cu2+ could effectively quench the ECL signal of the RGO–CdTe QDs. A wide linear range of 1.00 × 10?14 to 1.00 × 10?4 M (R = 0.9953) was obtained under optimized conditions, and a detection limit (S/N = 3) was achieved of as low as 3.33 × 10?15 M. The proposed sensor also exhibited good stability and selectivity for the detection of copper ions. Finally, the analytical application of the proposed sensor was also evaluated using river water.  相似文献   

14.
In this study, electrochemiluminescence (ECL) of Ru(bpy)32+ (bpy = 2,2′‐bipyridyl) using ascorbic acid (H2A) as co‐reactant was investigated in an aqueous solution. When H2A was co‐existent in a Ru(bpy)32+‐containing buffer solution, ECL peaks were observed at a potential corresponding to the oxidation of Ru(bpy)32+, and the intensity was proportional to H2A concentration at lower concentration levels. The formation of the excited state *Ru(bpy)32+ was confirmed to result from the co‐reaction between Ru(bpy)33+and the intermediate of ascorbate anion radical (A•), which showed the maximum ECL at pH = 8.8. It is our first finding that the ECL intensity would be quenched significantly when the concentration of H2A was relatively higher, or upon ultrasonic irradiation. In most instances, quenching is observed with four‐fold excess of H2A over Ru(bpy)32+. The diffusional self‐quenching scheme as well as the possible reaction pathways involved in the Ru(bpy)32+–H2A ECL system are discussed in this study. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
We present an innovative and sensitive electrogenerated chemiluminescence (ECL) strategy for observing the surface feature of a single silica nanoparticle based on its collision with an ultramicroelectrode (UME). As an ECL luminophore, Ru(bpy)32+ molecules are doped into silica nanoparticles. The stochastic collision events of Ru(bpy)32+‐doped silica nanoparticles (RuSNPs) can be tracked by observing the ECL ‘blips’ from the ECL reaction of Ru(bpy)32+ with a coreactant in solution. When RuSNPs collided with UME, Ru(bpy)32+ molecules that only exist near the collision site of silica nanoparticles (NPs) were electrochemically oxidized to form Ru(bpy)33+, and then emitted light, because silica NPs are insulated. The inhomogeneous properties of silica nanoparticle surfaces will produce diverse ECL blips in intensity and shape. In addition, distribution gradients from the he Ru(bpy)32+ in a silica matrix also affect ECL blips. Some information on the surface properties of silica NPs can be obtained by observation of single silica collision events.  相似文献   

16.
The spectroscopy, electrochemistry and electrogenerated chemiluminescence (ECL) of eight bisalicylideneethylenediamino (salen) metal complexes are reported. Two of the complexes contain an unsubstituted salen ligand and either cobalt(II) or nickel(II). The others have 1,2-cyclohexanediamonio-N,N′-bis(3,5-di-t-butylsalicylidene) as the ligand, and chromium(III), aluminum(III), cobalt(II), cobalt(III) or manganese(II) as the metal center. The complexes have lowest energy absorption maxima between 350 and 430 nm. When excited at these wavelengths, the complexes emit between 417 and 594 nm in acetonitrile. Photoluminescence efficiencies (?em) were between 0.0310 and 23.8 compared to Ru(bpy)32+ (bpy = 2,2′-bipyridine; ?em = 1), with the aluminum complexes displaying the most intense photoluminescence. Both reversible and irreversible oxidative electrochemistry is displayed by the metal–salen complexes with oxidation potentials ranging between +0.152 and +1.661 V versus Ag/AgCl. The ECL intensity peaks at a potential corresponding to oxidation of both TPrA and the salen systems, indicating that both are involved in the ECL reaction sequence. ECL efficiencies (?ecl) were between 0.0018 and 0.0086 when compared to Ru(bpy)32+ (?ecl = 1) in acetonitrile (0.05 M tri-n-propylamine (TPrA) as an oxidative–reductive ECL coreactant). Also, qualitative studies using transmission filters suggest that the complexes emit ECL in approximately the same region as their photoluminescence, indicating that the same excited state is formed in both experiments.  相似文献   

17.
《Luminescence》2002,17(2):117-122
The electrogenerated chemiluminescence of Ru(bpy)32+/C2O42? system on a pre‐polarized Au electrode was studied using a potential‐resolved electrochemiluminescence (PRECL) method. Two anodic ECL peaks were observed at 1.22 V (vs. SCE) (EP1), 1.41 V (vs. SCE) (EP2), respectively. The effects of the concentration of oxalate and Ru(bpy)32+, adsorbed sulphur, CO2, O2, pH of the solution and pretreatment of the Au electrode on the two PRECL peaks were examined. The surface state of the pre‐oxidized gold electrode was also studied using the X‐ray photoelectron spectroscopy (XPS) technique. Moreover, comparative studies on i–E and I–E curves were carried out and a possible mechanism involving both the catalytic and the direct electro‐oxidation pathways was proposed for the ECL of Ru(bpy)32+/C2O42? system. EP1 is attributed to the Ru(bpy)32/3+ reaction catalysed by C2O42? to generate Ru(bpy)32+*. EP2 is likely because C2O42? was oxidized at the electrode to form CO2, followed by reaction with Ru(bpy)33+ to generate Ru(bpy)32+*. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, a novel and ultrasensitive electrochemiluminescent sensor employing a solvothermal‐synthesized CdS nanorod‐modified pencil graphite electrode (CdS/PGE) for the determination of chlorogenic acid (CA) is fabricated. In the first step, the PGE surface is modified using CdS nanorods. In the next step, the developed electrode is used to detect CA using a electrochemiluminescent (ECL) technique, in which potassium persulfate (K2S2O8) served as a co‐reactant. The possible ECL mechanism is investigated, and the influences of pH and cyclic voltammetric scanning rate on the signal response are studied. The ECL intensity decreases quantitatively in relation to the concentration of the target molecule. Under optimized conditions, the linear correlation between the quenched ECL intensity and the logarithm of CA concentration is observed in the range from 2 × 10?9 to 8 × 10?7 mol L?1 with a limit of detection of 1 × 10?9 mol L?1. This proposed method is applied to the analysis of CA in honeysuckle flower, giving recoveries of 99‐107%. The experimental results demonstrate that this ECL sensor shows good stability and reproducibility.  相似文献   

19.
Abstract: Pridefine (AHR-1118) is a pyrrolidine derivative with clinically established antidepressant efficacy. Previous work from this laboratory indicates that pridefine is a reuptake blocker of catecholamines and serotonin with weak releasing activity. This study characterized the mode of amine uptake inhibition by pridefine as noncompetitive. The uptake experiments were performed utilizing ouabain instead of zero-degree controls to differentiate between the passive and active components of uptake. Furthermore, the passive component was resolved into diffusion and binding of substrate. Correction was made for the effects of ouabain on binding. Kinetic constants determined from Lineweaver-Burk plots were: Km= 3 × 10?7 M for NE, Km= 9 × 10?8 M for DA, and Km= 3 × 10?8 M for 5-HT. Dixon analyses of uptake at various pridefine concentrations indicated noncompetitive inhibition with Ki= 2.5 × 10?6 M for NE uptake, Ki= 2.0 × 10?6 M for DA uptake, and Ki= 1 × 10?5 M for 5-HT uptake. These constants compare well with IC50 values for the same transmitters: NE, IC50= 2.4 × 10?6 M; DA, IC50= 2.8 × 10?6 M; 5-HT, IC50= 1.0 × 10?5 M. The in vitro results indicate that pridefine is relatively specific as a catecholamine uptake blocker. It differs from tricyclic antidepressants which are reportedly competitive inhibitors of monoamine uptake. The possible mechanisms by which pridefine acts as a noncompetitive inhibitor are discussed.  相似文献   

20.
A sensitive and simple flow‐injection chemiluminescence (FI‐CL) method, which was based on the CL intensity generated from the redoxreaction of potassium permanganate (KMnO4)–formaldehyde in vitriol (H2SO4) medium, has been developed, validated and applied for the determination of naphazoline hydrochloride and oxymetazoline hydrochloride. Besides oxidants and sensitizers, the effect of the concentration of H2SO4, KMnO4 and formaldehyde was investigated. Under the optimum conditions, the linear range was 1.0 × 10?2–7.0 mg/L for naphazoline hydrochloride and 5.0 × 10?2–10.0 mg/L for oxymetazoline hydrochloride. During seven repeated inter‐day and intra‐day precision tests of 0.1, 1.0 and 10.0 mg/L samples, the relative standard deviations all corresponded to reference values. The detection limit was 8.69 × 10?3 mg/L for naphazoline hydrochloride and 3.47 × 10?2 mg/L for oxymetazoline hydrochloride (signal‐to‐noise ratio ≤3). This method has been successfully implemented for the determination of naphazoline hydrochloride and oxymetazoline hydrochloride in pharmaceuticals. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号