首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Gut microbiome has received significant attention for its influences on a variety of host functions, especially immune modulation. With the next-generation sequencing methodologies, more knowledge is gathered about gut microbiome and its irreplaceable role in keeping the balance between human health and diseases is figured out. Immune checkpoint inhibitors (ICIs) are one of the most innovational cancer immunotherapies across cancer types and significantly expand the therapeutic options of cancer patients. However, a proportion of patients show no effective responses or develop immune-related adverse events when responses do occur. More important, it is demonstrated that the therapeutic response or treatment-limiting toxicity of cancer immunotherapy can be ameliorated or diminished by gut microbiome modulation. In this review, we first introduce the relationship between gut microbiome and cancer immunotherapy. And then, we expound the impact of gut microbiome on efficacy and toxicity of cancer immunotherapy. Further, we review approaches to manipulating gut microbiome to regulate response to ICIs. Finally, we discuss the current challenges and propose future directions to improve cancer immunotherapy via gut microbiome manipulation.  相似文献   

2.
The human gut microbiota is involved in multiple health-influencing host interactions during the host’s entire life span. Microbes colonize the infant gut instantaneously after birth and subsequently the founding and interactive progress of this early gut microbiota is considered to be driven and modulated by different host- and microbe-associated forces. A rising number of studies propose that the composition of the human gut microbiota in the early stages of life impact on the human health conditions at later stages of life. This notion has powered research aimed at detailed investigations of the infant gut microbiota composition. Nevertheless, the molecular mechanisms supporting the gut microbiome functionality and the interaction of the early gut microbes with the human host remain largely unknown.  相似文献   

3.
Recent findings have revealed that gut microbiota plays a substantial role in modulating diseases such as autism, rheumatoid arthritis, allergies, and cancer that occur at sites distant to the gut. Athymic nude mice have been employed for tumorigenic research for decades; however, the relationships between the gut microbiome and host’s response in drug treatment to the grafted tumors have not been explored. In this study, we analyzed the fecal microbiome of nonxenograft and xenograft nude mice treated with phytosaponins from a popular medicinal plant, Gynostemma pentaphyllum (Gp). Analysis of enterobacterial repetitive intergenic consensus (ERIC)-PCR data showed that the microbiota profile of xenograft mice departed from that of the nonxenograft mice. After ten days of treatment with Gp saponins (GpS), the microbiota of the treated mice was closer to the microbiota at Day 0 before the implantation of the tumor. Data obtained from 16S pyrosequencing of fecal samples reiterates the differences in microbiome between the nonxenograft and xenograft mice. GpS markedly increased the relative abundance of Clostridium cocleatum and Bacteroides acidifaciens, for which the beneficial effects on the host have been well documented. This study, for the first time, characterizes the properties of gut microbiome in nude mice responding to tumor implant and drug treatment. We also demonstrate that dietary saponins such as GpS can potentially regulate the gut microbial ecosystem by increasing the number of symbionts. Interestingly, this regulation of the gut ecosystem might, at least in part, be responsible for or contribute to the anticancer effect of GpS.  相似文献   

4.
The gut microbiome functions like an endocrine organ, generating bioactive metabolites, enzymes or small molecules that can impact host physiology. Gut dysbacteriosis is associated with many intestinal diseases including (but not limited to) inflammatory bowel disease, primary sclerosing cholangitis-IBD, irritable bowel syndrome, chronic constipation, osmotic diarrhoea and colorectal cancer. The potential pathogenic mechanism of gut dysbacteriosis associated with intestinal diseases includes the alteration of composition of gut microbiota as well as the gut microbiota–derived signalling molecules. The many correlations between the latter and the susceptibility for intestinal diseases has placed a spotlight on the gut microbiome as a potential novel target for therapeutics. Currently, faecal microbial transplantation, dietary interventions, use of probiotics, prebiotics and drugs are the major therapeutic tools utilized to impact dysbacteriosis and associated intestinal diseases. In this review, we systematically summarized the role of intestinal microbiome in the occurrence and development of intestinal diseases. The potential mechanism of the complex interplay between gut dysbacteriosis and intestinal diseases, and the treatment methods are also highlighted.  相似文献   

5.
Colorectal cancer (CRC) is the malignant tumor with the highest incidence in the digestive system, and the gut microbiome plays a crucial role in CRC tumorigenesis and therapy. The gastrointestinal tract is the organ harboring most of the microbiota in humans. Changes in the gut microbiome in CRC patients suggest possible host–microbe interactions, thereby hinting the potential tumorigenesis, which provides new perspective for preventing, diagnosing, or treating CRC. In this review, we discuss the effects of gut microbiome dysbiosis on CRC, and reveal the mechanisms by which gut microbiome dysbiosis leads to CRC. Gut microbiome modulation with the aim to reverse the established gut microbial dysbiosis is a novel strategy for the prevention and treatment of CRC. In addition, this review summarizes that probiotic antagonize CRC tumorigenesis by protecting intestinal barrier function, inhibiting cancer cell proliferation, resisting oxidative stress, and enhancing host immunity. Finally, we highlight clinical applications of the gut microbiome, such as gut microbiome analysis-based biomarker screening and prediction, and microbe modulation-based CRC prevention, treatment enhancement, and treatment side effect reduction. This review provides the reference for the clinical application of gut microbiome in the prevention and treatment of CRC.  相似文献   

6.
The gut microbiota–host co-metabolites are good indicators for representing the cross-talk between host and gut microbiota in a bi-direct manner. There is increasing evidence that levels of aromatic amino acids (AAAs) are associated with the alteration of intestinal microbial community though the effects of long-term microbial disturbance remain unclear. Here we monitored the gut microbiota composition and host–microbiota co-metabolites AAA profiles of mice after gentamicin and ceftriaxone treatments for nearly 4 months since their weaning to reveal the relationship between host and microbiome in long- term microbial disturbances. The study was performed employing targeted LC-MS measurement of AAA-related metabolites and 16S RNA sequence of mice cecal contents. The results showed obvious decreased gut microbial diversity and decreased Firmicutes/Bacteroidetes ratio in the cecal contents after long-term antibiotics treatment. The accumulated AAA (tyrosine, phenylalanine and tryptophan) and re-distribution of their downstreaming metabolites that produced under the existence of intestinal flora were found in mice treated with antibiotics for 4 months. Our results suggested that the long-term antibiotic treatment significantly changed the composition of the gut microbiota and destroyed the homeostasis in the intestinal metabolism. And the urinary AAA could be an indicator for exploring interactions between host and gut microbiota.  相似文献   

7.
Cachexia is associated with decreased survival in cancer patients and has a prevalence of up to 80%. The etiology of cachexia is poorly understood, and limited treatment options exist. Here, we investigated the role of the human gut microbiome in cachexia by integrating shotgun metagenomics and plasma metabolomics of 31 lung cancer patients. The cachexia group showed significant differences in the gut microbial composition, functional pathways of the metagenome, and the related plasma metabolites compared to non-cachectic patients. Branched-chain amino acids (BCAAs), methylhistamine, and vitamins were significantly depleted in the plasma of cachexia patients, which was also reflected in the depletion of relevant gut microbiota functional pathways. The enrichment of BCAAs and 3-oxocholic acid in non-cachectic patients were positively correlated with gut microbial species Prevotella copri and Lactobacillus gasseri, respectively. Furthermore, the gut microbiota capacity for lipopolysaccharides biosynthesis was significantly enriched in cachectic patients. The involvement of the gut microbiome in cachexia was further observed in a high-performance machine learning model using solely gut microbial features. Our study demonstrates the links between cachectic host metabolism and specific gut microbial species and functions in a clinical setting, suggesting that the gut microbiota could have an influence on cachexia with possible therapeutic applications.Subject terms: Microbiome, Metagenomics, Next-generation sequencing, Metabolomics  相似文献   

8.
To what extent do host genetics control the composition of the gut microbiome? Studies comparing the gut microbiota in human twins and across inbred mouse lines have yielded inconsistent answers to this question. However, candidate gene approaches, in which one gene is deleted or added to a model host organism, show that a single host gene can have a tremendous effect on the diversity and population structure of the gut microbiota. Now, quantitative genetics is emerging as a highly promising approach that can be used to better understand the overall architecture of host genetic influence on the microbiota, and to discover additional host genes controlling microbial diversity in the gut. In this Review, we describe how host genetics and the environment shape the microbiota, and how these three factors may interact in the context of chronic disease.  相似文献   

9.
10.
There is a critical opportunity to improve response to immunotherapies and overall cancer survivorship via dietary interventions targeted to modify the gut microbiome, and in turn, potentially enhance anti-cancer immunity. A promising dietary intervention is fermented foods, which may alter gut microbiome composition and, in turn, improve immunity. In this article, we summarize the state of the literature pertaining to the gut microbiome and response to immunotherapy and other cancer treatments, potential clinical implications of utilizing a fermented foods dietary approach to improve cancer treatment outcomes, and existing gaps in the literature regarding the implementation of fermented food interventions among individuals with cancer or with a history of cancer. This review synthesizes a compelling rationale across different disciplines to lay a roadmap for future fermented food dietary intervention research aimed at modulating the gut microbiome to reduce cancer burden.  相似文献   

11.
Human intestinal microbiota plays a number of important roles in human health and is also implicated in several gastrointestinal disorders. Although the diversity of human gut microbiota in adults and in young children has been examined, few reports of microbiota composition are available for adolescents. In this work, we used Microbiota Array for high-throughput analysis of distal gut microbiota in adolescent children 11-18 years of age. Samples obtained from healthy adults were used for comparison. Adolescent and adult groups could be separated in the principal components analysis space based on the relative species abundance of their distal gut microbiota. All samples were dominated by class Clostridia. A core microbiome of 46 species that were detected in all examined samples was established; members of genera Ruminococcus, Faecalibacterium, and Roseburia were well represented among core species. Comparison of intestinal microbiota composition between adolescents and adults revealed a statistically significantly higher abundance of genera Bifidobacterium and Clostridium among adolescent samples. The number of detected species was similar between sample groups, indicating that it was the relative abundances of the genera and not the presence or absence of a specific genus that differentiated adolescent and adult samples. In summary, contrary to the current belief, this study suggests that the gut microbiome of adolescent children is different from that of adults.  相似文献   

12.
In recent decades, human–wildlife interaction and associated anthropogenic food provisioning has been increasing and becoming more severe due to fast population growth and urban development. Noting the role of the gut microbiome in host physiology like nutrition and health, it is thus essential to understand how human–wildlife interactions and availability of anthropogenic food in habitats can affect an animal's gut microbiome. This study, therefore, set out to examine the gut microbiota of Japanese macaques (Macaca fuscata) with varying accessibility to anthropogenic food and the possibility of using gut microbiota as indicator for macaques’ reliance on anthropogenic food. Using 16S ribosomal RNA gene sequencing, we described the microbial composition of Japanese macaques experiencing different types of human disturbance and anthropogenic food availability—captive, provisioned, crop‐raiding, and wild. In terms of alpha diversity, our results showed that observed richness of gut microbiota did not differ significantly between disturbance types but among collection sites, whereas Shannon diversity index differed by both disturbance types and sites. In terms of beta diversity, captive populations harbored the most distinctive gut microbial composition, and had the greatest difference compared with wild populations. Whereas for provisioned and crop‐raiding groups, the macaques exhibited intermediate microbiota between wild and captive. We identified several potential bacterial taxa at different taxonomic ranks whose abundance potentially could help in assessing macaques’ accessibility to anthropogenic food. This study revealed the flexibility of the gut microbiome of Japanese macaques and provided possible indices based on the gut microbiome profile in assessing macaques’ accessibility to/reliance on anthropogenic foods.  相似文献   

13.
14.
The human gut is colonized by a wide diversity of micro-organisms, which are now known to play a key role in the human host by regulating metabolic functions and immune homeostasis. Many studies have indicated that the genomes of our gut microbiota, known as the gut microbiome or our “other genome” could play an important role in immune-related, complex diseases, and growing evidence supports a causal role for gut microbiota in regulating predisposition to diseases. A comprehensive analysis of the human gut microbiome is thus important to unravel the exact mechanisms by which the gut microbiota are involved in health and disease. Recent advances in next-generation sequencing technology, along with the development of metagenomics and bioinformatics tools, have provided opportunities to characterize the microbial communities. Furthermore, studies using germ-free animals have shed light on how the gut microbiota are involved in autoimmunity. In this review we describe the different approaches used to characterize the human microbiome, review current knowledge about the gut microbiome, and discuss the role of gut microbiota in immune homeostasis and autoimmunity. Finally, we indicate how this knowledge could be used to improve human health by manipulating the gut microbiota. This article is part of a Special Issue entitled: From Genome to Function.  相似文献   

15.
熊智  王连荣  陈实 《微生物学报》2018,58(11):1916-1925
高通量测序技术已经增加了人们对肠道微生物组和表观遗传学修饰的理解,将肠道微生物组和宿主表观遗传学修饰紧密联系起来,阐明了很多疾病的发生过程如免疫、代谢、心血管疾病甚至是癌症。肠道微生物组与宿主具有相互作用,与人体密不可分,相辅相成。肠道微生物组的生态失调可能诱导疾病的发生并能调控宿主表观遗传学修饰。宿主表观遗传学调控和肠道微生物组(或其代谢产物)变化的相互关系在很多疾病中都有报道。因此,肠道微生物组可作为某些疾病的诊断标记,健康肠道微生物组的移植会逆转这种微生态失调,可作为一种有效的治疗策略。本文主要探讨了肠道微生物组直接调控宿主表观修饰和通过小分子生物活性物质和其他酶辅因子间接影响表观修饰,以及基于肠道微生物组调控宿主表观修饰的诊断和治疗应用等。  相似文献   

16.
Huang  Guangping  Wang  Xiao  Hu  Yibo  Wu  Qi  Nie  Yonggang  Dong  Jiuhong  Ding  Yun  Yan  Li  Wei  Fuwen 《中国科学:生命科学英文版》2021,64(1):88-95
Gut microbiota plays a critical role in host physiology and health. The coevolution between the host and its gut microbes facilitates animal adaptation to its specific ecological niche. Multiple factors such as host diet and phylogeny modulate the structure and function of gut microbiota. However, the relative contribution of each factor in shaping the structure of gut microbiota remains unclear. The giant(Ailuropoda melanoleuca) and red(Ailurus styani) pandas belong to different families of order Carnivora. They have evolved as obligate bamboo-feeders and can be used as a model system for studying the gut microbiome convergent evolution. Here, we compare the structure and function of gut microbiota of the two pandas with their carnivorous relatives using 16S rRNA and metagenome sequencing. We found that both panda species share more similarities in their gut microbiota structure with each other than each species shares with its carnivorous relatives. This indicates that the specialized herbivorous diet rather than host phylogeny is the dominant driver of gut microbiome convergence within Arctoidea.Metagenomic analysis revealed that the symbiotic gut microbiota of both pandas possesses a high level of starch and sucrose metabolism and vitamin B12 biosynthesis. These findings suggest a diet-driven convergence of gut microbiomes and provide new insight into host-microbiota coevolution of these endangered species.  相似文献   

17.
《遗传学报》2021,48(11):972-983
Understanding the micro-coevolution of the human gut microbiome with host genetics is challenging but essential in both evolutionary and medical studies. To gain insight into the interactions between host genetic variation and the gut microbiome, we analyzed both the human genome and gut microbiome collected from a cohort of 190 students in the same boarding college and representing 3 ethnic groups, Uyghur, Kazakh, and Han Chinese. We found that differences in gut microbiome were greater between genetically distinct ethnic groups than those genetically closely related ones in taxonomic composition, functional composition, enterotype stratification, and microbiome genetic differentiation. We also observed considerable correlations between host genetic variants and the abundance of a subset of gut microbial species. Notably, interactions between gut microbiome species and host genetic variants might have coordinated effects on specific human phenotypes. Bacteroides ovatus, previously reported to modulate intestinal immunity, is significantly correlated with the host genetic variant rs12899811 (meta-P = 5.55 × 10−5), which regulates the VPS33B expression in the colon, acting as a tumor suppressor of colorectal cancer. These results advance our understanding of the micro-coevolution of the human gut microbiome and their interactive effects with host genetic variation on phenotypic diversity.  相似文献   

18.
Mucosal surfaces that line our gastrointestinal tract are continuously exposed to trillions of bacteria that form a symbiotic relationship and impact host health and disease. It is only beginning to be understood that the cross-talk between the host and microbiome involve dynamic changes in commensal bacterial population, secretion, and absorption of metabolites between the host and microbiome. As emerging evidence implicates dysbiosis of gut microbiota in the pathology and progression of various diseases such as inflammatory bowel disease, obesity, and allergy, conventional treatments that either overlook the microbiome in the mechanism of action, or eliminate vast populations of microbes via wide-spectrum antibiotics need to be reconsidered. It is also becoming clear the microbiome can influence the body’s response to therapeutic treatments for cancers. As such, targeting the microbiome as treatment has garnered much recent attention and excitement from numerous research labs and biotechnology companies. Treatments range from fecal microbial transplantation to precision-guided molecular approaches. Here, we survey recent progress in the development of innovative therapeutics that target the microbiome to treat disease, and highlight key findings in the interplay between host microbes and therapy.  相似文献   

19.
蜜蜂肠道菌群定殖研究进展   总被引:1,自引:1,他引:0  
肠道菌群在其宿主健康中发挥着各种各样的重要功能。蜜蜂是高度社会化的昆虫,其肠道菌群与大多数昆虫明显不同,由兼性厌氧和微好氧的细菌组成,具有高度保守性和专门的核心肠道微生物群。近年来的研究表明,蜜蜂肠道微生物群在代谢、免疫功能、生长发育以及保护机体免受病原体侵袭等方面起着重要作用,并已证实肠道微生物在蜜蜂健康和疾病中起着重要作用,肠道微生物群的破坏对蜜蜂健康会产生不利影响。本文综述了蜜蜂肠道菌群的特征及菌群定殖研究进展,介绍了蜜蜂的日龄、群体、季节等对蜜蜂肠道菌群定殖的影响,探讨了宿主的功能和新陈代谢对肠道菌群的影响。  相似文献   

20.
The mechanisms linking the function of microbes to host health are becoming better defined but are not yet fully understood. One recently explored mechanism involves microbe-mediated alterations in the host epigenome. Consumption of specific dietary components such as fiber, glucosinolates, polyphenols, and dietary fat has a significant impact on gut microbiota composition and function. Microbial metabolism of these dietary components regulates important epigenetic functions that ultimately influences host health. Diet-mediated alterations in the gut microbiome regulate the substrates available for epigenetic modifications like DNA methylation or histone methylation and/or acetylation. In addition, generation of microbial metabolites such as butyrate inhibits the activity of core epigenetic enzymes like histone deacetylases (HDACs). Reciprocally, the host epigenome also influences gut microbial composition. Thus, complex interactions exist between these three factors. This review comprehensively examines the interplay between diet, gut microbes, and host epigenetics in modulating host health. Specifically, the dietary impact on gut microbiota structure and function that in-turn regulates host epigenetics is evaluated in terms of promoting protection from disease development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号