首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proteasome is a ‘proteolytic factory’ that constitutes an essential part of the ubiquitin‐proteasome pathway. The involvement of proteasome in regulation of all major aspects of cellular physiology makes it an attractive drug target. So far, only inhibitors of the proteasome entered the clinic as anti‐cancer drugs. However, proteasome regulators may also be useful for treatment of inflammatory and neurodegenerative diseases. We established in our previous studies that the peptide Tat2, comprising the basic domain of HIV‐1 Tat protein: R49KKRRQRR56, supplemented with Q66DPI69 fragment, inhibits the 20S proteasome in a noncompetitive manner. Mechanism of Tat2 likely involves allosteric regulation because it competes with the proteasome natural 11S activator for binding to the enzyme noncatalytic subunits. In this study, we performed alanine walking coupled with biological activity measurements and FTIR and CD spectroscopy to dissect contribution of a charge and conformation of Tat2 to its capability to influence peptidase activity of the proteasome. In solution, Tat2 and most of its analogs with a single Ala substitution preferentially adopted a conformation containing PPII/turn structural motifs. Replacing either Asp10 or two or more adjacent Arg/Lys residues induced a random coil conformation, probably by disrupting ionic interactions responsible for stabilization of the peptides ordered structure. The random coil Tat2 analogs lost their capability to activate the latent 20S proteasome. In contrast, inhibitory properties of the peptides more significantly depended on their positive charge. The data provide valuable clues for the future optimization of the Tat2‐based proteasome regulators. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

2.
The human immunodeficiency virus 1 Tat protein suppresses antigen-, anti-CD3-and mitogen-induced activation of human T cells when added to T cell cultures. This activity is important for the development of AIDS because lymphocytes from HIV-infected individuals exhibit a similar antigen-specific dysfunction. Moreover, Tat was found to interact with dipeptidyl peptidase IV (DP IV). To find out the amino acid sequence important for the inhibition of the DP IV enzymatic activity we investigated N-terminal Tat(1–9) peptide analogues with amino acid substitutions in different positions. Interestingly, the exchange of Pro6 with Leu and Asp5 with Ile strongly diminished the DP IV inhibition by Tat(1–9). Based on data derived from one-and two-dimensional 1H NMR investigations the solution conformations of the three nonapeptides in water were determined by means of molecular dynamics simulations. These conformations were used for studies of the docking behavior of the peptides into a model of the active site of DP IV. The results suggest that several attractive interactions between the native Tat(1–9) and DP IV lead to a stable complex and that the reduced affinity of both L6-Tat(1–9) and I5-Tat(1–9) derivatives might be caused by conformational alterations in comparison to the parent peptide.Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1007/s0089480040200  相似文献   

3.
Oligonucleotides composed of 2′-O-methyl and locked nucleic acid residues complementary to HIV-1 trans-activation responsive element TAR block Tat-dependent trans-activation in a HeLa cell assay when delivered by cationic lipids. We describe an improved procedure for synthesis and purification under highly denaturing conditions of 5′-disulphide-linked conjugates of 3′-fluorescein labelled oligonucleotides with a range of cell-penetrating peptides and investigate their abilities to enter HeLa cells and block trans-activation. Free uptake of 12mer OMe/LNA oligonucleotide conjugates to Tat (48–58), Penetratin and R9F2 was observed in cytosolic compartments of HeLa cells. Uptake of the Tat conjugate was enhanced by N-terminal addition of four Lys or Arg residues or a second Tat peptide. None of the conjugates entered the nucleus or inhibited trans-activation when freely delivered, but inhibition was obtained in the presence of cationic lipids. Nuclear exclusion was seen for free delivery of Tat (48–58), Penetratin and R9 conjugates of 16mer phosphorothioate OMe oligonucleotide. Uptake into human fibroblast cytosolic compartments was seen for Tat, Penetratin, R9F2 and Transportan conjugates. Large enhancements of HeLa cell uptake into cytosolic compartments were seen when free Tat peptide was added to Tat conjugate of 12mer OMe/LNA oligonucleotide or Penetratin peptide to Penetratin conjugate of the same oligonucleotide.  相似文献   

4.
The N-terminal portion of HIV-1 Tat covering residues 1-9 is a competitive inhibitor of dipeptidyl peptidase IV (DP IV). We have used 1H NMR techniques, coupled with molecular dynamics methods, to determine the conformation of this peptide in the three diverse media: DMSO-d6, water (pH 2.7) and 40% HFA solution. The results indicate that in both DMSO-d6 and HFA the peptide has a tendency to acquire a type I beta-turn around the segment Asp5-Pro6-Asn7-IIe8. The N-terminal end is seen to be as a random coil. In water, the structure is best described as a left-handed polyproline type II (PPII) helix for the mid segment region Asp2 to Pro6. The structures obtained in this study have been compared with an earlier report on Tat (1-9).  相似文献   

5.
The solution conformations of two potent antagonists of bradykinin (Arg1-Pro2-Pro3-Gly4-Phe5-Ser6-Pro7-Phe8-Arg9), [Aca(-1),DArg0,Hyp3,Thi5,DPhe7,(N-Bzl)Gly8]BK (1) and [Aaa(-1),DArg0,Hyp3,Thi5,(2-DNal)7,Thi8]BK (2), were studied by using 2D NMR spectroscopy in DMSO-d6 and molecular dynamics simulations. The NMR spectra of peptide 1 reveals the existence of at least two isomers arising from isomerization across the DPhe7-(N-Bzl)Gly8 peptide bond. The more populated isomer possesses the cis peptide bond at this position. The ratio of cis/trans isomers amounted to 7:3. With both antagonists, the NMR data indicate a beta-turn structure for the Hyp3-Gly4 residues. In addition, for peptide 2, position 2,3 is likely to be occupied by turn-like structures. The cis peptide bond between DPhe7 and (N-Bzl)Gly8 in analogue 1 suggests type VI beta-turn at position 7,8. The molecular dynamics runs were performed on both peptides in DMSO solution. The results indicate that the structure of peptide 1 is characterized by type VIb beta-turn comprising residues Ser6-Arg9 and the betaI or betaII-turn involving the Pro2-Thi5 fragment, whereas peptide 2 shows the tendency towards the formation of type I beta-turn at position 2,3. The structures of both antagonists are stabilized by a salt bridge between the guanidine moiety of Arg1 and the carboxyl group of Arg9. Moreover, the side chain of DArg0 is apart of the rest of molecule and is not involved in structural elements except for a few calculated structures.  相似文献   

6.
7.
Lactophoricin (LPcin), a component of proteose peptone (113–135) isolated from bovine milk, is a cationic amphipathic antimicrobial peptide consisting of 23 amino acids. We designed a series of N- or C-terminal truncated variants, mutated analogs, and truncated mutated analogs using peptide-engineering techniques. Then, we selected three LPcin analogs of LPcin-C8 (LPcin-YK1), LPcin-T2WT6W (LPcin-YK2), and LPcin-T2WT6W-C8 (LPcin-YK3), which may have better antimicrobial activities than LPcin, and successfully expressed them in E. coli with high yield. We elucidated the 3D structures and topologies of the three LPcin analogs in membrane environments by conducting NMR structural studies. We investigated the purity of the LPcin analogs and the α-helical secondary structures by performing 1H-15N 2D HSQC and HMQC-NOESY liquid-state NMR spectroscopy using protein-containing micelle samples. We measured the 3D structures and tilt angles in membranes by conducting 15N 1D and 2D 1H-15N SAMMY type solid-state NMR spectroscopy with an 800 MHz in-house-built 1H-15N double-resonance solid-state NMR probe with a strip-shield coil, using protein-containing large bicelle samples aligned and confirmed by molecular-dynamics simulations. The three LPcin analogs were found to be curved α-helical structures, with tilt angles of 55–75° for normal membrane bilayers, and their enhanced activities may be correlated with these topologies.  相似文献   

8.
The purpose of this study is to elucidate the solution conformation of cyclic peptide 1 (cIBR), cyclo (1, 12)-Pen1-Pro2-Arg3-Gly4-Gly5-Ser6-Val7-Leu8-V al9-Thr10-Gly11-Cys12-OH, using NMR, circular dichroism (CD) and molecular dynamics (MD) simulation experiments. cIBR peptide (1), which is derived from the sequence of intercellular adhesion molecule-1 (ICAM-1, CD54), inhibits homotypic T-cell adhesion in vitro. The peptide hinders T-cell adhesion by inhibiting the leukocyte function-associated antigen-1 (LFA-1, CD11a/CD18) interaction with ICAM-1. Furthermore, Molt-3 T cells bind and internalize this peptide via cell surface receptors such as LFA-1. Peptide internalization by the LFA-1 receptor is one possible mechanism of inhibition of T-cell adhesion. The recognition of the peptide by LFA-1 is due to its sequence and conformation; therefore, this study can provide a better understanding for the conformational requirement of peptide-receptor interactions. The solution structure of 1 was determined using NMR, CD and MD simulation in aqueous solution. NMR showed a major and a minor conformer due to the presence of cis/trans isomerization at the X-Pro peptide bond. Because the contribution of the minor conformer is very small, this work is focused only on the major conformer. In solution, the major conformer shows a trans-configuration at the Pen1-Pro2 peptide bond as determined by HMQC NMR. The major conformer shows possible beta-turns at Pro2-Arg3-Gly4-Gly5, Gly5-Ser6-Val7-Leu8, and Val9-Thr10-Gly11-Cys12. The first beta-turn is supported by the ROE connectivities between the NH of Gly4 and the NH of Gly5. The connectivities between the NH of Ser6 and the NH of Val7, followed by the interaction between the amide protons of Val7 and Leu8, support the presence of the second beta-turn. Furthermore, the presence of a beta-turn at Val9-Thr10-Gly11-Cys12 is supported by the NH-NH connectivities between Thr10 and Gly11 and between Gly11 and Cys12. The propensity to form a type I beta-turn structure is also supported by CD spectral analysis. The cIBR peptide (1) shows structural similarity at residues Pro2 to Val7 with the same sequence in the X-ray structure of D1-domain of ICAM-1. The conformation of Pro2 to Val7 in this peptide may be important for its binding selectivity to the LFA-1 receptor.  相似文献   

9.
As part of a program to investigate the origins of peptide-carbohydrate mimicry, the conformational preferences of peptides that mimic the group B streptococcal type III capsular polysaccharide have been investigated by NMR spectroscopy. Detailed studies of a dodecapeptide, FDTGAFDPDWPA, a molecular mimic of the polysaccharide antigen, and two new analogs, indicated a propensity for beta-turn formation. Different beta-turn types were found to be present in the trans and cis (Trp-10-Pro-11) isomers of the peptide: the trans isomer favored a type I beta-turn from residues Asp-7-Trp-10, whereas the cis isomer exhibited a type VI beta-turn from residues Asp-9-Ala-12. The interaction of the dodecapeptide FDTGAFDPDWPA with a protective anti-group B Streptococcus monoclonal antibody has also been investigated, by transferred nuclear Overhauser effect NMR spectroscopy and saturation-transfer difference NMR spectroscopy (STD-NMR). The peptide was found to adopt a type I beta-turn conformation on binding to the antibody; the peptide residues (Asp-7-Trp-10) forming this turn are recognized by the antibody, as demonstrated by STD-NMR experiments. STD-NMR studies of the interactions of oligosaccharide fragments of the capsular polysaccharide have also been performed and provide evidence for the existence of a conformational epitope.  相似文献   

10.
Biochemical experiments have recently revealed that the p-S8 peptide, with an amino-acid sequence identical to the conserved fragment 83-93 (S8) of the HIV-1 protease, can inhibit catalytic activity of the enzyme by interfering with protease folding and dimerization. In this study, we introduce a hierarchical modeling approach for understanding the molecular basis of the HIV-1 protease folding inhibition. Coarse-grained molecular docking simulations of the flexible p-S8 peptide with the ensembles of HIV-1 protease monomers have revealed structurally different complexes of the p-S8 peptide, which can be formed by targeting the conserved segment 24-34 (S2) of the folding nucleus (folding inhibition) and by interacting with the antiparallel termini β-sheet region (dimerization inhibition). All-atom molecular dynamics simulations of the inhibitor complexes with the HIV-1 PR monomer have been independently carried out for the predicted folding and dimerization binding modes of the p-S8 peptide, confirming the thermodynamic stability of these complexes. Binding free-energy calculations of the p-S8 peptide and its active analogs are then performed using molecular dynamics trajectories of the peptide complexes with the HIV-1 PR monomers. The results of this study have provided a plausible molecular model for the inhibitor intervention with the HIV-1 PR folding and dimerization and have accurately reproduced the experimental inhibition profiles of the active folding inhibitors.  相似文献   

11.
We report the conformational analysis by 1H nmr in DMSO and computer simulations involving distance geometry and molecular dynamics simulations of analogs of the cyclic octapeptide D-Phe1-c[Cys2-Phe3-D-Trp4-Lys5-Thr6-Cys 7]-Thr8-ol (sandostatin, octreotide). The analogs D-Phe1-c[Cys2-Phe3-D-Trp4-Lys5-Xaa6-Cys 7]-Xbb8-NH2 (Xaa = allo-Thr, D-allo-Thr, D-beta-Hyv, beta-Hyv, D-Thr, and Xbb = Thr or Xaa = Thr and Xbb = allo-Thr, D-allo-Thr, beta-Hyv, D-Thr) contain stereochemical changes in the Thr residues in positions 6 and 8, which allow us to investigate the influence of the stereochemistry within these residues on conformation and binding affinity. The molecular dynamics simulations provide insight into the conformational flexibility of these analogs. The compounds with (S)-configuration at the C(alpha) of residue 6 adopt beta-sheet structures containing a type II' beta-turn with D-Trp in the i+1 position, and these conformations are "folded" about residues 6 and 3. The structures are very similar to those observed for sandostatin, and the disulfide bridge results in a close proximity of the H(alpha) protons of residues 7 and 2, which confirms earlier observations that a disulfide bridge is a good mimic for a cis peptide bond. The compounds with (R)-configuration at the C(alpha) of residue 6 adopt considerably different backbone conformations. The structures observed for these analogs contain either a beta-turn about residue Lys and Xaa6 or a gamma-turn about the Xaa6 residue. These compounds do not exhibit significant binding to the somatostatin receptors, while the compounds with (S) configuration in position 6 bind potently to the sst2, 3, and 5 receptors. The nmr spectra of analogs with (R) or (S) configuration at the C(alpha) of residue 8 are strikingly similar to each other. We have demonstrated that the chemical shifts of protons of residues 3, 4, 5, and 6, which are part of the type II' beta-turn, and especially the effect on the Lys gamma-protons are considerably different in active molecules as compared to inactive analogs. Since the presence of a type II' beta-turn is crucial for the binding to the receptors, the chemical shifts, the amide temperature coefficients of the Thr residue and the medium strength NOE between LysNH and ThrNH can be extremely useful as an initial screening tool to separate the active molecules from inactive analogs.  相似文献   

12.
The solution structure of contryphan-Vn, a cyclic peptide with a double cysteine S-S bridge and containing a D-tryptophan extracted from the venom of the cone snail Conus ventricosus, has been determined by NMR spectroscopy using a variety of homonuclear and heteronuclear NMR methods and restrained molecular dynamics simulations. The main conformational features of backbone contryphan-Vn are a type IV beta-turn from Gly 1 to Lys 6 and a type I beta-turn from Lys 6 to Cys 9. As already found in other contryphans, one of the two prolines--the Pro4--is mainly in the cis conformation while Pro7 is trans. A small hydrophobic region probably partly shielded from solvent constituted from the close proximity of side chains of Pro7 and Trp8 was observed together with a persistent salt bridge between Asp2 and Lys6, which has been revealed by the diagnostic observation of specific nuclear Overhauser effects. The salt bridge was used as a restraint in the molecular dynamics in vacuum but without inserting explicit electrostatic contribution in the calculations. The backbone of the unique conformational family found of contryphan-Vn superimposes well with those of contryphan-Sm and contryphan-R. This result indicates that the contryphan structural motif represents a robust and conserved molecular scaffold whose main structural determinants are the size of the intercysteine loop and the presence and location in the sequence of the D-Trp and the two Pro residues.  相似文献   

13.
The present study involves molecular docking, molecular dynamics (MD) simulation studies, and Caco‐2 cell monolayer permeability assay to investigate the effect of structural modifications on PepT1‐mediated transport of thyrotropin releasing hormone (TRH) analogs. Molecular docking of four TRH analogs was performed using a homology model of human PepT1 followed by subsequent MD simulation studies. Caco‐2 cell monolayer permeability studies of four TRH analogs were performed at apical to basolateral and basolateral to apical directions. Inhibition experiments were carried out using Gly‐Sar, a typical PepT1 substrate, to confirm the PepT1‐mediated transport mechanism of TRH analogs. Papp of the four analogs follows the order: NP‐1894 < NP‐2378 < NP‐1896 < NP‐1895. Higher absorptive transport was observed in the case of TRH analogs, indicating the possibility of a carrier‐mediated transport mechanism. Further, the significant inhibition of the uptake of Gly‐Sar by TRH analogs confirmed the PepT1‐mediated transport mechanism. Glide docking scores of all the four analogues were in good agreement with their transport rates, suggesting the role of substrate binding affinity in the PepT1‐mediated transport of TRH analogs. MD simulation studies revealed that the polar interactions with amino acid residues present in the active site are primarily responsible for substrate binding, and a downward trend was observed with the increase in bulkiness at the N‐histidyl moiety of TRH analogs. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
A model peptide AAGDYY-NH2 (B1), which is found to adopt a beta-turn conformation in the TEM-1 beta-lactamase inhibitor protein (BLIP) in the TEM-1/BLIP co-crystal, was synthesized to elucidate the mechanism of its beta-turn formation and stability. Its structural preferences in solution were comprehensively characterized using CD, FT-IR and 1H NMR spectroscopy, respectively. The set of observed diagnostic NOEs, the restrained molecular dynamics simulation, CD and FT-IR spectroscopy confirmed the formation of a beta-turn in solution by the model peptide. The dihedral angles [(phi3, phi3) (phi4, phi4)] of [(-52 degrees, -32 degrees ) (-38 degrees, -44 degrees )] of Gly-Asp fragment in the model peptide are consistent with those of a type III beta-turn. In a conclusion, the conformational preference of the linear hexapeptide B1 in solution was determined, and it would provide a simple template to study the mechanism of beta-turn formation and stability.  相似文献   

15.
In this paper, the N-terminus of glycoprotein-41, the HIV-1 fusion peptide, was studied by molecular dynamics simulations in an explicit sodium dodecyl sulfate micelle. The simulation provides a detailed picture of the equilibrium structure and peptide stability as it interacts with the micelle. The equilibrium location of the peptide shows the peptide at the surface of the micelle with hydrophobic residues interacting with the micelle's core. At equilibrium, the peptide adopts an alpha-helical structure from residues 5-16 and a type-1 beta-turn from 17-20 with the other residues exhibiting more flexible conformations. The primary hydrophobic interactions with the micelle are from the leucine and phenylalanine residues (Leu-7, Phe-8, Leu-9, Phe-11, Leu-12) while the alanine and glycine residues (Ala-1, Gly-3, Gly-5, Ala-6, Gly-10, Gly-13, Ala-14, Ala-15, Gly-16, Gly-10, Ala-21) interact favorably with water molecules. The results suggest that Phe-8, part of the highly conserved FLG motif of the fusion peptide, plays a key role in the interaction of the peptide with membranes. Our simulations corroborate experimental investigations of the fusion peptide in SDS micelles, providing a high-resolution picture that explains the experimental findings.  相似文献   

16.
We have applied random-search, energy minimization and molecular dynamics simulations to investigate the structural aspects of the interaction of N-acetyl-L-prolyl-D-alanyl-L-alanine-N'-methylamide with Ca2+. Spectral data on related peptides had suggested that the beta-turn conformation might be a prerequisite for the binding of cation ion by such short linear peptides. In order to relate the conformational characteristics with the Ca(2+)-binding affinities of these peptides, the molecular events involved in cation binding need to be understood. We have addressed this problem in this study by using a systematic approach that involved the following steps. First, a random search technique was used to generate a large population of conformers for the free peptide in the absence of Ca2+. Next, the energies of these conformers were computed. Conformations with energies within 4 kcal/mol of the global minimum were analysed and found to fall into four main groups characterized by the presence of different types of hydrogen-bonded structures including single and consecutive beta-turns. The energies for interconversion of conformers from one group to another were computed and found to be relatively small (< 10 kcal/mol). Finally, molecular dynamics of the peptide at 300K in the presence of Ca2+ were used to simulate the cation binding process. Starting points for these simulations were generated by placing the ion in the vicinity of two molecules of the peptide. The simulation results showed that the conformers with two consecutive beta-turns led to the formation of a stable 2:1 (peptide:Ca2+) sandwich complex in agreement with earlier experimental observations on similar linear peptides. While the starting conformation of the peptide in the consecutive beta-turn structure allowed for the proper orientation of three carbonyl oxygen atoms for chelation to the metal ion, the dynamics of complex formation rearranged the peptide structure substantially, leading to the formation of an 8-coordinated Ca2+ complex in a dodecahedral spatial arrangement. Thus, based on the energetics of the structures and processes involved, the present study demonstrates that: a) peptide-Ca2+ complex formation is initiated by conformers adopting consecutive beta-turn structures which subsequently go over to a significantly different conformation found in the complex; and, b) The facile interconversion between the low-energy conformers in the different groups would help shift the equilibrium population towards the consecutive beta-turn structure during the complex formation.  相似文献   

17.
18.
In this work we present and compare the results of extensive molecular dynamics simulations of model systems comprising an Aβ1–40 peptide in water in interaction with short peptides (β-sheet breakers) mimicking the 17–21 region of the Aβ1–40 sequence. Various systems differing in the customized β-sheet breaker structure have been studied. Specifically we have considered three kinds of β-sheet breakers, namely Ac-LPFFD-NH2 and two variants thereof, one obtained by substituting the acetyl group with the sulfonic amino acid taurine (Tau-LPFFD-NH2) and a second novel one in which the aspartic acid is substituted by an asparagine (Ac-LPFFN-NH2). Thioflavin T fluorescence, circular dichroism, and mass spectrometry experiments have been performed indicating that β-sheet breakers are able to inhibit in vitro fibril formation and prevent the β sheet folding of portions of the Aβ1–40 peptide. We show that molecular dynamics simulations and far UV circular dichroism provide consistent evidence that the new Ac-LPFFN-NH2 β-sheet breaker is more effective than the other two in stabilizing the native α-helix structure of Aβ1–40. In agreement with these results thioflavin T fluorescence experiments confirm the higher efficiency in inhibiting Aβ1–40 aggregation. Furthermore, mass spectrometry data and molecular dynamics simulations consistently identified the 17–21 Aβ1–40 portion as the location of the interaction region between peptide and the Ac-LPFFN-NH2 β-sheet breaker.  相似文献   

19.
PCSK9 (proprotein convertase subtilisin/kexin type 9) is a negative regulator of the hepatic LDL receptor, and clinical studies with PCSK9-inhibiting antibodies have demonstrated strong LDL-c-lowering effects. Here we screened phage-displayed peptide libraries and identified the 13-amino acid linear peptide Pep2-8 as the smallest PCSK9 inhibitor with a clearly defined mechanism of inhibition that has been described. Pep2-8 bound to PCSK9 with a KD of 0.7 μm but did not bind to other proprotein convertases. It fully restored LDL receptor surface levels and LDL particle uptake in PCSK9-treated HepG2 cells. The crystal structure of Pep2-8 bound to C-terminally truncated PCSK9 at 1.85 Å resolution showed that the peptide adopted a strand-turn-helix conformation, which is remarkably similar to its solution structure determined by NMR. Consistent with the functional binding site identified by an Ala scan of PCSK9, the structural Pep2-8 contact region of about 400 Å2 largely overlapped with that contacted by the EGF(A) domain of the LDL receptor, suggesting a competitive inhibition mechanism. Consistent with this, Pep2-8 inhibited LDL receptor and EGF(A) domain binding to PCSK9 with IC50 values of 0.8 and 0.4 μm, respectively. Remarkably, Pep2-8 mimicked secondary structural elements of the EGF(A) domain that interact with PCSK9, notably the β-strand and a discontinuous short α-helix, and it engaged in the same β-sheet hydrogen bonds as EGF(A) does. Although Pep2-8 itself may not be amenable to therapeutic applications, this study demonstrates the feasibility of developing peptidic inhibitors to functionally relevant sites on PCSK9.  相似文献   

20.
We have previously identified compstatin, a 13-residue cyclic peptide, that inhibits complement activation by binding to C3 and preventing C3 cleavage to C3a and C3b. The structure of compstatin consists of a disulfide bridge and a type I beta-turn located at opposite sides to each other. The disulfide bridge is part of a hydrophobic cluster, and the beta-turn is part of a polar surface. We present the design of compstatin analogs in which we have introduced a series of perturbations in key structural elements of their parent peptide, compstatin. We have examined the consistency of the structures of the designed analogs compared with compstatin using NMR, and we have used the resulting structural information to make structure-complement inhibitory activity correlations. We propose the following. 1) Even in the absence of the disulfide bridge, a linear analog has a propensity for structure formation consistent with a turn of a 3(10)-helix or a beta-turn. 2) The type I beta-turn is a necessary but not a sufficient condition for activity. 3) Our substitutions outside the type I beta-turn of compstatin have altered the turn population but not the turn structure. 4) Flexibility of the beta-turn is essential for activity. 5) The type I beta-turn introduces reversibility and sufficiently separates the two sides of the peptide, whereas the disulfide bridge prevents the termini from drifting apart, thus aiding in the formation of the hydrophobic cluster. 6) The hydrophobic cluster at the linked termini is involved in binding to C3 and activity but alone is not sufficient for activity. 7) beta-Turn residues Gln(5) (Asn(5))-Asp(6)-Trp(7)(Phe(7))-Gly(8) are specific for the turn formation, but only Gln(5)(Asn(5))-Asp(6)-Trp(7)-Gly(8) residues are specific for activity. 8) Trp(7) is likely to be involved in direct interaction with C3, possibly through the formation of a hydrogen bond. Finally we propose a binding model for the C3-compstatin complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号