首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 171 毫秒
1.
Monoclonal antibodies (MAbs) directed against epitopes in the V2 domain of human immunodeficiency virus type 1 gp120 often possess neutralizing activity, but these generally are highly type specific, neutralize only laboratory isolates, or have low potency. The most potent of these is C108g, directed against a type-specific epitope in HXB2 and BaL gp120s, which is glycan dependent and, in contrast to previous reports, dependent on intact disulfide bonds. This epitope was introduced into two primary Envs, derived from a neutralization-sensitive (SF162) and a neutralization-resistant (JR-FL) isolate, by substitution of two residues and, for SF162, addition of an N-linked glycosylation site. C108g effectively neutralized both variant Envs with considerably higher potency than standard MAbs against the V3 and CD4-binding domains and the broadly neutralizing MAbs 2G12 and 2F5. These amino acid substitutions also introduced the epitope recognized by a second V2-specific MAb, 10/76b, but this MAb possessed potent neutralizing activity only in the absence of the glycan required for C108g reactivity. In contrast to other gp120-specific neutralizing MAbs, C108g did not block binding of soluble Env proteins to either the CD4 or the CCR5 receptor, but studies with a fusion-arrested Env indicated that C108g neutralized at a step preceding the one blocked by the gp41-specific MAb, 2F5. These results indicate that the V1/V2 domain possesses targets that mediate potent neutralization of primary viral isolates via a novel mechanism and suggest that inclusion of carbohydrate determinants into these epitopes may help overcome the indirect masking effects that limit the neutralizing potency of antibodies commonly produced after infection.  相似文献   

2.
We have identified six monoclonal antibodies (MAbs) mapping to both linear and conformation-dependent epitopes within the V2 region of the human immunodeficiency virus type 1 clone HXB10. Three of the MAbs (12b, 66c, and 66a) were able to neutralize the molecular clones HXB10 and HXB2, with titers in the range of 9.5 to 20.0 micrograms/ml. MAbs mapping to the crown of the V2 loop (12b, 60b, and 74) bound poorly to cell surface-expressed oligomeric gp120, suggesting an explanation for the poor or negligible neutralizing activity of MAbs to this region. In contrast, MAbs 12b and 60b demonstrated good reactivity with recombinant gp120 in an enzyme-linked immunosorbent assay format, suggesting differential epitope exposure between the recombinant and native forms of gp120. Cross-competition analysis of these MAbs and additional V1V2 MAbs for gp120 binding enabled us to assign the MAbs to six groups (A to F). Selection of neutralization escape mutants with MAbs 10/76b and 11/68b, belonging to nonoverlapping competition groups, identified amino acid changes at residues 165 (I to T) and 185 (D to N), respectively. Interestingly, these escape variants remained sensitive to neutralization by the nonselecting V2 MAbs. All MAbs demonstrated good recognition of IIIB viral gp120 yet failed to neutralize nonclonal stocks of IIIB. In addition, MAbs 12b and 62c bound MN and RF viral gp120, respectively, yet failed to neutralize the respective isolates. Cloning and expression of a library of gp120 and V1V2 fragments from IIIB-, MN-, and RF-infected H9 cultures identified a number of polymorphic sites, resulting in antigenic variation and subsequent loss of V2 MAb recognition. In contrast, the V3 region from the clones of the same isolates showed no amino acid changes, suggesting that the V2 region is polymorphic in long-term-passaged laboratory isolates and may account for the reduced antibody recognition observed.  相似文献   

3.
Synergistic neutralization of human immunodeficiency virus type 1 (HIV-1) was observed in studies using a chimpanzee anti-V2 monoclonal antibody (MAb), C108G, in combination with anti-V3 loop and anti-CD4 binding-site (bs) MAbs of different epitope specificities. C108G paired with either of two anti-V3 loop MAbs or either of two anti-CD4 bs MAbs synergistically neutralized both the uncloned IIIB and clonal HXB2 strains of virus in H9 target cells. Synergism was quantitated by calculation of combination indices. Significant synergy with a given MAb pair was seen over a range of MAb ratios, with the optimal effect centering around the ratio at which the MAbs were equipotent for a given HIV-1 strain (on the basis of the 50% neutralization titer). In preliminary experiments with monocytotropic strains of HIV-1 in peripheral blood mononuclear cell targets, significant synergism was also observed between anti-V2-anti-V3 and anti-V2-anti-CD4 bs MAb pairs. Synergism by all MAb pairs tested was greater against heterogeneous isolates of HIV-1 (IIIB and Ba-L) than against clonal isolates (HXB2 and NLHXADA), suggesting that strain broadening may be a component of the synergism observed against the heterogeneous isolates. In addition, conformational changes in gp120 upon binding of one or both MAbs may result in increased affinity or exposure of the epitope of one or both MAbs. Finally, a three-MAb combination of C108G, an anti-V3 MAb, and an anti-CD4 bs MAb was more effective in neutralizing the HXB2 strain of HIV-1 than any of the three two-MAb combinations within this trio, as determined by the dose reduction indices of each MAb required to achieve a given level of neutralization. This is the first report of synergistic neutralization of HIV-1 by a three-MAb combination composed of MAbs directed against the three major neutralization epitope clusters in gp120. Implications for vaccine design and for immunoprophylaxis and immunotherapy with a combination of MAbs are discussed.  相似文献   

4.
The immune response to viral glycoproteins is often directed against conformation- and/or glycosylation-dependent structures; synthetic peptides and bacterially expressed proteins are inadequate probes for the mapping of such epitopes. This report describes a retroviral vector system that presents such native epitopes on chimeric glycoproteins in which protein fragments of interest are fused to the C terminus of the N-terminal domain of the murine leukemia virus surface protein, gp70. The system was used to express two disulfide-bonded domains from gp120, the surface protein of human immunodeficiency virus type 1 (HIV-1), that include potent neutralization epitopes. The resulting fusion glycoproteins were synthesized at high levels and were efficiently transported and secreted. A fusion protein containing the HXB2 V1/V2 domain was recognized by an HIVIIIB-infected patient serum as well as by 17 of 36 HIV-1 seropositive hemophiliac, homosexual male and intravenous drug user patient sera. Many of these HIV+ human sera reacted with V1/V2 domains from several HIV-1 clones expressed in fusion glycoproteins, indicating the presence of cross-reactive antibodies against epitopes in the V1/V2 domain. Recognition of gp(1-263):V1/V2HXB2 by the HIVIIIB-infected human patient serum was largely blocked by synthetic peptides matching V1 but not V2 sequences, while recognition of this construct by a broadly cross-reactive hemophiliac patient serum was not blocked by individual V1 or V2 peptides or by mixtures of these peptides. A construct containing the V3 domain of the IIIB strain of HIV-1, gp(1-263):V3HXB2, was recognized by sera from a human and a chimpanzee that had been infected by HIVIIIB but not by sera from hemophiliac patients who had been infected with HIV-1 of MN-like V3 serotype. The reactive sera had significantly higher titers when assayed against gp(1-263):V3HXB2 than when assayed against matching V3 peptides. Immunoprecipitation of this fusion glycoprotein by the human serum was only partially blocked by V3 peptide, indicating that this infected individual produced antibodies against epitopes in V3 that were expressed on the fusion glycoprotein but not by synthetic peptides. These data demonstrated that the chimeric glycoproteins described here effectively present native epitopes present in the V1/V2 and V3 domains of gp120 and provide efficient methods for detection of antibodies directed against native epitopes in these regions and for characterization of such epitopes.  相似文献   

5.
Two neutralizing human monoclonal antibodies (HuMAbs) directed against epitopes located near the tip of the V3 loop of human immunodeficiency virus type 1 env protein recognized solubilized gPr160, but not gp120, in radioimmunoprecipitation assays. Efficient immunoprecipitation of solubilized gp120 by these antibodies did occur in the presence of HuMAb 1125H, directed against a conformational epitope overlapping the CD4-binding site, or its F(ab')2 fragment. In contrast to the inability of the anti-V3 antibodies to immunoprecipitate solubilized gp120, these HuMAbs did bind to gp120 in intact virions; this level of binding increased severalfold in the presence of the F(ab')2 fragment of 1125H. These results demonstrate that neutralization epitopes in the V3 loop are sequestered in soluble gp120 but partly exposed in gPr160 and in virion-associated gp120 and that binding of antibodies to the discontinuous CD4-binding site leads to conformational changes that result in the exposure of V3 epitopes in soluble gp120 and their enhanced accessibility in gPr160 and in virion-associated gp120. Enhanced binding of suboptimal concentrations of 1125H to soluble gp120 was also induced by the presence of an anti-V3 HuMAb, indicating the occurrence of reciprocal allosteric interactions between the V3 loop and the CD4-binding site. It is likely that these effects contribute to the synergistic neutralization of human immunodeficiency virus type 1 previously reported for antibodies directed against these two regions.  相似文献   

6.
To elucidate the roles of serine proteases, including thrombin, in HIV infection, we treated H9 cells infected with HIV-1 LAI virus (H9/IIIB) with four different proteases (thrombin, cathepsin G, trypsin and chymotrypsin) and observed their effects on functional epitopes on both gp120 and gp41 by using flow cytometry. Monoclonal antibodies (MAbs) against the V3 loop, V2 loop, CD4 binding site, coreceptor binding site and gp41 were used. It was found that trypsin decreased the binding of all MAbs except for one MAb against the V3 loop (IIIB-V3-21). Chymotrypsin and cathepsin G did not show any remarkable effect on the antigen expression. On the other hand, thrombin decreased the reactivities of two out of four anti-V3 MAbs and increased the exposure of functional gp120 epitopes including the coreceptor binding site and CD4 binding site. Thrombin also increased the expression of 2F5 antigen (a neutralizing epitope of gp41) but had no effect on other gp41 epitopes. The effect of trypsin or thrombin on HIV-induced cell fusion was examined through co-culturing H9/IIIB and MAGI cells. Trypsin slightly inhibited fusion. Fusion was significantly enhanced in a dose-dependent manner by thrombin, and a 280% increase at 5 U/ml (P < 0.001) was observed. In conclusion, thrombin, one of the major inflammatory molecules in blood, facilitates HIV-induced cell fusion, probably by activating gp120.  相似文献   

7.
We have analyzed a panel of eight murine monoclonal antibodies (MAbs) that depend on the V2 domain for binding to human immunodeficiency virus type 1 (HIV-1) gp120. Each MAb is sensitive to amino acid changes within V2, and some are affected by substitutions elsewhere. With one exception, the MAbs were not reactive with peptides from the V2 region, or only poorly so. Hence their ability to bind recombinant strain IIIB gp120 depended on the preservation of native structure. Three MAbs cross-reacted with strain RF gp120, but only one cross-reacted with MN gp120, and none bound SF-2 gp120. Four MAbs neutralized HIV-1 IIIB with various potencies, and the one able to bind MN gp120 neutralized that virus. Peptide serology indicated that antibodies cross-reactive with the HxB2 V1 and V2 regions are rarely present in HIV-1-positive sera, but the relatively conserved segment between the V1 and V2 loops was recognized by antibodies in a significant fraction of sera. Antibodies able to block the binding of V2 MAbs to IIIB or MN gp120 rarely exist in sera from HIV-1-infected humans; more common in these sera are antibodies that enhance the binding of V2 MAbs to gp120. This enhancement effect of HIV-1-positive sera can be mimicked by several human MAbs to different discontinuous gp120 epitopes. Soluble CD4 enhanced binding of one V2 MAb to oligomeric gp120 but not to monomeric gp120, perhaps by inducing conformational changes in the oligomer.  相似文献   

8.
Preservation of the conformation of recombinant gp120 in an adjuvant, enabling it to elicit conformation-dependent, epitope-specific, broadly neutralizing antibodies, may be critical for the development of any gp120-based human immunodeficiency virus type 1 (HIV-1) vaccine. It was hypothesized that recombinant gp120 complexed with recombinant CD4 could stabilize the conformation-dependent neutralizing epitopes and effectively deliver them to the immune system. Therefore, a soluble CD4-gp120 complex in Syntex adjuvant formulation was tested with mice for its ability to induce neutralizing anti-gp120 antibody responses. Seventeen monoclonal antibodies (MAbs) were generated and characterized. Immunochemical studies, neutralization assays, and mapping studies with gp120 mutants indicated that the 17 MAbs fell into three groups. Four of them were directed to what is probably a conformational epitope involving the C1 domain and did not possess virus-neutralizing activities. Another four MAbs bound to V3 peptide 302-321 and exhibited cross-reactive gp120 binding and relatively weak virus-neutralizing activities. These MAbs were very sensitive to amino acid substitutions, not only in the V3 regions but also in the base of the V1/V2 loop, implying a conformational constraint on the epitope. The last group of nine MAbs recognized conformation-dependent epitopes near the CD4 binding site of gp120 and inhibited the gp120-soluble CD4 interaction. Four of these nine MAbs showed broadly neutralizing activities against multiple laboratory-adapted strains of HIV-1, three of them neutralized only HIVIIIB, and the two lower-affinity MAbs did not neutralize any strain tested. Collectively, the results from this study indicate that immunization with the CD4-gp120 complex can elicit antibodies to conformationally sensitive gp120 epitopes, with some of the antibodies having broadly neutralizing activities. We suggest that immunization with CD4-gp120 complexes may be worth evaluating further for the development of an AIDS vaccine.  相似文献   

9.
We synthesized and purified a recombinant human immunodeficiency virus type 1 (HIV-1) envelope (Env) glycoprotein, lacking the gp120/gp41 cleavage site as well as the transmembrane domain, that is secreted principally as a stable oligomer. Mice were immunized with separated monomeric and oligomeric HIV-1 Env glycoproteins to analyze the repertoire of antibody responses to the tertiary and quaternary structure of the protein. Hybridomas were generated and assayed for reactivity by immunoprecipitation of nondenatured Env protein. A total of 138 monoclonal antibodies (MAbs) were generated and cloned, 123 of which were derived from seven animals immunized with oligomeric Env. Within this group, a significant response was obtained against the gp41 ectodomain; 49 MAbs recognized epitopes in gp41, 82% of which were conformational. The influence of conformation on gp120 antigenicity was less pronounced, with 40% of the anti-gp120 MAbs binding to conformational epitopes, many of which blocked CD4 binding. Surprisingly, less than 7% of the MAbs derived from mice immunized with oligomeric Env recognized the V3 loop. In addition, MAbs to linear epitopes in the C-terminal domain of gp120 were not obtained, suggesting that this region of the protein may be partially masked in the oligomeric molecule. A total of 15 MAbs were obtained from two mice immunized with monomeric Env. Nearly half of these recognized the V3 loop, suggesting that this region may be a less predominant epitope in the context of oligomeric Env than in monomeric protein. Thus, immunization with oligomeric Env generates a large proportion of antibodies to conformational epitopes in both gp120 and gp41, many of which may be absent from monomeric Env.  相似文献   

10.
A Otteken  P L Earl    B Moss 《Journal of virology》1996,70(6):3407-3415
Monoclonal antibodies (MAbs) that bind linear or conformational epitopes on monomeric or oligomeric human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins were screened for their recognition of maturational intermediates. On the basis of reactivities with gp160 at different times after pulse-labeling, the MAbs were sorted into groups that exhibited binding which was immediate and constant, immediate but transient, delayed, late, or very late. This grouping was consistent with the selectivity of the MAbs for structural features of gp160. Thus, a MAb to the V3 loop reacted with envelope proteins at all times, in accord with the relative conformational independence and accessibility of the epitope. Several MAbs that preferentially react with monomeric gp160 exhibited diminished binding after the pulse. A 10-min tag occurred before gp160 reacted with conformational MAbs that inhibited CD4 binding. The availability of epitopes for other conformational MAbs, including some that react equally with monomeric and oligomeric gp160 and some that react better with oligomeric forms, was half-maximal in 30 min and closely followed the kinetics of gp160 oligomerization. Remarkably, there was a 1- to 2-h delay before gp160 reacted with stringent oligomer-specific MAbs. After 4 h, approximately 20% of the gp160 was recognized by these MAbs. Epitopes recognized by monomerspecific or CD4-blocking MAbs but not by oligomer-dependent MAbs were present on gp160 molecules associated with the molecular chaperone BiP/GRP78. MAbs with a preference for monomers reacted with recombinant or HIV-1 envelope proteins in the endoplasmic reticulum, whereas the oligomer-specific MAbs recognized them in the Golgi complex. Additional information regarding gp160 maturation and intracellular trafficking was obtained by using brefeldin A, dithiothreitol, and a low temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号