首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 138 毫秒
1.
As part of a comparative study on the binding of different metals and anions by human lactoferrin, we have prepared and crystallized: (1) dicupric lactoferrin with Cu2+ and carbonate in each site (Cu2Lf); and (2) a lactoferrin complex with Cu2+ and carbonate in one site, and Cu2+ and oxalate in the other (Cu2oxLf). Crystals of Cu2Lf are orthorhombic: a = 155.9, b = 97.0, c = 56.0 A, space-group P2(1)2(1)2(1); those of Cu2oxLf are also orthorhombici a = 155.9, b = 97.1, c = 56.2 A, space-group P2(1)2(1)2(1). Both are isomorphous with diferric human lactoferrin, Fe2Lf. Diffractometer data to 2.6 A and 2.5 A have been collected for Cu2Lf and Cu2oxLf, respectively. Difference maps show that the main effect of substitution of Cu2+ for Fe3+ is a small shift (0.5 to 1.0 A) in the metal position in each site. For Cu2oxLf the oxalate ion is found to be accommodated in the C-lobe, bound to copper in a bidentate mode, causing only small local changes, in the positions of adjacent Arg and Tyr side-chains.  相似文献   

2.
Structure-function relationships for transferrins are discussed in the light of recent X-ray crystal structure determinations. A common folding pattern into two lobes, each comprising two domains is adopted; this allows the tight, but reversible binding of iron. Uptake and release of iron involve substantial domain movements which open and close the binding clefts. The iron binding sites are similar and the key role of the CO3(2-) anion bound with each Fe3+ can now be understood; structural differences near the iron binding sites suggest reasons for the different binding properties of serum transferrin and lactoferrin. The glycan moieties do not appear to affect the protein structure or metal binding properties; they are not clearly seen in the X-ray analyses but have been modelled. The accommodation of different metals and anions is illustrated by the crystal structures of Cu2+ and oxalate-substituted lactoferrins; Al3+ binding is of particular interest. New results on transferrin-receptor interactions with transferrin, and melanotransferrin and an invertebrate transferrin (both of which have defective C-terminal binding sites), emphasize possible functional differences between the two lobes. The availability of site-specific mutants of both transferrin and lactoferrin now offers the opportunity to probe the structural determinants of iron binding, iron release, and receptor binding.  相似文献   

3.
The anion-binding properties of lactoferrin (Lf), with Fe3+ or Cu2+ as the associated metal ion, have been investigated by physicochemical and crystallographic techniques. These highlight differences between the two sites and in the anion-binding behavior when different metals are bound. Carbonate, oxalate, and hybrid carbonate-oxalate complexes have been prepared and their characteristic electronic and EPR spectra recorded. Oxalate can displace carbonate from either one or both anion sites of Cu2(CO3)2Lf, depending on the oxalate concentration, but no such displacement occurs for Fe2(CO3)2Lf. Addition of oxalate and the appropriate metal ion to apoLf under carbonate-free conditions gives dioxalate complexes with both Fe3+ and Cu2+, except when traces of EDTA remain associated with the protein, when hybrid complexes M2(CO3)(C2O4)Lf can result. The anion sites in the crystal structures of Fe2(CO3)2Lf, Cu2-(CO3)2Lf, and Cu2(CO3)(C2O4)Lf, refined at 2.2, 2.1, and 2.2 A, respectively, have been compared. In every case, the anion is hydrogen bonded to the N-terminus of helix 5, an associated arginine side chain, and a nearby threonine side chain. The carbonate ion binds in bidentate fashion to the metal, except in the N-lobe site of dicupric lactoferrin, where it is monodentate; the difference arises from slight movement of the metal ion. The hybrid complex shows that the oxalate ion binds preferentially in the C-lobe site, in 1,2-bidentate mode, but with the displacement of several nearby side chains. These observations lead to a generalized model for synergistic anion binding by transferrins.  相似文献   

4.
Various lactoferrin preparations (iron-saturated and iron-depleted human milk lactoferrins and bovine milk and colostrum lactoferrins) were bound by Aeromonas hydrophila. Binding was (i) reversible (65% of bound lactoferrin was displaced by unlabeled lactoferrin), (ii) specific (lactoferrin but not other iron-containing glycoproteins such as ferritin, transferrin, hemoglobin, and myoglobin inhibited binding), and (iii) significantly reduced by pepsin and neuraminidase treatment of the bacteria. The glycosidic domains of the lactoferrin molecule seem to be involved in binding since precursor monosaccharides of the lactoferrin oligosaccharides (mannose, fucose, and galactose) and glycoproteins which have homologous glycosidic moieties similar to those of the lactoferrin oligosaccharides (asialofetuin or fetuin) strongly inhibited lactoferrin binding. A. hydrophila also binds transferrin, ferritin, cytochrome c, hemin, and Congo red. However, binding of these iron-containing compounds seems to involve bacterial surface components different from those required for lactoferrin binding. Expression of lactoferrin binding by A. hydrophila was influenced by culture conditions. In addition, there was an inverse relationship between lactoferrin binding and siderophore production by the bacterium.  相似文献   

5.
Characterization of lactoferrin binding by Aeromonas hydrophila.   总被引:3,自引:0,他引:3       下载免费PDF全文
Various lactoferrin preparations (iron-saturated and iron-depleted human milk lactoferrins and bovine milk and colostrum lactoferrins) were bound by Aeromonas hydrophila. Binding was (i) reversible (65% of bound lactoferrin was displaced by unlabeled lactoferrin), (ii) specific (lactoferrin but not other iron-containing glycoproteins such as ferritin, transferrin, hemoglobin, and myoglobin inhibited binding), and (iii) significantly reduced by pepsin and neuraminidase treatment of the bacteria. The glycosidic domains of the lactoferrin molecule seem to be involved in binding since precursor monosaccharides of the lactoferrin oligosaccharides (mannose, fucose, and galactose) and glycoproteins which have homologous glycosidic moieties similar to those of the lactoferrin oligosaccharides (asialofetuin or fetuin) strongly inhibited lactoferrin binding. A. hydrophila also binds transferrin, ferritin, cytochrome c, hemin, and Congo red. However, binding of these iron-containing compounds seems to involve bacterial surface components different from those required for lactoferrin binding. Expression of lactoferrin binding by A. hydrophila was influenced by culture conditions. In addition, there was an inverse relationship between lactoferrin binding and siderophore production by the bacterium.  相似文献   

6.
1. The biochemical properties of bovine, goat and sheep lactoferrin were compared. Molecular weights of the three lactoferrins were estimated to be 78,000 to 80,000 as determined by SDS-PAGE. By IEF, microheterogeneity was observed for all of them. 2. Partial antigenic identity was observed between bovine lactoferrin and goat or sheep lactoferrin by immunodiffusion method. 3. CD spectra at the u.v. region of the three lactoferrins suggested their similar secondary and tertiary structural profiles. 4. Reactivities with peroxidase-conjugated lectins showed that the carbohydrate compositions of the three ruminants' lactoferrin were the same but not identical with that of human lactoferrin.  相似文献   

7.
The research of new antimicrobial compounds has an impact on public health and economy of many countries. Given the great problem of bacterial resistance, the study of new molecules that bypass this mechanism is of great importance. Trypsin is an enzyme necessary for gut physiology and the peptides it forms could be of great interest to the pharmaceutical industry. In this study the antibacterial activity of undigested and trypsin-hydrolyzed iron-depleted form of lactoferrin, (apo-bLf) and undigested and diferric bovine lactoferrin (bLf) were evaluated against different bacterial species. Apo-bLf was less susceptible to trypsin hydrolysis compared to the diferric form and its tryptic fragments with molecular weight lower than 5000 Da had greater activity than those obtained from the diferric-bLf. It is plausible that the antimicrobial activity is exerted mainly by the interaction of the N-terminal moiety of the protein with the bacterial cell. The in silico analysis of the interdomain movements, showed that the conformation of the active N-terminal part of apo-bLf is more open than that of the diferric form. The increased accessibility of the N-terminal region seems to be responsible for the antimicrobial activity of the apo-bLf and its tryptic fragments.  相似文献   

8.
Comparative antimicrobial activity of lactoferrins from various sources (native lactoferrin from Laprot, human hololactoferrin, recombinant human lactoferrin isolated from the cultural medium of permissive cell culture transfected using pseudoadenovirus nanostructure with the human lactoferrin gene, and native bovine lactoferrin) was studied to prove the possibility of their use for development of antimicrobial drugs. It was shown that all the substances were active against the Bacillus standard strains. The antibacterial activity was almost independent of the degree of saturation the lactoferrin molecules with Fe3+. The native human lactoferrin was more active than hololactoferrin against Candida when evaluated by the minimum inhibitory concentration (MIC). Fe(3+)-Non aturated recombinant human lactoferrin demonstrated the antimicrobial activity (by MIC) similar to that of the native human lactoferrin. The results showed that native and recombinant human lactoferrins might be used for the development of intravenous and intracavitary dosage forms, while the native bovine lactoferrin could be useful in development of oral drugs.  相似文献   

9.
Lactoferrin was purified from fresh samples of goat colostrums, saturated with Fe3+ and CO3(2-) ions and crystallized by microdialysis method. The crystals belong to orthorhombic space group P2(1)2(1)2(1) with a=104.6 A, b=153.8 A, c=155.1 A and Z=4. The quality of crystals was poor, thus the intensity data were restricted to 4.0 A resolution only. The structure was determined by molecular replacement method using diferric buffalo lactoferrin as a model. The solution clearly indicated the presence of one molecule in the asymmetric unit, which corresponds to a Vm value of 7.1 A3/Da. The structure was refined with stringent constraints to an R-factor of 0.246 using all the reflections 15,870 to 4.0 A resolution. The overall structure of goat lactoferrin is essentially similar to those of buffalo and bovine lactoferrins. However, the iron-binding environment in goat lactoferrin is somewhat different, in which 2 CO3(2-). ions have low occupancies. The solvent content of approximately 84% was very high in the present case which explains the fragility of the crystals of goat lactoferrin. In a way, it is very surprising that the crystals grow at all, although crystals with solvent as high as 89% have been reported.  相似文献   

10.
A variant of human transferrin with abnormal properties.   总被引:5,自引:0,他引:5       下载免费PDF全文
Normal human skin fibroblasts cultured in vitro exhibit specific binding sites for 125I-labelled transferrin. Kinetic studies revealed a rate constant for association (Kon) at 37 degrees C of 1.03 X 10(7) M-1 X min-1. The rate constant for dissociation (Koff) at 37 degrees C was 7.9 X 10(-2) X min-1. The dissociation constant (KD) was 5.1 X 10(-9) M as determined by Scatchard analysis of binding and analysis of rate constants. Fibroblasts were capable of binding 3.9 X 10(5) molecules of transferrin per cell. Binding of 125I-labelled diferric transferrin to cells was inhibited equally by either apo-transferrin or diferric transferrin, but no inhibition was evident with apo-lactoferrin, iron-saturated lactoferrin, or albumin. Preincubation of cells with saturating levels of diferric transferrin or apo-transferrin produced no significant change in receptor number or affinity. Preincubation of cells with ferric ammonium citrate caused a time- and dose-dependent decrease in transferrin binding. After preincubation with ferric ammonium citrate for 72 h, diferric transferrin binding was 37.7% of control, but no change in receptor affinity was apparent by Scatchard analysis. These results suggest that fibroblast transferrin receptor number is modulated by intracellular iron content and not by ligand-receptor binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号