首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Three strains of Rhodobacter sphaeroides of diverse origin have been under investigation in our laboratory for their genome complexities, including the presence of multiple chromosomes and the distribution of essential genes within their genomes. The genome of R. sphaeroides 2.4.1 has been completely sequenced and fully annotated, and now two additional strains (ATCC 17019 and ATCC 17025) of R. sphaeroides have been sequenced. Thus, genome comparisons have become a useful approach in determining the evolutionary relationships among different strains of R. sphaeroides. In this study, the concatenated chromosomal sequences from the three strains of R. sphaeroides were aligned, using Mauve, to examine the extent of shared DNA regions and the degree of relatedness among their chromosome-specific DNA sequences. In addition, the exact intra- and interchromosomal DNA duplications were analyzed using Mummer. Genome analyses employing these two independent approaches revealed that strain ATCC 17025 diverged considerably from the other two strains, 2.4.1 and ATCC 17029, and that the two latter strains are more closely related to one another. Results further demonstrated that chromosome II (CII)-specific DNA sequences of R. sphaeroides have rapidly evolved, while CI-specific DNA sequences have remained highly conserved. Aside from the size variation of CII of R. sphaeroides, variation in sequence lengths of the CII-shared DNA regions and their high sequence divergence among strains of R. sphaeroides suggest the involvement of CII in the evolution of strain-specific genomic rearrangements, perhaps requiring strains to adapt in specialized niches.  相似文献   

2.
ABSTRACT: BACKGROUND: Gene duplication is a major force that contributes to the evolution of new metabolic functions in all organisms. Rhodobacter sphaeroides 2.4.1 is a bacterium that displays a wide degree of metabolic versatility and genome complexity and therefore is a fitting model for the study of gene duplications in bacteria. A comprehensive analysis of 234 duplicate gene-pairs in R. sphaeroides was performed using structural constraint and expression analysis. RESULTS: The results revealed that most gene-pairs in in-paralogs are maintained under negative selection (omega [less than or equal to] 0.3), but the strength of selection differed among in-paralog gene-pairs. Although in-paralogs located on different replicons are maintained under purifying selection, the duplicated genes distributed between the primary chromosome (CI) and the second chromosome (CII) are relatively less selectively constrained than the gene-pairs located within each chromosome. The mRNA expression patterns of duplicate gene-pairs were examined through microarray analysis of this organism grown under seven different growth conditions. Results revealed that that ~62% of paralogs have similar expression patterns (cosine [greater than or equal to] 0.90) over all of these growth conditions, while only ~7% of paralogs are very different in their expression patterns (cosine < 0.50). CONCLUSIONS: The overall findings of the study suggest that only a small proportion of paralogs contribute to the metabolic diversity and the evolution of novel metabolic functions in R. sphaeroides. In addition, the lack of relationships between structural constraints and gene-pair expression suggests that patterns of gene-pair expression are likely associated with conservation or divergence of gene-pair promoter regions and other coregulation mechanisms.  相似文献   

3.
4.
C Mackenzie  A E Simmons  S Kaplan 《Genetics》1999,153(2):525-538
The existence of multiple chromosomes in bacteria has been known for some time. Yet the extent of functional solidarity between different chromosomes remains unknown. To examine this question, we have surveyed the well-described genes of the tryptophan biosynthetic pathway in the multichromosomal photosynthetic eubacterium Rhodobacter sphaeroides 2.4.1. The genome of this organism was mutagenized using Tn5, and strains that were auxotrophic for tryptophan (Trp(-)) were isolated. Pulsed-field gel mapping indicated that Tn5 insertions in both the large (3 Mb CI) and the small (0.9 Mb CII) chromosomes created a Trp(-) phenotype. Sequencing the DNA flanking the sites of the Tn5 insertions indicated that the genes trpE-yibQ-trpGDC were at a locus on CI, while genes trpF-aroR-trpB were at locus on CII. Unexpectedly, trpA was not found downstream of trpB. Instead, it was placed on the CI physical map at a locus 1.23 Mb away from trpE-yibQ-trpGDC. To relate the context of the R. sphaeroides trp genes to those of other bacteria, the DNA regions surrounding the trp genes on both chromosomes were sequenced. Of particular significance was the finding that rpsA1, which encodes ribosomal protein S1, and cmkA, which encodes cytidylate monophosphate kinase, were on CII. These genes are considered essential for translation and chromosome replication, respectively. Southern blotting suggested that the trp genes and rpsA1 exist in single copy within the genome. To date, this topological organization of the trp "operon" is unique within a bacterial genome. When taken with the finding that CII encodes essential housekeeping functions, the overall impression is one of close regulatory and functional integration between these chromosomes.  相似文献   

5.
A 600-bp oriT-containing DNA fragment from the Rhodobacter sphaeroides 2.4.1 S factor (oriTs) (A. Suwanto and S. Kaplan, J. Bacteriol. 174:1124-1134, 1992) was shown to promote polarized chromosomal transfer when provided in cis. A Kmr-oriTs-sacR-sacB (KTS) DNA cassette was constructed by inserting oriTs-sacR-sacB into a pUTmini-Tn5 Km1 derivative. With this delivery system, KTS appeared to be randomly inserted into the genome of R. sphaeroides, generating mutant strains which also gained the ability to act as Hfr donors. An AseI site in the Kmr cartridge (from Tn903) and DraI and SnaBI sites in sacR-sacB (the levansucrase gene from Bacillus subtilis) were employed to localize the KTS insertion definitively by pulsed-field gel electrophoresis. The orientation of oriTs at the site of insertion was determined by Southern hybridization analysis. Interrupted mating experiments performed with some of the Hfr strains exhibited a gradient of marker transfer and further provided genetic evidence for the circularity and presence of two chromosomal linkage groups in this bacterium. The genetic and environmental conditions for optimized mating between R. sphaeroides strains were also defined. The results presented here and our physical map of the R. sphaeroides 2.4.1 genome are discussed in light of the presence of two chromosomes.  相似文献   

6.
This report provides a summary of the sequencing project of the small chromosome (CII) of Rhodobacter sphaeroides 2.4.1(T),and introduces the first version of the genome database of this bacterium. The database organizes and describes diverse sets of biological information. The main role of the R.sphaeroides genome database (RsGDB) is to provide public access to the collected genomic information for R.sphaeroides via the World-Wide Web at http://utmmg.med.uth.tmc.edu/sphaeroides. The database allows the user access to hundreds of low redundancy R.sphaeroides sequences for further database searching, a summary of our current search results, and other allied information pertaining to this bacterium.  相似文献   

7.
C S Fornari  S Kaplan 《Gene》1983,25(2-3):291-299
The presumptive genes for the ribulose 1,5-bisphosphate carboxylase large subunit and for nitrogenase-specific components from Rhodopseudomonas sphaeroides and several other photosynthetic bacteria were identified and located by interspecific probing. Restriction digests of R. sphaeroides genomic DNA were hybridized under stringent conditions to cloned DNA from Rhodospirillum rubrum (plasmid pRR2119 carrying the carboxylase gene) and Klebsiella pneumoniae (pSA30 carrying the nitrogenase genes). The nitrogenase probe hybridized with different signal intensities to several distinct HindIII, BglII, EcoRI, BamHI and PvuII fragments of R. sphaeroides 2.4.1.DNA. The carboxylase probe hybridized to only single R. sphaeroides 2.4.1.DNA fragments produced with all five restriction enzymes. A 3000-bp EcoRI-BamHI R. sphaeroides 2.4.1.DNA fragment carrying the presumptive gene for the large subunit of ribulose 1,5-bisphosphate carboxylase was cloned into pBR322 and positively identified by probing with a 32P-labeled internal PstI fragment of the Rhodospirillum carboxylase gene.  相似文献   

8.
Bavishi A  Abhishek A  Lin L  Choudhary M 《Génome》2010,53(9):675-687
Although many bacteria with two chromosomes have been sequenced, the roles of such complex genome structuring are still unclear. To uncover levels of chromosome I (CI) and chromosome II (CII) sequence divergence, Mauve 2.2.0 was used to align the CI- and CII-specific sequences of bacteria with complex genome structuring in two sets of comparisons: the first set was conducted among the CI and CII of bacterial strains of the same species, while the second set was conducted among the CI and CII of species in Alphaproteobacteria that possess two chromosomes. The analyses revealed a rapid evolution of CII-specific DNA sequences compared with CI-specific sequences in a majority of organisms. In addition, levels of protein divergence between CI-specific and CII-specific genes were determined using phylogenetic analyses and confirmed the DNA alignment findings. Analysis of synonymous and nonsynonymous substitutions revealed that the structural and functional constraints on CI and CII genes are not significantly different. Also, horizontal gene transfer estimates in selected organisms demonstrated that CII in many species has acquired higher levels of horizontally transferred segments than CI. In summary, rapid evolution of CII may perform particular roles for organisms such as aiding in adapting to specialized niches.  相似文献   

9.
DNA repair mutants of Rhodobacter sphaeroides.   总被引:1,自引:1,他引:0       下载免费PDF全文
The genome of the photosynthetic eubacterium Rhodobacter sphaeroides 2.4.1 comprises two chromosomes and five endogenous plasmids and has a 65% G+C base composition. Because of these characteristics of genome architecture, as well as the physiological advantages that allow this organism to live in sunlight when in an anaerobic environment, the sensitivity of R. sphaeroides to UV radiation was compared with that of the more extensively studied bacterium Escherichia coli. R. sphaeroides was found to be more resistant, being killed at about 60% of the rate of E. coli. To begin to analyze the basis for this increased resistance, a derivative of R. sphaeroides, strain 2.4.1 delta S, which lacks the 42-kb plasmid, was mutagenized with a derivative of Tn5, and the transposon insertion mutants were screened for increased UV sensitivity (UVs). Eight UVs strains were isolated, and the insertion sites were determined by contour-clamped homogeneous electric field pulsed-field gel electrophoresis. These mapped to at least five different locations in chromosome I. Preliminary analysis suggested that these mutants were deficient in the repair of DNA damage. This was confirmed for three loci by DNA sequence analysis, which showed the insertions to be within genes homologous to uvrA, uvrB, and uvrC, the subunits of the nuclease responsible for excising UV damage.  相似文献   

10.
11.
Plasmid distribution and analyses in Rhodopseudomonas sphaeroides   总被引:11,自引:0,他引:11  
Ten strains of Rhodopseudomonas sphaeroides were analyzed by agarose gel electrophoresis for plasmid DNA content and, by filter-hybridizations, for their molecular relationships. All strains examined contained at least one plasmid. Several strains carried as many as six different plasmid species with sizes ranging from 42 to 140 kilobases (kb). Those larger than 89 kb showed extensive homology with each other; the 42-kb plasmid of R. sphaeroides strain 2.4.1 was homologous to the smaller plasmid DNA of three other strains. A partial map of the 42-kb plasmid derived from R. sphaeroides 2.4.1 was prepared by analysis of restriction endonuclease digests. Cross-hybridization among the large plasmids indicated that those present in any one strain of R. sphaeroides showed homology to one or more of the large plasmids detected in strains L and 2.4.1.  相似文献   

12.
Pulsed-field gel electrophoresis following the use of rare cutting restriction endonucleases together with Southern hybridization, using markers distributed on chromosomes I and II of Rhodobacter sphaeroides 2.4.1, has been used to examine approximately 25 strains of R. sphaeroides in an effort to assess the occurrence of genome complexity in these strains. The results suggest that genome complexity is widespread and is accompanied by substantial genomic heterogeneity.  相似文献   

13.
Immunoblots of sodium dodecyl sulfate-polyacrylamide gels derived from outer membrane preparations of various strains of Rhodopseudomonas sphaeroides revealed polypeptides which cross-reacted with antibody directed against the major outer membrane protein of R. sphaeroides 2.4.1. Immunochemical quantitation of the major outer membrane protein of strain 2.4.1 showed approximately 5.5 x 10(4) molecules per cell whether cells were grown chemoheterotrophically or photoheterotrophically. Rhodospirillum rubrum outer membranes contained a cross-reactive protein, whereas the outer membranes derived from Rhodopseudomonas capsulata and Paracoccus denitrificans showed no cross-reaction with the antibody prepared against the major outer membrane protein from R. sphaeroides 2.4.1.  相似文献   

14.
15.
To investigate genome size evolution, it is usually informative to compare closely related species that vary dramatically in genome size. A whole genome duplication (polyploidy) that occurred in rice (Oryza sativa) about 70 million years ago has been well documented based on current genome sequencing. The presence of three distinct duplicate blocks from the polyploidy, of which one duplicated segment in a block is intact (no sequencing gap) and less than half the length of its syntenic duplicate segment, provided an excellent opportunity for elucidating the causes of their size variation during the post-polyploid time. The results indicated that incongruent patterns (shrunken, balanced and inflated) of chromosomal size evolution occurred in the three duplicate blocks, spanning over 30 Mb among chromosomes 2, 3, 6, 7, and 10, with an average of 20.3% for each. DNA sequences of chromosomes 2 and 3 appeared to had become as short as about half of their initial sequence lengths, chromosomes 6 and 7 had remained basically balanced, and chromosome 10 had become dramatically enlarged (approximately 70%). The size difference between duplicate segments of rice was mainly caused by variations in non-repetitive DNA loss. Amplification of long terminal repeat retrotransposons also played an important role. Moreover, a relationship seems to exist between the chromosomal size differences and the nonhomologous combination in corresponding regions in the rice genome. These findings help shed light on the evolutionary mechanism of genomic sequence variation after polyploidy and genome size evolution.  相似文献   

16.
A macrorestriction map representing the complete physical map of the Rhodobacter sphaeroides 2.4.1 chromosomes has been constructed by ordering the chromosomal DNA fragments from total genomic DNA digested with the restriction endonucleases AseI, SpeI, DraI, and SnaBI. Junction fragments and multiple restriction endonuclease digestions of the chromosomal DNAs derived from wild-type and various mutant strains, in conjunction with Southern hybridization analysis, have been used to order all of the chromosomal DNA fragments. Our results indicate that R. sphaeroides 2.4.1 carries two different circular chromosomes of 3,046 +/- 95 and 914 +/- 17 kilobases (kb). Both chromosome I (3,046 kb) and chromosome II (914 kb) contain rRNA cistrons. It appears that only a single copy of the rRNA genes is contained on chromosome I (rrnA) and that two copies are present on chromosome II (rrnB, rrnC). Additionally, genes for glyceraldehyde 3-phosphate dehydrogenase (gapB) and delta-aminolevulinic acid synthase (hemT) are found on chromosome II. In each instance, there appears to be a second copy of each of these genes on chromosome I, but the extent of the DNA homology is very low. Genes giving rise to enzymes involved in CO2 fixation and linked to the gene encoding the form I enzyme (i.e., the form I region) are on chromosome I, whereas those genes representing the form II region are on chromosome II. The complete physical and partial genetic maps for each chromosome are presented.  相似文献   

17.
The nucleotide sequence of the 1794-bp fragment containing the crtD gene from Rhodobacter sphaeroides 2.4.1 encoding for methoxyneurosporene dehydrogenase has been determined. A 63% sequence identity was found when compared with the nucleotide sequence of the crtD gene from Rhodobacter capsulatus. A putative regulatory palindromic motif present in the crtD gene from R. capsulatus also exists in this gene from R. sphaeroides. The translated open reading frame of the crtD gene of R. sphaeroides has identified a polypeptide of 495 amino acids which shares a 56% sequence identity with the same CrtD protein of R. capsulatus. The N- and C-termini of these CrtD proteins present a high degree of similarity with the N- and C-termini of other carotenoid dehydrogenases including those encoded by crtI genes. This is in good agreement with the previously hypothesized homology between CrtI and CrtD proteins.  相似文献   

18.
Rhodobacter sphaeroides 2.4.1 is an α-3 purple nonsulfur eubacterium with an extensive metabolic repertoire. Under anaerobic conditions, it is able to grow by photosynthesis, respiration and fermentation. Photosynthesis may be photoheterotrophic using organic compounds as both a carbon and a reducing source, or photoautotrophic using carbon dioxide as the sole carbon source and hydrogen as the source of reducing power. In addition, R. sphaeroides can grow both chemoheterotrophically and chemoautotrophically. The structural components of this metabolically diverse organism and their modes of integrated regulation are encoded by a genome of ∼4.5 Mb in size. The genome comprises two chromosomes CI and CII (2.9 and 0.9 Mb, respectively) and five other replicons. Sequencing of the genome has been carried out by two groups, the Joint Genome Institute, which carried out shotgun-sequencing of the entire genome and The University of Texas-Houston Medical School, which carried out a targeted sequencing strategy of CII. Here we describe our current understanding of the genome when data from both of these groups are combined. Previous work had suggested that the two chromosomes are equal partners sharing responsibilities for fundamental cellular processes. This view has been reinforced by our preliminary analysis of the virtually completed genome sequence. We also have some evidence to suggest that two of the plasmids, pRS241a and pRS241b encode chromosomal type functions and their role may be more than that of accessory elements, perhaps representing replicons in a transition state. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
Rhodobacter sphaeroides 2.4.1, which is incapable of denitrification, has been found to carry nnrR, the nor operon, and nnrS, which are utilized for denitrification in R. sphaeroides 2.4.3. The gene encoding nitrite reductase was not found in 2.4.1. Expression of beta-galactosidase activity from a norB-lacZ fusion was activated when cells of 2.4.1 were incubated with NO-producing bacteria. This result indicates that the products of nnrR and the genes flanking it are utilized when 2.4.1 is growing in an environment where denitrification occurs.  相似文献   

20.
It has been proposed that two events of duplication of the entire genome occurred early in vertebrate history (2R hypothesis). Several phylogenetic studies with a few gene families (mostly Hox genes and proteins from the MHC) have tried to confirm these polyploidization events. However, data from a single locus cannot explain the evolutionary history of a complete genome. To study this 2R hypothesis, we have taken advantage of the phylogenetic position of the lamprey to study the history of gene duplications in vertebrates. We selected most gene families that contain several paralogous genes in vertebrates and for which lamprey genes and an out-group are known in databases. In addition, we isolated members of the nuclear receptor superfamily in lamprey. Hagfish genes were also analyzed and found to confirm the lamprey gene analysis. Consistent with the 2R hypothesis, the phylogenetic analysis of 33 selected gene families, dispersed through the whole genome, revealed that one period of gene duplication arose before the lamprey-gnathostome split and this was followed by a second period of gene duplication after the lamprey-gnathostome split. Nevertheless, our analysis suggests that numerous gene losses and other gene-genome duplications occurred during the evolution of the vertebrate genomes. Thus, the complexity of all the paralogy groups present in vertebrates should be explained by the contribution of genome duplications (2R hypothesis), extra gene duplications, and gene losses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号