首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The level of chromium (Cr) contamination in soils and irrigated mine wastewater at South Kaliapani chromite mine region of Orissa, (India) were investigated. Chromium bioaccumulation in rice plants (Oryza sativa L. cv. Khandagiri) irrigated with Cr+6 contaminated mine wastewater was analyzed along with its attenuation from mine wastewater. The levels of Cr+6 in irrigated mine wastewaters in successive rice grown plots were analyzed on 75 days and 100 days after transplantation of seedlings. Total chromium content in different parts of rice plants and soil samples from different plots was analyzed during harvesting stage (125 days after transplantation). Cr accumulation was significantly high in surface soils (0-20 cm) with a mean value of 11,170 mg kg(-1), but it decreased significantly after the crop harvest. About 70% to 90% reduction of Cr+6 levels was observed in irrigated mine wastewater when passed through successive rice plots. High bio-concentration of Cr in leaves with values ranging from 125-498 mg kg(-1) as compared to stem (25-400 mg kg(-1)) and grain (5-23 mg kg(-1)) was noticed. The reduction of Cr+6 levels is related to plant age, high biomass and area of water passage and was attributed to rhizofiltration technique.  相似文献   

2.
Summary Paragrass, wheat, barley, gram, lady's finger, and dhaincha were grown in a soil whose ESP had been adjusted to 1.7, 30.2, 41.4, 58.4, and 77.9. The growth in terms of dry weight of tops and roots decreased with increasing levels of exchangeable sodium percentage (ESP). The sodium-tolerance index was the highest in paragrass (lower-root CEC) followed by barley and wheat (medium root CEC). Dhaincha, gram, and lady's finger (high root CEC) were relatively sensitive crops having low sodium-tolerance index. Fifty per cent reduction in the yield of wheat, barley, paragrass, lady's finger, dhaincha and gram occurred when ESP was 41, 43, 55, 35, 37, and 36, respectively. Increasing ESP of the soil was associated with increasing Na and decreasing Ca, Mg, and K contents of the tops and roots.  相似文献   

3.
Greenhouse and field trial experiments were performed to evaluate the use of Chromolaena odorata with various soil amendments for phytoextraction of Pb contaminated soil Pb mine soils contain low amount of nutrients, so the additions of organic (cow manure) and inorganic (Osmocote and NH4NO3 and KCl) fertilizers with EDTA were used to enhance plant growth and Pb accumulation. Greenhouse study showed that cow manure decreased available Pb concentrations and resulted in the highest Pb concentration in roots (4660 mg kg(-1)) and shoots (389.2 mg kg(-1)). EDTA increased Pb accumulation in shoots (17-fold) and roots (11-fold) in plants grown in soil with Osmocote with Pb uptake up to 203.5 mg plant(-1). Application of all fertilizers had no significant effects on relative growth rates of C. odorata. Field trial study showed that C. odorata grown in soil with 99545 mg kg(-1) total Pb accumulated up to 3730.2 and 6698.2 mg kg(-1) in shoots and roots, respectively, with the highest phytoextraction coefficient (1.25) and translocation factor (1.18). These results indicated that C. odorata could be used for phytoextraction of Pb contaminated soil. In addition, more effective Pb accumulation could be enhanced by Osmocote fertilizer. However, the use of EDTA in the field should be concerned with their leaching problems.  相似文献   

4.
The abandoned chromite-asbestos mines are located in the Roro hills, West Singhbhum, Jharkhand, India, where mining operation ceased in 1983, and since then these mines are causing environmental pollution. The present study was planned to phytoremediate these metalloid and metal contaminated mine waste by using two aromatic grasses, Cymbopogon citratus and Chrysopogon zizanioides by applying different proportions of amendments (chicken manure, farmyard manure and garden soil). Mine waste has neutral pH, low electrical conductivity and organic carbon with higher concentration of total metals (Cr and Ni) as compared to soil. Application of manures resulted significant improvements of mine waste characteristics and plant growth, reduction in the availability of total extractable toxic metals (Cr, Ni) and increase in Mn, Zn and Cu concentration in the substrate. The maximum growth and biomass production for C. citratus and C. zizanioides were found in T-IV combination comprising of mine waste (90%), chicken manure (2.5%), farmyard manure (2.5%) and garden soil (5%). Addition of T-IV combination also resulted in low Cr and Ni accumulation in roots and reduction in translocation to shoots. Study indicates that C. citratus and C. zizanioides can be used for phytostabilization of abandoned chromite-asbestos mine waste with amendments.  相似文献   

5.
The potential of an ornamental shrub Crown of thorns (Euphorbia milli) was evaluated for remediation of soil contaminated with Cr. The plant is one of the rare succulent ornamental shrubs with a slow to moderate growth rate and is capable of blooming almost year-round. The plant could tolerate well up to 75 mg of applied Cr and beyond that there was mortality of plants. Though the plant could not be classified as a hyperaccumulator, the plant was still very efficient in translocating Cr from roots to shoots as evident from the data on uptake and translocation efficiency values. The translocation efficiency of over 80% in our study demonstrates that a large proportion of Cr has been translocated to the harvestable biomass of the plant and therefore, this plant could be effectively recommended for the remediation of soils contaminated with low to medium level of contamination i.e., up to 50 mg/kg soil.  相似文献   

6.
Cs accumulation characteristics by Sorghum bicolor were investigated in hydroponic system (Cs level at 50–1000 μmol/L) and in soil (Cs-spiked concentration was 100 and 400 mg/kg soil). Two varieties of S. bicolor Cowly and Nengsi 2# grown on pot soil during the entire growth period (100 days) did not show significant differences on the height, dry weight (DW), and Cs accumulation. S. bicolor showed the potential phytoextraction ability for Cs-contaminated soil with the bioaccumulation factor (BCF) and the translocation factor (TF) values usually higher than 1 in soil system and in hydroponic system. The aerial parts of S. bicolor contributed to 86–92% of the total removed amounts of Cs from soil. Cs level in solution at 100 μmol/L gave the highest BCF and TF values of S. bicolor. Cs at low level tended to transfer to the aerial parts, whereas Cs at high level decreased the transfer ratio from root to shoot. In soil, the plant grew well when Cs spiked level was 100 mg/kg soil, but was inhibited by Cs at 400 mg/kg soil with Cs content in sorghum reaching 1147 mg/kg (roots), 2473 mg/kg (stems), and 2939 mg/kg (leaves). In hydroponic system, average Cs level in sorghum reached 5270 mg/kg (roots) and 4513 mg/kg (aerial parts), without significant damages to its biomass at 30 days after starting Cs treatment. Cs accumulation in sorghum tissues was positively correlated with the metal concentration in medium.  相似文献   

7.
对五彩湾工业区周边21个采样点的梭梭(Hadoxylon)和琵琶柴(Reaummuria soongorica)的Zn、Cu、Cr、Pb、As、Hg 6种重金属元素含量测定,运用统计学方法和地统计插值法分析其茎叶和根部重金属含量变化情况和空间分布特征,并综合评价其污染程度和潜在生态危害性。结果表明:梭梭和琵琶柴植株Hg含量的最大值和均值都超出新疆土壤背景值0.017 mg/kg,除梭梭根部的均值0.060 mg/kg未超出国家土壤背景值0.065 mg/kg,在二者其他部位的最大值和均值都已超出;琵琶柴整株中Cr最大值72.62 mg/kg和Zn最大值97.61 mg/kg均超出新疆土壤背景值49.3 mg/kg和国家土壤背景值61 mg/kg,Pb元素未被检出。插值精度方面,Hg、As的RMSE较小,分别为0.263和0.443,预测模型中Hg的R~2为0.72,Cu的R~2为0.67,能较好地估计预测样点的重金属含量,Zn的R~2为0.31,精度较低;插值结果,琵琶柴中的Zn、Cr、As、Hg含量较高的区域均在工业园区内部及周围,受人为扰动程度较大。梭梭和琵琶柴中Hg元素分别为中度污染和重度污染;Hg元素为中等潜在危害程度高于其他4种元素。  相似文献   

8.
The aim of this study was to investigate effect of calcium on growth, survival, essential oil yield and chemical compositions of vetiver grass grown on lead contaminated soils. Calcium inform of CaCO3 (0, 2000, 4000, 6000 mg Ca kg(-1)) was added to river sand soils containing 4000 mg Pb kg(-1) dry soil. Results showed that, in the absence of calcium treatment, no plants survived after 2 weeks of cultivation, while the rest grew well to the end of the experimental period (42 weeks). Calcium treatments generally resulted in a slight decrease in biomass. Interestingly, an increase in calcium over 2000 mg kg(-1) did not result in a decrease in accumulation of lead in vetiver roots and shoots. The levels of lead in roots and shoots under calcium treatments were around 2000 and 90 mg kg(-1) dry weight, respectively. The addition of CaCO3 did not improve vetiver essential oil yield and chemical composition compared to the control. A level of applied CaCO3 about half of the lead concentration in soils was sufficient to improve vetiver growth and survival, and accumulate high concentrations of lead in the roots. This finding can be applied for re-vegetation of lead contaminated soils using vetiver.  相似文献   

9.
Several anthropogenic and natural sources are considered as the primary sources of toxic metals in the environment. The current study investigates the level of heavy metals contamination in the flora associated with serpentine soil along the Mafic and Ultramafic rocks northern-Pakistan. Soil and wild native plant species were collected from chromites mining affected areas and analyzed for heavy metals (Cr, Ni, Fe, Mn, Co, Cu and Zn) using atomic absorption spectrometer (AAS-PEA-700). The heavy metal concentrations were significantly (p < 0.01) higher in mine affected soil as compared to reference soil, however Cr and Ni exceeded maximum allowable limit (250 and 60 mg kg?1, respectively) set by SEPA for soil. Inter-metal correlations between soil, roots and shoots showed that the sources of contamination of heavy metals were mainly associated with chromites mining. All the plant species accumulated significantly higher concentrations of heavy metals as compared to reference plant. The open dumping of mine wastes can create serious problems (food crops and drinking water contamination with heavy metals) for local community of the study area. The native wild plant species (Nepeta cataria, Impatiens bicolor royle, Tegetis minuta) growing on mining affected sites may be used for soil reclamation contaminated with heavy metals.  相似文献   

10.
BackgroundFenugreek is known to have good anti-diabetes properties. Moreover, several studies accounted that the trivalent form of chromium [Cr(III)] also have anti-diabetic properties. However, its hexavalent form i.e., Cr(VI) is known to be highly toxic and carcinogenic to living beings and retarded plant growth even if it is present in low concentration in soil. Many plant growth-promoting rhizobacteria (PGPR) are reported to have the potential to reduce the Cr(VI) into Cr(III) in soil. In view of the above, the present objective was designed to effectively utilize Cr(VI) reducing PGPRs for the growth and development of fenugreek plant in Cr(VI) amended soil, apart from reducing Cr(VI) in soil and fortification of Cr(III) in the aerial part of plants.MethodsThe experiment was carried out to evaluate the effect of Cr(VI)-reducing PGPRs viz. Bacillus cereus (SUCR44); Microbacterium sp. (SUCR140); Bacillus thuringiensis (SUCR186) and B. subtilis (SUCR188) on growth, uptake and translocation of Cr as well as other physiological parameters in fenugreek grown under artificially Cr(VI) amended soil (100 mg kg−1 of Cr(VI) in soil).ResultsThe aforementioned concentration of Cr(VI) in soil cause severe reduction in root length (41 %), plant height (43 %), dry root (38 %) and herb biomass (48 %), when compared with control negative (CN; uninoculated plant not grown in Cr(VI) contaminated soil). However, the presence of Microbacterium sp.˗SURC140 (MB) mitigates the Cr toxicity resulting in improved root length (92 %), plant height (86 %), dry root (74 %) and herb biomass (99 %) as compared with control positive (CP; uninoculated plants grown in Cr(VI) contaminated soil). The maximum reduction in bioavailability (82 %) of Cr(VI) in soil and its uptake (50 %) by the plant were also observed in MB-treated plants. However, All Cr(VI)-reducing PGPRs failed to decrease the translocation of Cr to the aerial parts. Moreover, the plant treated with MB observed diminution in relative water content (13 %), electrolyte leakage (16%) and lipid peroxidation (38 %) as well as higher chlorophyll (37 %) carotenoids (17 %) contents and antioxidants (18%) potential.ConclusionThis study demonstrates that MB can lower the Cr(VI) toxicity to the plant by reducing the bioavailable Cr(VI), consequently reducing the Cr(VI) toxicity level in soil and helping in improving the growth and yield of fenugreek. Additionally, Cr(III) uptakes and translocation may improve the effectiveness of fenugreek in treating diabetes.  相似文献   

11.
青葙对土壤锰的耐性和富集特征   总被引:8,自引:0,他引:8  
余轲  刘杰  尚伟伟  张富珍 《生态学报》2015,35(16):5430-5436
通过盆栽试验,研究了青葙(Celosia argentea Linn.)对不同浓度(0、50、100、200、300、500 mg/kg)锰(Mn)污染土壤的吸收和积累特性。结果表明,青葙的锰含量、生物富集系数和生物量均随着土壤锰浓度的增加而增加。当土壤锰含量为300 mg/kg时,青葙生长良好。在锰浓度500 mg/kg时,青葙叶片边缘出现轻微褪绿现象,但是植株的生长未受到抑制,并且叶片生物量显著增加(P0.05)。此时,叶片中锰含量达到最大值42927 mg/kg,生物富集系数为69.20。青葙吸收的锰有95%—97%被转移到地上部分,表明该植物对锰具有很强转运能力。本研究的结果为利用青葙修复锰污染土壤提供了有力证据。  相似文献   

12.
We investigated the effects on physiological response, trace elements and nutrients accumulation of sunflower plants grown in soil contaminated with: 5 mg kg(-1) of Cd; 5 and 300 mg kg(-1) of Cd and Zn, respectively; 5, 300, and 400 mg kg(-1) of Cd, Zn, and Cu, respectively. Contaminants applied did not produce large effects on growth, except in Cd-Zn-Cu treatment in which leaf area and total dry matter were reduced, by 15%. The contamination with Cd alone did not affect neither growth nor physiological parameters, despite considerable amounts of Cd accumulated in roots and older leaves, with a high bioconcentration factor from soil to plant. By adding Zn and then Cu to Cd in soil, significant were the toxic effects on chlorophyll content and water relations due to greater accumulation of trace elements in tissues, with imbalances in nutrients uptake. Highly significant was the interaction between shoot elements concentration (Cd, Zn, Cu, Fe, Mg, K, Ca) and treatments. Heavy metals concentrations in roots always exceeded those in stem and leaves, with a lower translocation from roots to shoots, suggesting a strategy of sunflower to compartmentalise the potentially toxic elements in physiologically less active parts in order to preserve younger tissues.  相似文献   

13.
Remediation of polycyclic aromatic hydrocarbons (PAHs) contaminated alkaline saline soil with phreatophyte or "water loving plants" was investigated by spiking soil from the former lake Texcoco with 100 mg phenanthrene (Phen) kg(-1) soil, 120 mg anthracene (Ant)kg(-1) soil and 45 mg benzo(a)pyrene (BaP) kg(-1) soil and vegetating it with Athel tamarisk (Tamarix aphylla L Karst.). The growth of the Athel tamarisk was not affected by the PAHs. In soil cultivated with Athel tamarisk, the leaching of PAHs to the 32-34 cm layer decreased 2-fold compared to the uncultivated soil. The BaP concentration decreased to 39% of the initial concentration at a distance smaller than 3 cm from the roots and to 45% at a distance larger than 3cm, but 59% remained in unvegetated soil after 240 days. Dissipation of Ant and Phen decreased with depth, but not BaP. The biodegradation of PAHs was affected by their chemical properties and increased in the presence of T. aphylla, but decreased with depth.  相似文献   

14.
Mercury (Hg), arsenic (As), cadmium (Cd), and lead (Pb) are the major toxic metals released by coal mining activities in the surrounding environment. These metals get accumulated in the soils. The plants grown on the contaminated soil uptake these toxic metals in their roots and aerial parts. This study monitored the bioaccumulation of Hg and other three toxic metals in coal mine soil. The pot study of Hg accumulation in Brassica juncea showed that the extent of Hg uptake by roots and shoots of the plants grown on was high in the mature plant and Hg content in root was higher than the shoot. In the soil of unreclaimed overburden (OB) dump, the toxic metal content was higher than that of reclaimed OB dump which posed high ecological risk in the soil of unreclaimed OB dump. Bioaccumulation coefficient (BAC) value showed that Hg was not accumulated in the leaves of Dalbergia sissoo L., Gmelina arborea, Peltaphorum inerme L., Cassia seamea L, and Acacia mangium L grown on coal mine soil.  相似文献   

15.
Alfalfa was cultivated in two potted soil series obtained from two sandy soils contaminated by Cu (SM) and metal(loids)/PAH (CD). Shoot production was monitored for 8 weeks. Then, larvae of Spodoptera exigua were reared on alfalfa of both soil series for eight days. A biotest (using Phaseolus vulgaris) was used to assess the soil phytotoxicity. Increasing soil contamination reduced P. vulgaris growth, but alfalfa growth was only reduced on the SM soil series. Exposure to the SM soil was mirrored by shoot Cu and Cr concentrations of alfalfa (respectively, in mg kg ?1 DW, Cu and Cr ranged from 11.9 and 0.4 in the CTRL soil to 98.5 and 1.2 in the SM one). Exposure to the CD soil series was mirrored by shoot Zn concentrations (i.e., 48–91.6 mg kg?1 DW). Internal metal(loid) concentrations of S. exigua remained generally steady across both soil series (respectively Cd 0.05–0.16, Cr 0.5–3.3, Cu 5.8–98.5, Ni 0.6–1.6, Pb 0.4–1.3, and Zn 57–337 mg kg?1 DW), and most of the associated transfer factors were lower than 1. Here, due to the excluder phenotype of alfalfa across our TE contamination gradients, S. exigua could cope with high total metal(loid) concentration in both contaminated soils.  相似文献   

16.
The cadmium (Cd) uptake characteristics by Sorghum bicolor cv. Nengsi 2# and Cowley from the acidic sandy loam soil (pH = 6.1) during the entire growth period (100 days) were investigated in pot outdoors in a tropical district of southern China, Hainan Island. The Cd-spiked levels in soil were set as 3 and 15 mg/kg. Correspondingly, the available Cd levels in soil extracted by Mehlich III solution were 2.71 and 9.41 mg/kg, respectively. Basically, two varieties in a full growth period (100 days) did not show a significant difference in their growth and Cd uptake. Under high Cd stress, the plant growth was inhibited and its biomass weight and height decreased by 38.7–51.5% and 27.6–28.5%, respectively. However, S. bicolor showed higher bioaccumulation capability of Cd from soil to plant [bioconcentration factor (BCF)>4], and higher transfer capability of Cd from roots to shoots [translocation factor (TF)>1] under high Cd stress; Cd contents in the roots, stems, and leaves of S. bicolor reached 43.79–46.07, 63.28–70.60, and 63.10–66.06 mg/kg, respectively. S. bicolor exhibited the potential phytoextraction capability for low or moderate Cd-contamination in acidic sandy loam soil.  相似文献   

17.
Terrestrial plants as potential phytoremediators for remediation of surface soil contaminated with toxic metals have gained attention in clean-up technologies. The potential of kenaf (Hibiscus cannabinus L.) to offer a cost-effective mechanism to remediate Fe and As from landfill leachate-contaminated soil was investigated. Pot experiment employing soil polluted with treatments of Jeram landfill leachate was conducted for 120 days. Plants were harvested after 8th, 12th, and 16th weeks of growth. Accumulation of Fe and As was assessed based on Bioconcentration Factor and Translocation Factor. Results showed sequestration of 0.06-0.58 mg As and 66.82-461.71 mg Fe per g plant dry weight in kenaf root, which implies that kenaf root can be an bioavailable sink for toxic metals. Insignificant amount of Fe and As was observed in the aerial plant parts (< 12% of total bioavailable metals). The ability of kenaf to tolerate these metals and avoid phytotoxicity could be attributed to the stabilization of the metals in the roots and hence reduction of toxic metal mobility (TF < 1). With the application of leachate, kenaf was also found to have higher biomass and subsequently recorded 11% higher bioaccumulation capacity, indicating its suitability for phytoextraction of leachate contaminated sites.  相似文献   

18.
Restoration of metalliferous mine soils requires using plant species tolerant to high metal concentrations and adapted to nutrient‐poor soil. Legumes can increase plant productivity through N2‐fixation, but they are often scarce in metalliferous sites. We examined survival, growth, and tolerance of four populations of a legume, Anthyllis vulneraria, from two metalliferous (MET) Zn‐Pb mine sites, Avinières (AV) ([Zn‐EDTA] = 26,000 mg/kg) and Eylie (EY) ([Zn‐EDTA] = 4,632 mg/kg), and two non‐metalliferous (NMET) sites located in the south of France with the aim to select the most appropriate populations for restoration of mined soils. In a common garden experiment, plants from each population were reciprocally grown in soil from the provenance of each population. The two NMET populations exhibited high mortality and low growth rates in soil from the mined sites. The AV MET exhibited a high growth rate in metalliferous soils, but showed high mortality in non‐metalliferous soils. The growth of the EY MET was very low in the AV‐contaminated soil, but was the highest of all populations in moderately and non‐metalliferous soils. Plants from the AV MET population showed a high growth and survival in metalliferous soil and would be appropriate in the restoration of metal‐contaminated sites (>30,000 mg Zn kg?1). The EY MET population would be adapted to the restoration of moderate metal‐contaminated soils (<30,000 mg Zn kg?1). Taking into account the broad distribution of A. vulneraria, these two populations could be suitable for the restoration of derelict mine sites in mediterranean and temperate regions of Europe and North America.  相似文献   

19.
Abstract

The toxicity, mobility and bioavailability of Cr, a versatile industrial metal and a contaminant, depends on its chemical form, viz: Cr(lll) and Cr(VI). It may enter humans through plants grown on contaminated soil or irrigated by contaminated water. The phytoavailability and transfer through agricultural food chains requires an understanding of mechanisms of Cr uptake and translocation by plants. Xylem sap transports both nutrient and non-nutrient ions after absorption by roots to aerial parts of the plant. lt transports cations by complexation with organic ligands. Trivalent chromium, though prone to hydrolysis, also complexes O donor ligands. The chemical form in which Cr(lll) is transported by xylem sap was investigated. ln vitro studies were performed by mixing the xylem sap of maize plants at three stages of plant growth with radiotagged Cr(III). The speciation change was investigated after 10 days and 30 days by anion and cation exchange elution chromatography. The elution curves were compared with those of pure Cr(III) and Cr(III) complexes of different synthetic acids. Complexation of Cr(III) with ligands of xylem sap especially with carboxylates was evident. Cationic Cr(III) was vitally being transported as anionic organic complex species. The major species seemed to be that of Cr(III)-citrate. Citric acid was the major complexing acid of xylem sap as determined by HPLC. These mobile and soluble complexes may get immobilized and stored in leaves and other edible plant parts. This may also be a mechanism used by plants for detoxification of toxic Cr(VI) which may become reduced and then complexed.  相似文献   

20.
以露地盆栽的苏丹草、向日葵、芥菜、萝卜4种植物为对象,研究它们对土壤中不同浓度(0、2.5、5.0、10.0、20.0、40.0mg/kg)133Cs、88Sr的吸收积累状况,并比较它们对133Cs、88Sr污染土壤的修复效率。结果显示:(1)4种植物单株生物量在各浓度处理下均表现为向日葵>萝卜>芥菜>苏丹草,但它们对133Cs的吸收能力为萝卜>苏丹草>向日葵>芥菜,单株133Cs累积量为向日葵>萝卜>苏丹草>芥菜,单株88Sr累积量表现为萝卜、向日葵>苏丹草>芥菜,而且4种植物对88Sr的吸收能力均强于133Cs。(2)萝卜在除10.0mg/kg133Cs外的各处理中富集系数均大于1,对土壤中133Cs的吸收能力较强;苏丹草在除5.0mg/kg133Cs处理外的转运系数均大于1,其余3种植物在各处理中的转运系数均低于1;88Sr在萝卜体内从根系向上转运到地上部分的能力明显高于其它3种植物,芥菜、向日葵次之。(3)4种植物对88Sr在体内向上的迁移转运能力均大于133Cs。研究表明,向日葵单株对133Cs、88Sr污染土壤的修复效率最高,萝卜次之,且向日葵和萝卜分别因其生物量和吸收能力优势而对被污染土壤中的133Cs和88Sr具有更强的提取能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号