首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
In C(4) photosynthesis, a part of CO(2) fixed by phosphoenolpyruvate carboxylase (PEPC) leaks from the bundle-sheath cells. Because the CO(2) leak wastes ATP consumed in the C(4) cycle, the leak may decrease the efficiency of CO(2) assimilation. To examine this possibility, we studied the light dependence of CO(2) leakiness (phi), estimated by the concurrent measurements of gas exchange and carbon isotope discrimination, initial activities of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) and pyruvate, orthophosphate dikinase (PPDK), the phosphorylation state of PEPC and the CO(2) assimilation rate using leaves of Amaranthus cruentus (NAD-malic enzyme subtype, dicot) plants grown in high light (HL) and low light (LL). phi was constant at photon flux densities (PFDs) >200 micromol m(-2) s(-1) and was around 0.3. At PFDs <150 micromol m(-2) s(-1), phi increased markedly as PFD decreased. At 40 micromol m(-2) s(-1), phi was 0.76 in HL and 0.55 in LL leaves, indicating that the efficiency of CO(2) assimilation at low PFD was greater in LL leaves. The activities of Rubisco and PPDK, and the phosphorylated state of PEPC all decreased as PFD decreased. Theoretical calculations with a mathematical model clearly showed that the increase in phi with decreasing PFD contributed to the decrease in the CO(2) assimilation rate. It was also shown that the 'conventional' quantum yield of photosynthesis obtained by fitting the straight line to the light response curve of the CO(2) assimilation rate at the low PFD region is seriously overestimated. Ecological implications of the increase in phi in LL are discussed.  相似文献   

2.
Li Z  Zhang S  Hu H  Li D 《Journal of plant research》2008,121(6):559-569
Photosynthesis, leaf structure, nitrogen content and nitrogen allocation in photosynthetic functions of Cypripedium flavum were studied in a naturally varying light regime. Light-saturated leaf net photosynthetic rate (A (max)) was strongly correlated with leaf dry mass per area (LMA), mesophyll conductance (g (m)) and area-based leaf nitrogen content (N(area)), with all variables increasing with increasing irradiance. Such coordinate variation of all these parameters illustrates the plastic response of leaf structure to high light (HL). Leaf N(area) was greater under HL than in low light (LL). The fractions of leaf nitrogen partitioning in carboxylation (P (R)) and bioenergetics (P (B)) were positively related to LMA. In contrast, P (R) and P (B) decreased with increasing mass-based leaf nitrogen content (N(mass)). However, no correlation was found between leaf nitrogen investment in light harvesting (P (L)) and either LMA or N(mass). Like maximum rate of carboxylation (V (cmax)) and electron transport (J (max)), the J (max)/V (cmax) ratio, which was strongly correlated to LMA, also increased significantly with irradiance. Under HL, leaf maximum photosynthetic nitrogen efficiency (ANUE) and intrinsic water use efficiency (WUE) were greater than in LL conditions, despite a small difference in WUE. This suggests that a functional balance in the photosynthetic machinery favors leaf photosynthetic plasticity of C. flavum in response to different light conditions. Given an ample soil nitrogen supply, C. flavum may offset its susceptibility to HL by efficient nitrogen use and higher stomatal and mesophyll conductance against photoinhibition so as to keep leaf photosynthesis positive.  相似文献   

3.
Acclimation of rice photosynthesis to irradiance under field conditions   总被引:8,自引:0,他引:8  
Acclimation to irradiance was measured in terms of light-saturated photosynthetic carbon assimilation rates (P(max)), Rubisco, and pigment content in mature field-grown rice (Oryza sativa) plants in tropical conditions. Measurements were made at different positions within the canopy alongside irradiance and daylight spectra. These data were compared with a second experiment in which acclimation to irradiance was assessed in uppermost leaves within whole-plant shading regimes (10% low light [LL], 40% medium light [ML], and 100% high light [HL] of full natural sunlight). Two varieties, japonica (tropical; new plant type [NPT]) and indica (IR72) were compared. Values for Rubisco amount, chlorophyll a/b, and P(max) all declined from the top to the base of the canopy. In the artificial shading experiment, acclimation of P(max) (measured at 350 microL L(-1) CO(2)) occurred between LL and ML for IR72 with no difference observed between ML and HL. The Rubisco amount increased between ML and HL in IR72. A different pattern was seen for NPT with higher P(max) (measured at 350 microL L(-1) CO(2)) at LL than IR72 and some acclimation of this parameter between ML and HL. Rubisco levels were higher in NPT than IR72 contrasting with P(max). Comparison of data from both experiments suggests a leaf aging effect between the uppermost two leaf positions, which was not a result of irradiance acclimation. Results are discussed in terms of: (a) acclimation of photosynthesis and radiation use efficiency at high irradiance in rice, and (b) factors controlling photosynthetic rates of leaves within the canopy.  相似文献   

4.
To reveal whether hypocotyl sink activities are regulated by the aboveground parts, and whether physiology and morphology of source leaves are affected by the hypocotyl sink activities, we conducted grafting experiments using two Raphanus sativus varieties with different hypocotyl sink activities. Comet (C) and Leafy (L) varieties with high and low hypocotyl sink activities were reciprocally grafted and resultant plants were called by their scion and stock such as CC, LC, CL and LL. Growth, leaf mass per area (LMA), total non‐structural carbohydrates (TNCs) and photosynthetic characteristics were compared among them. Comet hypocotyls in CC and LC grew well regardless of the scions, whereas Leafy hypocotyls in CL and LL did not. Relative growth rate was highest in LL and lowest in CC. Photosynthetic capacity was correlated with Rubisco (ribulose 1·5‐bisphosphate carboxylase/oxygenase) content but unaffected by TNC. High C/N ratio and accumulation of TNC led to high LMA and structural LMA. These results showed that the hypocotyl sink activity was autonomously regulated by hypocotyl and that the down‐regulation of photosynthesis was not induced by TNC. We conclude that the change in the sink activity alters whole‐plant growth through the changes in both biomass allocation and leaf morphological characteristics in R. sativus.  相似文献   

5.
  • Phototropic leaf movement of plants is an effective mechanism for adapting to light conditions. Light is the major driver of plant photosynthesis. Leaf N is also an important limiting factor on leaf photosynthetic potential. Cotton (Gossypium hirsutum L.) exhibits diaheliotropic leaf movement. Here, we compared the long‐term photosynthetic acclimation of fixed leaves (restrained) and free leaves (allowed free movement) in cotton.
  • The fixed leaves and free leaves were used for determination of PAR, leaf chlorophyll concentration, leaf N content and leaf gas exchange. The measurements were conducted under clear sky conditions at 0, 7, 15 and 30 days after treatment (DAT).
  • The results showed that leaf N allocation and partitioning among different components of the photosynthetic apparatus were significantly affected by diaheliotropic leaf movement. Diaheliotropic leaf movement significantly increased light interception per unit leaf area, which in turn affected leaf mass per area (LMA), leaf N content (NA) and leaf N allocation to photosynthesis (NP). In addition, cotton leaves optimised leaf N allocation to the photosynthetic apparatus by adjusting leaf mass per area and NA in response to optimal light interception.
  • In the presence of diaheliotropic leaf movement, cotton leaves optimised their structural tissue and photosynthetic characteristics, such as LMA, NA and leaf N allocation to photosynthesis, so that leaf photosynthetic capacity was maximised to improve the photosynthetic use efficiency of light and N under high light conditions.
  相似文献   

6.
Acclimation of leaves to high light (HL; 650 micromol m(-2) s(-1)) was investigated in the long-lived epiphytic bromeliad Guzmania monostachia and compared with plants maintained under low light (LL; 50 micromol m(-2) s(-1)). Despite a 60% decrease in total chlorophyll in HL-grown plants, the chlorophyll a/b ratio remained stable. Additionally, chloroplasts from HL-grown plants had a much lower thylakoid content and reduced granal stacking. Immunofluorescent labeling techniques were used to quantify the level of photosynthetic polypeptides. HL-grown plants had 30% to 40% of the content observed in LL-grown plants for the light-harvesting complex associated with photosystems I and II, the 33-kD photosystem II polypeptide, and Rubisco. These results were verified using conventional biochemical techniques, which revealed a comparable 60% decrease in Rubisco and total soluble protein. When expressed on a chlorophyll basis, the amount of protein and Rubisco was constant for HL- and LL-grown plants. Acclimation to HL involves a tightly coordinated adjustment of photosynthesis, indicating a highly regulated decrease in the number of photosynthetic units manifested at the level of the content of light-harvesting and electron transport components, the amount of Rubisco, and the induction of Crassulacean acid metabolism. This response occurs in mature leaves and may represent a strategy that is optimal for the resource-limited epiphytic niche.  相似文献   

7.
Nakano H  Makino A  Mae T 《Plant physiology》1997,115(1):191-198
The effects of growth CO2 levels on the photosynthetic rates; the amounts of ribulose-1,5-bisphosphate carboxylase (Rubisco), chlorophyll (Chl), and cytochrome f; sucrose phosphate synthase activity; and total N content were examined in young, fully expanded leaves of rice (Oryza sativa L.). The plants were grown hydroponically under two CO2 partial pressures of 36 and 100 Pa at three N concentrations. The light-saturated photosynthesis at 36 Pa CO2 was lower in the plants grown in 100 Pa CO2 than those grown in 36 Pa CO2. Similarly, the amounts of Rubisco, Chl, and total N were decreased in the leaves of the plants grown in 100 Pa CO2. However, regression analysis showed no differences between the two CO2 treatments in the relationship between photosynthesis and total N or in the relationship between Rubisco and Chl and total N. Although a relative decrease in Rubisco to cytochrome f or sucrose phosphate synthase was found in the plants grown in 100 Pa CO2, this was the result of a decrease in total N content by CO2 enrichment. The activation state of Rubisco was also unaffected by growth CO2 levels. Thus, decreases in the photosynthetic capacity of the plants grown in 100 Pa CO2 could be simply accounted for by a decrease in the absolute amount of leaf N.  相似文献   

8.
Photosynthetic properties were examined in several hcf (high chlorophyll fluorescence 11, 21, 42 and 45) nuclear recessive mutants of maize which were previously found to have normal photochemistry and low CO2 fixation. Mutants usually either died after depletion of seed reserves (about 18 days after planting), or survived with slow growth up to 7 or 8 weeks. Both the activity and quantity of ribulose 1,5-bisphosphate carboxylase (Rubisco) were low in the mutants (5-25% of the normal siblings on a leaf area basis) and the loss of Rubisco tended to parallel the reduction in photosynthetic capacity. The Rubisco content in the mutants was often marginal for photosynthetic carbon gain, with some leaves and positions along a leaf having no net photosynthesis, while other leaves had a low carbon gain. Conversely, the activities of C4 cycle enzymes, phosphoenolpyruvate carboxylase, pyruvate, Pi dikinase, NADP-malate dehydrogenase, and NADP-malic enzyme, were the same or only slightly reduced compared to the normal siblings. The mutants had about half as much chlorophyll content per leaf area as the normal green plants. However, the Rubisco activity in the mutants was low on both a leaf area and chlorophyll basis. Low Rubisco activity and lower chlorophyll content may both contribute to the low rates of photosynthesis in the mutants on a leaf area basis.  相似文献   

9.
Physiological and chemical responses of 17 birch (Betula pendula Roth) clones to 1.5–1.7 × ambient ozone were studied in an open‐field experiment over two growing seasons. The saplings were studied for growth, foliar visible injuries, net photosynthesis, stomatal conductance, and chlorophyll, carotenoid, Rubisco, total soluble protein, macronutrient and phenolic concentrations in leaves. Elevated ozone resulted in growth enhancement, changes in shoot‐to‐root (s/r) ratio, visible foliar injuries, reduced stomatal conductance, lower late‐season net photosynthesis, foliar nutrient imbalance, changes in phenolic composition, and reductions in pigment, Rubisco and soluble protein contents indicating accelerated leaf senescence. Majority of clones responded to ozone by changing C allocation towards roots, by stomatal closure (reduced ozone uptake), and by investment in low‐cost foliar antioxidants to avoid and tolerate ozone stress. A third of clones, showing increased s/r ratio, relied on inducible efficient high‐cost antioxidants, and enhanced leaf production to compensate ozone‐caused decline in leaf‐level net photosynthesis. However, the best ozone tolerance was found in two s/r ratio‐unaffected clones showing a high constitutive amount of total phenolics, investment in low‐cost antioxidants and N distribution to leaves, and lower stomatal conductance under ozone stress. The results highlight the importance of phenolic compounds in ozone defence mechanisms in the birch population. Depending on the genotype, ozone detoxification was improved by an increase in either efficient high‐cost or less efficient low‐cost antioxidative phenolics, with close connections to whole‐plant physiology.  相似文献   

10.
Experiments are described in which tobacco (Nicotiana tabacum L.) transformed with antisense rbcS to decrease expression of ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco) was used to evaluate the contribution of Rubisco to the control of photosynthetic rate, and the impact of a changed rate of photosynthesis on whole plant composition, allocation and growth. (1) The concept of flux control coefficients is introduced. It is discussed how, with adequate precautions, a set of wild-type and transgenic plants with varying expression of an enzyme can be used to obtain experimental values for its flux control coefficient. (2) The flux control coefficient of Rubisco for photosynthesis depends on the short-term conditions. It increases in high light, or low CO2. (3) When plants are grown under constant irradiance, the flux control coefficient in the growth conditions is low (<0.2) at irradiances of up to 1000μmol quanta m−2 s−1. In a natural irradiance regime exceeding 1500μmol quanta m−2 s−2 over several hours the flux coefficient rose to 0.8–0.9. It is concluded that plants are able to adjust the balance between Rubisco and the remainder of the photosynthetic machinery, and thereby avoid a one-sided limitation of photosynthesis by Rubisco over a wide range of ambient growth irradiance regimes. (4) When the plants were grown on limiting inorganic nitrogen, Rubisco had a higher flux control coefficient (0.5). It is proposed that, in many growth conditions, part of the investment in Rubisco may be viewed as a nitrogen store, albeit bringing additional marginal advantages with respect to photosynthetic rate and water use efficiency. (5) A change in the rate of photosynthesis did not automatically translate into a change in growth rate. Several factors are identified which contribute to this buffering of growth against a changed photosynthetic rate. (6) There is an alteration in whole plant allocation, resulting in an increase in the leaf area ratio. The increase is mainly due to a higher leaf water content, and not to changes in shoot/root allocation. This increased investment in whole plant leaf area partly counteracts the decreased efficiency of photosynthesis at the biochemical level. (7) Plants with decreased Rubisco have a lower intrinsic water use efficiency and contain high levels of inorganic cations and anions. It is proposed that these are a consequence of the increased rate of transpiration, and that the resulting osmotic potential might be a contributory factor to the increased water content and expansion of the leaves. (8) Starch accumulation in source leaves is decreased when unit leaf photosynthesis is reduced, allowing a more efficient use of the fixed carbon. (9) Decreased availability of carbohydrates leads to a down-regulation of nitrate assimilation, acting via a decrease in nitrate reductase activity.  相似文献   

11.
Elemental stoichiometry and organic composition were investigated in an Adriatic strain of Skeletonema marinoi, cultured at 25 [low light (LL)] and 250 [high light (HL)]µmol photon m?2 s?1. Inorganic carbon acquisition, fixation and allocation, and silicic acid and orthophosphate uptake were also studied. The C : P ratio was below the Redfield ratio, especially at LL. In HL cells, N quota was halved, C quota was similar, silica quota was lower, growth rate and long‐term net primary productivity were almost doubled, relative to LL cells. The HL : LL cell quota ratios were 6 for lipid, 0.5 for protein and 0.4 for carbohydrate. Phosphoenolpyruvate carboxylase (PEPc) and glutamine synthetase (GS) activities were unaffected by the growth irradiance; phosphoenolpyruvate carboxykinase (PEPck) was 2.5‐fold more active in LL cells. This suggests that in S. marinoi, C4 photosynthesis is unlikely, PEPc is anaplerotic and PEPck may be involved in the conversion of lipid C to carbohydrates, especially in LL cells. Because about 50% of the cost for the production of an HL cell is caused by lipid biosynthesis, we propose that the preferential allocation of C to lipid at HL takes advantage of the relatively high volume‐based energy content of lipids, in an organism that reduces its size at each vegetative cell division.  相似文献   

12.
The significance of photosynthetic and transpiration rates for the perception by plants of light gradients in leaf canopies has been investigated with regard to nitrogen allocation and re-allocation. A gradient of photon flux density (PFD) over a plant's foliage was simulated by shading one leaf of a pair of primary leaves of bean ( Phaseolus vulgaris L. cv. Rentegever). Photosynthetic rate was manipulated independently of PFD and, to some extent, also of transpiration, by subjecting the leaf to different CO2 concentrations. Transpiration rate was changed independently of PFD and photosynthetic rate by subjecting the leaf to different vapour pressure differences (VPD). A reduced partial pressure of CO2 reduced specific leaf mass (SLM) as did a decreased PFD, but did not change leaf N per unit area (NLA) and light saturated rate of photosynthesis (Amax). A reduced VPD caused several effects consistent with the effect of PFD. It decreased NLA and Amax and increased the chlorophyll to N ratio in old and young leaves. Furthermore, it decreased the chlorophyll a to b ratio and inhibited leaf growth in young leaves. The transpiration stream is partitioned among the leaves of a plant according to their transpiration rates. The results suggest that relative rates of import of xylem sap into leaves of a plant play an important role in the perception of partial shading of a plant, a situation normally found in dense vegetations. The possible role of cytokinin influx into leaves as controlled by transpiration rate, is discussed.  相似文献   

13.
The global modelling of photosynthesis is based on exact knowledge of the leaf photosynthetic machinery. The capacities of partial reactions of leaf photosynthesis develop at different rates, but it is not clear how the development of photoreactions and the Calvin cycle are co-ordinated. We investigated the development of foliar photosynthesis in the temperate deciduous tree Betula pendula Roth. using a unique integrated optical/gas exchange methodology that allows simultaneous estimation of photosystem I and II (PS I and PS II) densities per leaf area, interphotosystem electron transport activities, and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) kinetic properties. We combined these measurements with in vitro determinations of Rubisco, soluble protein and chlorophyll contents. We observed a strong increase in leaf photosynthetic capacity in developing leaves per leaf area, as well as per dry mass, that was paralleled by accumulation of leaf Rubisco. Enhanced mesophyll conductance was the outcome of increased carboxylation capacity and increased CO(2) diffusion conductance. However, Rubisco was only partly activated in the leaves, according to in vivo measurements of Rubisco kinetics. The amount of active Rubisco increased in proportion with development of PS I, probably through a direct link between Rubisco activase and PS I electron transport. Since the kinetics for post-illumination P700 re-reduction did not change, the synthesis of cytochrome b(6)f complex was also proportional to PS I. The synthesis of PS II began later and continued for several days after reaching the full PS I activity, but leaf chlorophyll was shared equally between the photosystems. Due to this, the antenna of PS II was very large and not optimally organized, leading to greater losses of excitation and lower quantum yields in young leaves. We conclude that co-ordinated development of leaf photosynthesis is regulated at the level of PS I with subordinated changes in PS II content and Rubisco activation.  相似文献   

14.
The significance of photosynthetic and transpiration rates for the perception by plants of light gradients in leaf canopies has been investigated with regard to nitrogen allocation and re-allocation. A gradient of photon flux density (PFD) over a plant's foliage was simulated by shading one leaf of a pair of primary leaves of bean ( Phaseolus vulgaris L. cv. Rentegever). Photosynthetic rate was manipulated independently of PFD and, to some extent, also of transpiration, by subjecting the leaf to different CO2 concentrations. Transpiration rate was changed independently of PFD and photosynthetic rate by subjecting the leaf to different vapour pressure differences (VPD). A reduced partial pressure of CO2 reduced specific leaf mass (SLM) as did a decreased PFD, but did not change leaf N per unit area (NLA) and light saturated rate of photosynthesis (Amax). A reduced VPD caused several effects consistent with the effect of PFD. It decreased NLA and Amax and increased the chlorophyll to N ratio in old and young leaves. Furthermore, it decreased the chlorophyll a to b ratio and inhibited leaf growth in young leaves. The transpiration stream is partitioned among the leaves of a plant according to their transpiration rates. The results suggest that relative rates of import of xylem sap into leaves of a plant play an important role in the perception of partial shading of a plant, a situation normally found in dense vegetations. The possible role of cytokinin influx into leaves as controlled by transpiration rate, is discussed.  相似文献   

15.
Rice (Oryza sativa L.) has been used to study the long-term responses of photosynthesis to high irradiance focusing on the composition of the photosynthetic apparatus and leaf morphology. Typical sun/shade differences in chloroplast composition are seen in the fifth leaf following growth in high irradiance compared with low irradiance (1000 and 200 micromol m(-2) s(-1), respectively): higher light-saturated rates of photosynthesis (P(max)), higher amounts of Rubisco protein, and a lower chlorophyll a:b ratio. In addition, leaves were thicker under high light compared with low light. However, responses appear more complex when leaf developmental stage is considered. Using a system of transferring plants from low to high light in the laboratory responses that occur before and after full leaf extension have been studied. Acclimation of photosynthesis is limited by leaf age: the transfer to high light, post-leaf extension, is characterized by alterations in chlorophyll a:b but not in Rubisco protein, which may be limited by leaf morphology. Microarray analysis of gene expression was carried out on plants that were transferred to high light post-leaf extension. A down-regulation of light-harvesting genes was seen. No change in the expression level of Rubisco genes was observed. Up-regulation of genes involved in photoprotection was observed. It was also shown that high-light leaf morphology is established prior to formation of the zone of cellular elongation and division. The endogenous and environmental factors which establish the characteristics of high light acclimation may be important for attaining high rates of assimilation in leaves and crop canopies, and the fifth leaf in rice provides a convenient model system for the determination of the mechanisms involved.  相似文献   

16.
Mature non-senescent leaves of evergreen species become gradually shaded as new foliage develops and canopy expands, but the interactive effects of integrated light during leaf formation (Q(int)G), current light (Q(int)C) and leaf age on foliage photosynthetic competence are poorly understood. In Quercus ilex L., we measured the responses of leaf structural and physiological variables to Q(int)C and Q(int)G for four leaf age classes. Leaf aging resulted in increases in leaf dry mass per unit area (M(A)), and leaf dry to fresh mass ratio (D(F)) and decreases in N content per dry mass (N(M)). N content per area (N(A)) was independent of age, indicating that decreases in N(M) reflected dilution of leaf N because of accumulation of dry mass (NA = N(M) M(A)). M(A), D(F) and N(A) scaled positively with irradiance, whereas these age-specific correlations were stronger with leaf growth light than with current leaf light. Area-based maximum ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) carboxylase activity (V(cmax)A), capacity for photosynthetic electron transport (J(max)A) and the rate of non-photorespiratory respiration in light (R(d)A) were also positively associated with irradiance. Differently from leaf structural characteristics, for all data pooled, these relationships were stronger with current light with little differences among leaves of different age. Acclimation to current leaf light environment was achieved by light-dependent partitioning of N in rate-limiting proteins. Mass-based physiological activities decreased with increasing leaf age, reflecting dilution of leaf N and a larger fraction of non-photosynthetic N in older leaves. This resulted in age-dependent modification of leaf photosynthetic potentials versus N relationships. Internal diffusion conductance (g(m)) per unit area (g(m)A) increased curvilinearly with increasing irradiance for two youngest leaf age classes and was independent of light for older leaves. In contrast, g(m) per dry mass (g(m)M) was negatively associated with light in current-year leaves. Greater photosynthetic potentials and moderate changes in diffusion conductance resulted in greater internal diffusion limitations of photosynthesis in higher light. Both area- and mass-based g(m) decreased with increasing leaf age. The decrease in diffusion conductance was larger than changes in photosynthetic potentials, leading to larger CO2 drawdown from leaf internal air space to chloroplasts (delta(c)) in older leaves. The increases in diffusion limitations in older leaves and at higher light scaled with age- and light-dependent increases in MA and D(F). Overall, our study demonstrates a large potential of foliage photosynthetic acclimation to changes in leaf light environment, but also highlights enhanced structural diffusion limitations in older leaves that result from leaf structural acclimation to previous rather than to current light environment and accumulation of structural compounds with leaf age.  相似文献   

17.
In rice plants grown under red light supplemented with blue light (red/blue-light PPFD ratio was 4/1), photosynthetic rates per unit leaf area measured under white light at 1,600 and 250 micromol m-2) s-1 were higher than those in the plants grown under red light alone. The higher photosynthetic rates were associated with higher total N content of leaves, which was accompanied by larger amounts of key components of photosynthesis-limiting processes, including Rubisco, Cyt f, Chl and LHCII. These results suggested that the increase in total N content of leaves induced by supplemental blue light enhanced both light-saturated and light-limited photosynthesis.  相似文献   

18.
In 27 C4 grasses grown under adequate or deficient nitrogen (N) supplies, N-use efficiency at the photosynthetic (assimilation rate per unit leaf N) and whole-plant (dry mass per total leaf N) level was greater in NADP-malic enzyme (ME) than NAD-ME species. This was due to lower N content in NADP-ME than NAD-ME leaves because neither assimilation rates nor plant dry mass differed significantly between the two C4 subtypes. Relative to NAD-ME, NADP-ME leaves had greater in vivo (assimilation rate per Rubisco catalytic sites) and in vitro Rubisco turnover rates (k(cat); 3.8 versus 5.7 s(-1) at 25 degrees C). The two parameters were linearly related. In 2 NAD-ME (Panicum miliaceum and Panicum coloratum) and 2 NADP-ME (Sorghum bicolor and Cenchrus ciliaris) grasses, 30% of leaf N was allocated to thylakoids and 5% to 9% to amino acids and nitrate. Soluble protein represented a smaller fraction of leaf N in NADP-ME (41%) than in NAD-ME (53%) leaves, of which Rubisco accounted for one-seventh. Soluble protein averaged 7 and 10 g (mmol chlorophyll)(-1) in NADP-ME and NAD-ME leaves, respectively. The majority (65%) of leaf N and chlorophyll was found in the mesophyll of NADP-ME and bundle sheath of NAD-ME leaves. The mesophyll-bundle sheath distribution of functional thylakoid complexes (photosystems I and II and cytochrome f) varied among species, with a tendency to be mostly located in the mesophyll. In conclusion, superior N-use efficiency of NADP-ME relative to NAD-ME grasses was achieved with less leaf N, soluble protein, and Rubisco having a faster k(cat).  相似文献   

19.
Acclimation of plant photosynthesis to light irradiance (photoacclimation) involves adjustments in levels of pigments and proteins and larger scale changes in leaf morphology. To investigate the impact of rising atmospheric CO2 on crop physiology, we hypothesize that elevated CO2 interacts with photoacclimation in rice (Oryza sativa). Rice was grown under high light (HL: 700 µmol m?2 s?1), low light (LL: 200 µmol m?2 s?1), ambient CO2 (400 µl l?1) and elevated CO2 (1000 µl l?1). Leaf six was measured throughout. Obscuring meristem tissue during development did not alter leaf thickness indicating that mature leaves are responsible for sensing light during photoacclimation. Elevated CO2 raised growth chamber photosynthesis and increased tiller formation at both light levels, while it increased leaf length under LL but not under HL. Elevated CO2 always resulted in increased leaf growth rate and tiller production. Changes in leaf thickness, leaf area, Rubisco content, stem and leaf starch, sucrose and fructose content were all dominated by irradiance and unaffected by CO2. However, stomata responded differently; they were significantly smaller in LL grown plants compared to HL but this effect was significantly suppressed under elevated CO2. Stomatal density was lower under LL, but this required elevated CO2 and the magnitude was adaxial or abaxial surface‐dependent. We conclude that photoacclimation in rice involves a systemic signal. Furthermore, extra carbohydrate produced under elevated CO2 is utilized in enhancing leaf and tiller growth and does not enhance or inhibit any feature of photoacclimation with the exception of stomatal morphology.  相似文献   

20.
Maize ( Zea mays L. Hybrid Sweet Corn, Royal Crest), a C4 plant, was grown under different light regimes, after which the rate of photosynthesis and activities of several photosynthetic enzymes (per unit leaf chlorophyll) were measured at different light intensities. Plants were grown outdoors under direct sunlight or 23% of direct sunlight, and in growth chambers at photosynthetic photon flux densities of about 20% and 8% of direct sunlight. The plants grown under direct sunlight had a higher light compensation point than plants grown under lower light. At a light intensity about 25% of direct sunlight, plants from all growth regimes had a similar rate of photosynthesis. Under saturating levels of light the plants grown under direct sunlight had a substantially higher rate of photosynthesis than plants grown under the lower light regimes. The higher photosynthetic capacity in the plants grown under direct sunlight was accompanied by an increased activity of several photosynthetic enzymes and in the amount of the soluble protein in the leaf. Among five photosynthetic enzymes examined, RuBP carboxylase (EC 4.1.1.39) and pyruvate, Pi dikinase (EC 2.7.9.1) were generally just sufficient to account for rates of photosynthesis under saturating light; thus, these may be rate limiting enzymes in C4 photosynthesis. Pyruvate, Pi dikinase and NADP-malate dehydrogenase (EC 1.1.1.82) were the only enzymes examined which were light activated and increased in activity with increasing light intensity. In the low light grown plants the activity of pyruvate, Pi dikinase closely paralleled the photosynthetic rate measured under different light levels. With the plants grown under direct sunlight, as light intensity was increased the activation of pyruvate, Pi dikinase and NADP+-malate dehydrogenase proceeded more rapidly than photosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号