首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aquatic animals suffer from various environmental stresses because the aquatic environment is a very complex system. To monitor the health status of fish, Hsp90 a potential early warning marker was determined in Schizothorax prenanti after infection with a bacterium. In this study, we cloned Hsp90 from S. prenanti for the first time. The full-length cDNA sequence of SpHsp90 was 2663 bp, contains an open reading frame of 2181 bp, and has a gene encoding 726 amino acids, an estimated molecular mass of 83.38 kDa, and a theoretical isoelectric point of 4.91. The SpHsp90 amino acid sequence has five conserved HSP90 family signatures and shares 87.0–95.5 % identity with other vertebrates. Phylogenetic analysis and structure comparison indicated that SpHsp90 should be a β isoform of the HSP90 family. SpHsp90 was ubiquitously expressed in all examined tissues, and the highest level of expression was in the kidney. After Streptococcus agalactiae infection, the level of SpHsp90 expression had significant changes (P < 0.05) in the hepatopancreas, spleen, kidney, and blood. The expression increased to the highest level at 6 h in the blood and at 24 h in the hepatopancreas, spleen, and kidney. The results suggested that the SpHsp90 gene could be induced by S. agalactiae in S. prenanti and that SpHsp90 may be involved in resistance to bacterial infection and provide an early warning information. The kidney is the most suitable for detecting SpHsp90 after bacterial infection.  相似文献   

2.
3.
Glucose oxidase (GOX) is currently used in clinical, pharmaceutical, food and chemical industries. The aim of this study was expression and characterization of Aspergillus niger glucose oxidase gene in the yeast Yarrowia lipolytica. For the first time, the GOX gene of A. niger was successfully expressed in Y. lipolytica using a mono-integrative vector containing strong hybrid promoter and secretion signal. The highest total glucose oxidase activity was 370 U/L after 7 days of cultivation. An innovative method was used to cell wall disruption in current study, and it could be recommended to use for efficiently cell wall disruption of Y. lipolytica. Optimum pH and temperature for recombinant GOX activity were 5.5 and 37 °C, respectively. A single band with a molecular weight of 80 kDa similar to the native and pure form of A. niger GOX was observed for the recombinant GOX in SDS-PAGE analysis. Y. lipolytica is a suitable and efficient eukaryotic expression system to production of recombinant GOX in compered with other yeast expression systems and could be used to production of pure form of GOX for industrial applications.  相似文献   

4.
5.
Different molecular sizes of protein hydrolysates were prepared from the crude protein extract of Ficus deltoidea using the technique of membrane ultrafiltration after trypsin hydrolysis. Gel electrophoretic images shows the presence of 12, 8, 7 and 7 protein bands for the protein fractions prepared from the molecular weight cut-off of 3, 10, 30 and 100 kDa, respectively. The protein hydrolysates were found to have higher radical scavenging activity than those unhydrolysed fractions at the similar molecular size. They exhibited significant differences in the radical scavenging activities based on one-way analysis of variance, except for the protein hydrolysates of 30 and 100 kDa. The smallest protein hydrolysates, 3 kDa appeared to have the comparable activity (30%) with bovine serum albumin as a positive control in this study. Similarly, the 3 kDa protein hydrolysates achieved the highest inhibitory activity (87.5%) against Pseudomonas aeruginosa at the concentration of 128 µg/mL. The protein hydrolysates were found to be more effective against gram negative bacteria (P. aeruginosa and Escherichia coli) because of lower minimum inhibitory concentration (MIC) and effective inhibitory concentration at 50% (EC50) than gram positive bacterium (Staphylococcus aureus). Trypsin catalysed hydrolysis seemed to improve the anti-bacterial activity of protein hydrolysates in a bacterial strain dependent manner. The MIC could achieve 1–55 µg/mL at different molecular sizes of protein fractions. Mass spectra matching revealed that 26% of 226 identified proteins belonged to the category of plant defensive proteins in stress management and metal handling.  相似文献   

6.
Helicobacter pylori (H. pylori) shows increasingly enhanced resistance to various antibiotics, and its eradication has become a major problem in medicine. The antimicrobial peptide PGLa-AM1 is a short peptide with 22 amino acids and exhibits strong antibacterial activity. In this study, we investigated whether it has anti-H. pylori activity for the further development of anti-H. pylori drugs to replace existing antibiotics. However, the natural antimicrobial peptide PGLa-AM1 shows a low yield and is difficult to separate, limiting its application. A good strategy to solve this problem is to express the antimicrobial peptide PGLa-AM1 using gene engineering at a high level and low cost. For getting PGLa-AM1 with native structure, in this study, a specific protease cleavage site of tobacco etch virus (TEV) was designed before the PGLa-AM1 peptide. For convenience to purify and identify high-efficiency expression PGLa-AM1, the PGLa-AM1 gene was fused with the polyhedrin gene of Bombyx mori (B. mori), and a 6 × His tag was designed to insert before the amino terminus of the fusion protein. The fusion antibacterial peptide PGLa-AM1 (FAMP) gene codon was optimized, and the gene was synthesized and cloned into the Escherichia coli (E. coli) pET-30a (+) expression vector. The results showed that the FAMP was successfully expressed in E. coli. Its molecular weight was approximately 34 kDa, and its expression level was approximately 30 mg/L. After the FAMP was purified, it was further digested with TEV protease. The acquired recombinant antimicrobial peptide PGLa-AM1 exerted strong anti-H. pylori activity and therapeutic effect in vitro and in vivo.  相似文献   

7.
8.
The study was conducted to evaluate the effects of chromium-loaded chitosan nanoparticles (Cr-CNP) on glucose transporter 4 (GLUT4), relevant messenger RNA (mRNA), and proteins involved in phosphatidylinositol 3-kinase (PI3K), Akt2-kinase, and AMP-activated protein kinase (AMPK) of skeletal muscles in finishing pigs. A total of 120 crossbred barrows (BW 65.00 ± 1.26 kg) were randomly allotted to four dietary treatments, with three pens per treatment and 10 pigs per pen. Pigs were fed the basal diet supplemented with 0, 100, 200, or 400 μg/kg of Cr from Cr-CNP for 35 days. After the feeding trials, 24 pigs were slaughtered to collect longissimus muscle samples for analysis. Cr-CNP supplementation increased GLUT4 messenger RNA (mRNA) (quadratically, P < 0.01) and total and plasma membrane GLUT4 protein contents (linearly and quadratically, P < 0.001) in skeletal muscles. Glycogen synthase kinase 3β (GSK-3β) mRNA was decreased linearly (P < 0.001) and quadratically (P < 0.001). Supplemental Cr-CNP increased insulin receptor (InsR) mRNA quadratically (P < 0.01), Akt2 total protein level linearly (P < 0.01) and quadratically (P < 0.001), and PI3K total protein was increased significantly (P < 0.05) in 200 μg/kg treatment group. The mRNA of AMPK subunit gamma-3 (PRKAG3) and protein of AMPKα1 was significantly increased (P < 0.001) with the addition of Cr-CNP. The results indicate that dietary supplementation of Cr-CNP may promote glucose uptake by leading to recruitment of GLUT4 to the plasma membrane in skeletal muscles, and these actions may be associated with the insulin signal transduction and AMPK.  相似文献   

9.
10.
Myasthenia gravis (MG) is characterized clinically by skeletal muscle fatigue following the excessive exercise. Interestingly most of MG patients manifest parallely also some abnormalities of the thymus.AMP-deaminase (AMPD) from human thymus was not a subject of studies up to now. In this paper, mRNA expression and some physico-chemical and immunological properties of AMPD purified from the thymus of MG patients were described. Experiments performed identified the liver isozyme (AMPD2) as the main isoform of AMPD expressed in this organ. The activity of AMPD found in this organ was higher than in other human non-(skeletal) muscle tissues indicating on role the enzyme may play in supplying of guanylates required for the intensive multiplication of thymocytes.  相似文献   

11.
Two extracellular polysaccharides, designated as WPA and WPB, were isolated from the fungus Aspergillus aculeatus using Q-Sepharose fast flow and Sephacryl S-300 column chromatography. WPA composed of mannose and galactose in a molar ratio of 3.9:1.0, and WPB mainly contained mannose. The molecular weight of WPA and WPB was about 28.1 kDa and 21.0 kDa, respectively. On the basis of methylation and NMR analysis, the possible main chain of WPA was [→5)-β-D-Galf-(1 → 2,6)-α-D-Manp(1→], and WPB was mainly [→2,6)-α-D-Manp(1→], both with [α-D-Manp(1 → 2)-α-D-Manp(1 → 2)-α-D-Manp(1→] substituted at C-2 of [→2,6)-α-D-Manp(1→]. Meanwhile, WPA displayed a stronger anti-proliferative effect than WPB on HeLa, MCF-7 and MGC-803 cells in vitro. WPA and WPB could arrest HeLa cells in G2/M phase and induce HeLa cells apoptosis. Thus, our study provides evidence that WPA and WPB may be taken as potential candidates for treating cervical carcinoma.  相似文献   

12.
A putative gene (gadlbhye1) encoding glutamate decarboxylase (GAD) was cloned from Lactobacillus brevis HYE1 isolated from kimchi, a traditional Korean fermented vegetable. The amino acid sequences of GADLbHYE1 showed 48% homology with the GadA family and 99% identity with the GadB family from L. brevis. The cloned GADLbHYE1 was functionally expressed in Escherichia coli using inducible expression vectors. The expressed recombinant GADLbHYE1 was successfully purified by Ni–NTA affinity chromatography, and had a molecular mass of 54 kDa with optimal hydrolysis activity at 55 °C and pH 4.0. Its thermal stability was determined to be higher than that of other GADs from L. brevis, based on its melting temperature (75.18 °C). Kinetic parameters including Km and Vmax values for GADLbHYE1 were 4.99 mmol/L and 0.224 mmol/L/min, respectively. In addition, the production of gamma-aminobutyric acid in E. coli BL21 harboring gadlbhye1/pET28a was increased by adding pyridoxine as a cheaper coenzyme.  相似文献   

13.

Objectives

Two genes encoding two acetyl-CoA synthetase (ACS) isoenzymes have been identified in the marine yeast Rhodosporidium diobovatum MCCC 2A00023.

Results

ACS1 encoded a polypeptide with a sequence of 578 amino acid residues, a predicted molecular weight of 63.73 kDa, and pI of 8.14, while the ACS2 encoded a polypeptide containing 676 amino acid residues with a deduced molecular mass of 75.61 kDa and a pI of 5.95. Biological activity of Acs1p and Acs2p was confirmed by heterologous expression in Escherichia coli. A 1.5-kb DNA fragment of the ACS1 gene and a 2.7-kb DNA fragment of the ACS2 gene were deleted using the RNA guide CRISPR-Cas9 system. The strain lacking ACS1 was unable to grow on acetate and ethanol media, while the ACS2 deletant was unable to grow on glucose medium. ACS1-ACS2 double mutants of R. diobovatum were non-viable.

Conclusions

ACS isoenzymes are essential to the yeast metabolism, and other sources of ACSs cannot compensate for the lack of ACSs encoded by the two genes.
  相似文献   

14.
Ring box protein-1 (RBX1), also called Regulator of Cullins-1 (ROC1), is a key component of SCF (Skp-1, cullins, F-box proteins) E3 ubiquitin ligases, which regulate diverse cellular processes by targeting protein substrates for degradation. Although RBX1 plays an important role in ubiquitination machinery of both prokaryotes and eukaryotes, studies on the RBX1 have not been involved in the unicellular green alga Dunaliella salina. In this study, a full-length RBX1 cDNA fragment of 817 bp was cloned using rapid amplification of cDNA end (RACE) technique. The full-length sequence contained an open reading frame of 411 bp encoding 136 amino acids. The predicted protein had a molecular molar mass of 14.8 kDa and pI of 5.9 with a high degree of homology to RBX1 from Chlamydomonas reinhardtii (92 %). Recombinant RBX1 was expressed in Escherichia coli BL21 and was purified and characterized. The apparent molecular mass of the recombinant protein was approximately 17 kDa, and the optimal induction time and concentration were 3 h and 0.1 mmol/L IPTG, respectively. The predicted 3D structures of RBX1 proteins contained RING-H2 finger domain including “Cys59-X2-Cys62-X30-Cys93-X1-His95-X2-His98-X2-Cys101-X10-Cys112-X2-Cys115.” The expression of RBX1 protein was increased by 132 % during flagellar disassembly and decreased by 76 % during flagellar assembly of D. salina. The expression of RBX1 mRNA had a similar tendency with the expression of RBX1 protein. The results indicated that RBX1 responded to flagellar disassembly of D. salina.  相似文献   

15.
The raccoon dog (Nyctereutes procyonoides) is a canid species with autumnal fattening and prolonged wintertime fasting. Nonpathological body weight cycling and the ability to tolerate food deficiency make this species a unique subject for studying physiological mechanisms in energy metabolism. AMP-activated protein kinase (AMPK) is a cellular energy sensor regulating energy homeostasis. During acute fasting, AMPK promotes fatty acid oxidation and enhances glucose uptake. We evaluated the effects of prolonged fasting on muscle energy metabolism in farm-bred raccoon dogs. Total and phosphorylated AMPK and acetyl-CoA carboxylase (ACC), glucose transporter 4 (GLUT 4), insulin receptor and protein kinase B (Akt) protein expressions of hind limb muscles were determined by Western blot after 10 weeks of fasting. Plasma insulin, leptin, ghrelin, glucose and free fatty acid levels were measured, and muscle myosin heavy chain (MHC) isoform composition analyzed. Fasting had no effects on AMPK phosphorylation, but total AMPK expression decreased in m. rectus femoris, m. tibialis anterior and m. extensor digitorum longus resulting in a higher phosphorylation ratio. Decreased total expression was also observed for ACC. Fasting did not influence GLUT 4, insulin receptor or Akt expression, but Akt phosphorylation was lower in m. flexor digitorum superficialis and m. extensor digitorum longus. Three MHC isoforms (I, IIa and IIx) were detected without differences in composition between the fasted and control animals. The studied muscles were resistant to prolonged fasting indicating that raccoon dogs have an effective molecular regulatory system for preserving skeletal muscle function during wintertime immobility and fasting.  相似文献   

16.

Objective

To characterize a novel xanthine dehydrogenase (XDH) from Acinetobacter baumannii by recombinant expression in Escherichia coli and to assess its potential for industrial applications.

Results

The XDH gene cluster was cloned from A. baumannii CICC 10254, expressed heterologously in E. coli and purified to homogeneity. The purified recombinant XDH consisted of two subunits with the respective molecular weights of 87 kDa and 56 kDa according to SDS-PAGE. XDH catalysis was optimum at pH 8.5 and 40–45 °C, was stable under alkaline conditions (pH 7–11) and the half-inactivation temperature was 60 °C. The K m, turnover number and catalytic efficiency for xanthine were 25 μM, 69 s?1 and 2.7 μM?1 s?1, respectively, which is an improvement over XDHs characterized previously. A. baumannii XDH is less than 50 % identical to previously identified XDH orthologs from other species, and is the first from the Acinetobacter genus to be characterized.

Conclusion

The novel A. baumannii enzyme was found to be among the most active, thermostable and alkaline-tolerant XDH enzymes reported to date and has potential for use in industrial applications.
  相似文献   

17.
Penaeidins are a major group of antimicrobial peptides found in penaeid shrimps. This study reports a new isoform of penaeidin from the hemocytes of Indian white shrimp, Fenneropenaeus indicus (Fi-PEN, JX657680), and the pink shrimp, Metapenaeus monoceros (Mm-PEN, KF275674). Mm-PEN is also the first antimicrobial peptide to be identified from M. monoceros. The complete coding sequences of the newly identified Fi-PEN and Mm-PEN consisted of an ORF of 338 bp encoding 71 amino acids with a predicted molecular weight of 5.66 kDa and a pI of 9.38. The penaeidins had its characteristic signal peptide region (19 amino acids), which was followed by a mature peptide with a proline-rich domain (24 amino acids) at the N-terminal region and a cysteine-rich domain (28 amino acids) at the C-terminal region, designating it to penaeidin-3 subgroup. Structural analysis revealed an alpha-helix in its secondary structure and an extended structure at the proline-rich domain. The newly identified penaeidin isoform showed maximum similarity of 63 % to a penaeidin-3 isoform of P. monodon, which further proves it to be a new isoform. Phylogenetic analysis showed that it possessed similar evolutionary status like other penaeidins, which has subsequently diverged at different phases of evolution. The wide distribution of penaeidins in penaeid shrimps indicates the importance of these AMPs in the innate immunity.  相似文献   

18.
Lignocellulose-derived microbial inhibitors (LDMICs) prevent efficient fermentation of Miscanthus giganteus (MG) hydrolysates to fuels and chemicals. To address this problem, we explored detoxification of pretreated MG biomass by Cupriavidus basilensis ATCC®BAA-699 prior to enzymatic saccharification. We document three key findings from our test of this strategy to alleviate LDMIC-mediated toxicity on Clostridium beijerinckii NCIMB 8052 during fermentation of MG hydrolysates. First, we demonstrate that growth of C. basilensis is possible on furfural, 5-hydroxymethyfurfural, cinnamaldehyde, 4-hydroxybenzaldehyde, syringaldehyde, vanillin, and ferulic, p-coumaric, syringic and vanillic acid, as sole carbon sources. Second, we report that C. basilensis detoxified and metabolized ~98 % LDMICs present in dilute acid-pretreated MG hydrolysates. Last, this bioabatement resulted in significant payoffs during acetone-butanol-ethanol (ABE) fermentation by C. beijerinckii: 70, 50 and 73 % improvement in ABE concentration, yield and productivity, respectively. Together, our results show that biological detoxification of acid-pretreated MG hydrolysates prior to fermentation is feasible and beneficial.  相似文献   

19.
Many phytopathogenic micro-organisms such as bacteria and fungi produce pectin methylesterases (PME) during plant invasion. Plants and insects also produce PME to degrade plant cell wall. In the present study, a thermostable pectin methylesterase (CtPME) from Clostridium thermocellum belonging to family 8 carbohydrate esterase (CE8) was cloned, expressed and purified. The amino acid sequence of CtPME exhibited similarity with pectin methylesterase from Erwinia chrysanthemi with 38% identity. The gene encoding CtPME was cloned into pET28a(+) vector and expressed using Escherichia coli BL21(DE3) cells. The recombinant CtPME expressed as a soluble protein and exhibited a single band of molecular mass approximately 35.2 kDa on SDS-PAGE gels. The molecular mass, 35.5 kDa of the enzyme, was also confirmed by MALDI-TOF MS analysis. Notably, highest protein concentration (11.4 mg/mL) of CtPME was achieved in auto-induction medium, as compared with LB medium (1.5 mg/mL). CtPME showed maximum activity (18.1 U/mg) against citrus pectin with >85% methyl esterification. The optimum pH and temperature for activity of CtPME were 8.5 and 50 °C, respectively. The enzyme was stable in pH range 8.0–9.0 and thermostable between 45 and 70 °C. CtPME activity was increased by 40% by 5 mM Ca2+ or Mg2+ ions. Protein melting curve of CtPME gave a peak at 80 °C. The peak was shifted to 85 °C in the presence of 5 mM Ca2+ ions, and the addition of 5 mM EDTA shifted back the melting peak to 80 °C. CtPME can be potentially used in food and textile industry applications.  相似文献   

20.
In addition to the already known cagA gene, novel genetic markers have been associated with Helicobacter pylori (H. pylori) virulence: the dupA and vacAi genes. These genes might play an important role as specific markers to determine the clinical outcome of the disease, especially the vacAi gene, which has been expected to be a good marker of severe pathologies like gastric adenocarcinoma. In the present study, the association of cagA, dupA, and vacAi genes with gastroduodenal pathologies in Chilean patients was studied. One hundred and thirty-two patients positive for H. pylori were divided into two groups—non-severe and severe gastric pathologies—and investigated for the presence of cagA, dupA, and vacAi H. pylori virulence genes by PCR. The cagA gene was detected in 20/132 patients (15.2%), the vacAi1 gene was detected in 54/132 patients (40.9%), the vacAi2 gene was detected in 26/132 patients (19.7%), and the dupA gene was detected in 50/132 (37.9%) patients. Logistic regression model analysis showed that the vacAi1 isoform gene in the infected strains and the severity of the diseases outcome were highly associated, causing severe gastric damage that may lead to gastric cancer (p < 0.0001; OR = 8.75; 95% CI 3.54–21.64). Conversely, cagA (p = 0.3507; OR = 1.62; 95% CI 0.59–4.45) and vacAi2 (p = 0.0114; OR = 3.09; 95% CI 1.26–7.60) genes were not associated with damage, while the dupA gene was associated significantly with non-severe clinical outcome (p = 0.0032; OR = 0.25; 95% CI 0.09–0.65). In addition, dupA gene exerts protection against severe gastric pathologies induced by vacAi1 by delaying the outcome of the disease by approximately 20 years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号