首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
铝对植物毒害及植物抗铝作用机理   总被引:61,自引:3,他引:58  
综述了有关铝对植物的毒害及植物耐铝机理的研究成果。铝可以从植物的不同生物水平上影响植物的生长;不同植物耐受铝的能力不同,耐受性植物可在机体内形成各种耐受机制,以抵抗环境中铝的压力。这在受损土壤环境中的生态系统恢复具有应用前景。  相似文献   

2.
植物重金属胁迫耐受机制   总被引:7,自引:0,他引:7  
重金属是一类会对植物产生毒害作用的污染物,植物在长期进化过程中演变出耐受重金属胁迫的相关机制。以植物重金属耐受性为基础,对近几年来国内外植物响应重金属胁迫的耐受机制研究作一简要综述。主要概述了重金属对植物的胁迫影响及植物抗氧化系统,脯氨酸、可溶性糖、可溶性蛋白等渗透调节物质和不同类型基因家族等方面对植物耐受重金属胁迫机制的研究进展。以期为提高植物耐重金属胁迫能力及研究植物修复重金属污染土壤的应用奠定一定的基础。  相似文献   

3.
中国首次发现的锰超积累植物——商陆   总被引:104,自引:4,他引:100  
自2000年以来。对位于湖南省湘潭锰矿污染区的植物和土壤进行了一系列的野外调查,以着力寻找锰的超积累植物。结果表明。商陆科植物商陆对锰具有明显的富积持性。叶片内锰含量最高达l9299mg/kg。这一发现填补了我国锰超积累植物的空白。为探讨锰在植物体中的超积累机理和锰污染土壤的植物修复提供了一种新的种质资源。  相似文献   

4.
植物硒吸收转化机制及生理作用研究进展   总被引:3,自引:0,他引:3  
硒是大多微生物、动物及人类的必要微量元素,但其在植物生长发育中的生理作用至今存在争议.较低浓度硒具有促进植物生长、提高植物耐受能力的功能,而大部分植物在高浓度下表现出中毒现象.随着人类对摄入硒及环境硒污染问题的认识加深,作物硒生物强化与硒污染植物修复问题引起重视,推动了对硒在植物中的吸收积累及代谢调控的研究.近年来对植物硒吸收及转化的研究表明,不同硒水平下植物对硒吸收积累及生理响应存在差异,土壤环境因素对植物硒吸收及转化具有重要影响,对高聚硒植物硒代谢研究逐渐揭示出硒在植物体内的转化过程和调控机理等.本文总结了目前硒生物强化与植物修复方面的研究进展,对环境中硒分布特点、植物硒吸收及其影响因素、植物体内硒转化及其过程调控关键酶,以及硒在植物中的生理作用等进行了综述,并对植物硒生理及分子机制未来研究方向进行展望.  相似文献   

5.
植物抗寒冻基因工程研究进展   总被引:25,自引:0,他引:25  
低湿寒害是限制农作物产量和分布的一种全球性的自然灾害。提高农作物的抗寒性具有重要意义。目前随着植物寒害机理、抗寒冻和冷驯化分子机理的深入发展,已研究发现了多种抗寒基因,包括各种抗寒调控基因和各种抗寒功能基因,从而使植物抗寒冻基因工程的研究与应用得以了广泛开展,以期最终有效地提高农作物的抗寒性,增加农业产量。本文综合概述了国内外有关植物抗寒冻基因工程的最新研究方向、进展及成就,并提出了此领域尚存在的一些问题及其前景展望。  相似文献   

6.
有机酸在植物解铝毒中的作用及生理机制   总被引:11,自引:0,他引:11  
酸性土壤上铝毒是限制作物产量的一个重要障碍因子,具有螯合能力的有机酸在植物铝的外部排斥机制和内部耐受机制均具有重要作用,在铝的外部排斥解毒过程中,植物通过根系分泌有机酸进入根际,如柠檬酸,草酸,苹果酸等与铝形成稳定的复合体,阻止铝进入共质体,从而达到植物体外解除铝毒害效应的目的,且分泌的有机酸对铝的胁迫诱导表现出高度的专一性,分泌的关键点位于根尖,不同的物种间分泌的有机酸种类,分泌的模式及生理机理存在差异,在铝积累型植物的内部解毒过程中,有机酸与铝形成稳定的化合物,降低植物体内铝离子的生理活性,从而降低细胞内铝离子的毒害效应,如绣球花中铝与柠檬酸形成1:1的复合体,荞麦内铝与草酸形成1:3的复合体,本文就有机酸在植物忍耐和积累铝中的作用及生理机制作一简要综述。  相似文献   

7.
超富集植物短毛蓼对锰的富集特征   总被引:10,自引:0,他引:10  
邓华  李明顺  陈英旭 《生态学报》2009,29(10):5450-5454
通过野外调查和营养液培养试验,研究了锰在短毛蓼体内的富集特征和对其生长的影响.在锰含量高达2.5×105mg/kg的锰矿废弃地上短毛蓼生长良好,叶锰含量高达1.66×104mg/kg.营养液培养条件下,随着生长介质中Mn浓度的升高,短毛蓼根、茎、叶中的Mn含量逐渐增加,当锰供应水平为1.000mmol/L时,叶锰含量超过10000mg/kg;当锰供应水平为20 000mmol/L时,短毛蓼仍能生长,根、茎和叶3部分的锰含量均达到最大值,分别为9923,18112mg/kg和55750mg/kg.在所有锰供应水平下,短毛蓼茎和叶中的锰含量都比根部的高.结果表明,短毛蓼是一种锰超富集植物,这一发现为锰污染土壤的植物修复和探讨锰在植物体内的超富集机理提供了一种新的种质资源.  相似文献   

8.
陆生植物稳定碳同位素组成与全球变化   总被引:18,自引:5,他引:13  
分析了大气CO2浓度、温度、降水和海拔高度等环境因素对陆生植物稳定性碳同位素组分的影响及其作用机理,综述了国内外碳稳定同位素技术在全球变化研究中的进展和应用,如重建大气CO2浓度变化,揭示温度、降水对树木生长的“滞后效应”和“幼龄效应”,确定不同光合型植物随海拔高度的分布变化,以及通过碳稳定同位素技术揭示不同时间尺度上和不同气候条件下的植物水分利用效率变化及不同生活型植物的水分利用效率差异,并探讨研究中存在的问题及其研究前景.  相似文献   

9.
氟化物污染及其对植物的危害   总被引:3,自引:0,他引:3  
杨玉珍 《生物学通报》1998,33(10):23-24
氟化物是一类对植物毒性很强的大气污染物,在地壳中广泛而大量存在,凡使用的矿石中含有氟的工厂,如铝厂、钢铁厂、玻璃厂和陶瓷厂都可以排出氟化物,包括氟化氢、氟化硅、氟硅酸和氟化钙微粒等,其中以氟化氢为代表,是国内外常见的危害植物的污染物。氟化物对植物的毒...  相似文献   

10.
抑菌植物资源的研究进展   总被引:1,自引:0,他引:1  
综述国内外对抑茵植物资源的研究概况,植物中存在的主要抑菌活性成分及作用机理,抑茵植物筛选及检测方法,并对问题进行总结及前景展望.  相似文献   

11.
含锰矿渣的排放造成了严重的土壤锰污染。揭示锰毒害和植物的耐锰机制对于污染土壤治理具有重要意义。研究表明,高浓度的Mn2+能够抑制根系Ca2+、Fe2+和Mg2+等元素的吸收及活性,引起氧化性胁迫导致氧化损伤,使叶绿素和Rubisco含量下降、叶绿体超微结构破坏和光合速率降低。而锰超累积植物则具有多种解毒或耐性机制,如区域化、有机酸螯合、外排作用、抗氧化作用和离子交互作用等。根系主要通过有机酸的螯合作用促进植物对Mn^2+的转运解毒,同时能够将过量的Mn^2+区域化在根细胞壁中;叶片可通过酚类物质或有机酸螯合Mn^2+,并将其区域化在叶片表皮细胞和叶肉细胞的液泡中(或通过表皮毛将Mn^2+排出体外)。其中,金属转运蛋白在植物对Mn^2+的吸收、转运、累积和解毒过程中发挥着重要作用。  相似文献   

12.
Specific plant species that can take up and accumulate abnormally high concentrations of elements in their aboveground tissues are referred to as “hyperaccumulators”. The use of this term is justified in the case of enormous element-binding capacity of plants growing in their natural habitats and showing no toxicity symptoms. An increasing interest in the study of hyperaccumulators results from their potential applications in environmental biotechnology (phytoremediation, phytomining) and their emerging role in nanotechnology. The highest number of plant species with confirmed hyperaccumulative properties has been reported for hyperaccumulators of nickel, cadmium, zinc, manganese, arsenic and selenium. More limited data exist for plants accumulating other elements, including common pollutants (chromium, lead and boron) or elements of commercial value, such as copper, gold and rare earth elements. Different approaches have been used for the study of hyperaccumulators – geobotanical, chemical, biochemical and genetic. The chemical approach is the most important in screening for new hyperaccumulators. This article presents and critically reviews current trends in new hyperaccumulator research, emphasizing analytical methodology that is applied in identification of new hyperaccumulators of trace elements and its future perspectives.  相似文献   

13.
锰对植物毒害及植物耐锰机理研究进展   总被引:9,自引:0,他引:9  
含锰矿渣的排放造成了严重的土壤锰污染。揭示锰毒害和植物的耐锰机制对于污染土壤治理具有重要意义。研究表明,高浓度的Mn2+能够抑制根系Ca2+、Fe2+和Mg2+等元素的吸收及活性,引起氧化性胁迫导致氧化损伤,使叶绿素和Rubisco含量下降、叶绿体超微结构破坏和光合速率降低。而锰超累积植物则具有多种解毒或耐性机制,如区域化、有机酸螯合、外排作用、抗氧化作用和离子交互作用等。根系主要通过有机酸的螯合作用促进植物对Mn2+的转运解毒,同时能够将过量的Mn2+区域化在根细胞壁中;叶片可通过酚类物质或有机酸螯合Mn2+,并将其区域化在叶片表皮细胞和叶肉细胞的液泡中(或通过表皮毛将Mn2+排出体外)。其中,金属转运蛋白在植物对Mn2+的吸收、转运、累积和解毒过程中发挥着重要作用。  相似文献   

14.
湘潭锰矿区植物资源调查及超富集植物筛选   总被引:4,自引:0,他引:4  
通过设置样地,对湘潭锰矿区的植物资源进行了全面调查。结果表明:锰矿区植物丰富,共有28科,53种,植物以自然定居种为主,少见人工栽培种;生活史以多年生植物为主,少见1年生植物。群落结构上,以草灌丛为主,少见乔木种;当前锰矿区形成的以多年生草灌丛为主的局部群落,是原锰矿区植被在开采中被彻底破坏后,处在逐步向亚热带常绿阔叶林演替的一种初级阶段;其次,对矿区植物锰富集能力进行的分析表明,植物各组织(根、茎、叶)之间锰富集量差异明显,大部分物种地下部分锰含量大于地上部分,表现出一般植物的共性,只有少部分植物地上部分锰含量大于地下部分,表现出其特殊性;此外,植物种之间富集锰能力差异显著;莎草地上与地下部分锰含量均大于超富集植物10000mg.kg-1的临界浓度且富集系数与转移系数均大于1的超富集植物评价标准,表明其具有超强的富集锰能力。调查还发现,位于中-高锰矿区莎草生物量高达507.06g.m-2,符合超富集植物应具有较高生物量的标准。可见,莎草可作为中-高锰污染区生态修复的首先超富集植物种。  相似文献   

15.
青葙对土壤锰的耐性和富集特征   总被引:8,自引:0,他引:8  
余轲  刘杰  尚伟伟  张富珍 《生态学报》2015,35(16):5430-5436
通过盆栽试验,研究了青葙(Celosia argentea Linn.)对不同浓度(0、50、100、200、300、500 mg/kg)锰(Mn)污染土壤的吸收和积累特性。结果表明,青葙的锰含量、生物富集系数和生物量均随着土壤锰浓度的增加而增加。当土壤锰含量为300 mg/kg时,青葙生长良好。在锰浓度500 mg/kg时,青葙叶片边缘出现轻微褪绿现象,但是植株的生长未受到抑制,并且叶片生物量显著增加(P0.05)。此时,叶片中锰含量达到最大值42927 mg/kg,生物富集系数为69.20。青葙吸收的锰有95%—97%被转移到地上部分,表明该植物对锰具有很强转运能力。本研究的结果为利用青葙修复锰污染土壤提供了有力证据。  相似文献   

16.
Metal hyperaccumulators are plants that are capable of extracting metals from the soil and accumulating them to extraordinary concentrations in aboveground tissues (greater than 0.1% dry biomass Ni or Co or greater than 1% dry biomass Zn or Mn). Approximately 400 hyperaccumulator species have been identified, according to the analysis of field-collected specimens. Metal hyperaccumulators are interesting model organisms to study for the development of a phytoremediation technology, the use of plants to remove pollutant metals from soils. However, little is known about the molecular, biochemical, and physiological processes that result in the hyperaccumulator phenotype. We investigated the role of Ni tolerance and transport in Ni hyperaccumulation by Thlaspi goesingense, using plant biomass production, evapotranspiration, and protoplast viability assays, and by following short- and long-term uptake of Ni into roots and shoots. As long as both species (T. goesingense and Thlaspi arvense) were unaffected by Ni toxicity, the rates of Ni translocation from roots to shoots were the same in both the hyper- and nonaccumulator species. Our data suggest that Ni tolerance is sufficient to explain the Ni hyperaccumulator phenotype observed in hydroponically cultured T. goesingense when compared with the Ni-sensitive nonhyperaccumulator T. arvense.  相似文献   

17.
Manganese in cell metabolism of higher plants   总被引:1,自引:0,他引:1  
Manganese, a group VII element of the periodic table, plays an important role in biological systems and exists in a variety of oxidation states. The normal level of Mn in air surrounding major industrial sites is 0.03 μg/m3, in drinking water 0.05 mg/liter and in soil between 560 and 850 ppm. Manganese is an essential trace element for higher plant systems. It is absorbed mainly as divalent Mn2+, which competes effectively with Mg2+ and strongly depresses its rate of uptake. The accumulation of Mn particularly takes place in peripheral cells of the leaf petiole, petiolule and palisade and spongy parenchyma cells. Mn is involved in photosynthesis and activation of different enzyme systems. Mn deficiency may be expressed as inhibition of cell elongation and yield decrease. Mn toxicity is one of the important growth limiting factors in acid soils. Plant tops are affected to a greater extent than root systems. The toxicity symptoms are, in general, similar to the deficiency symptoms. Toxic effects of Mn on plant growth have been attributed to several physiological and biochemical pathways, although the detailed mechanism is still not very clear. Higher O2 uptake and loss of control in Mn activated enzyme systems have been associated with Mn toxicity. Mn interferes with the uptake, transport and use of several essential elements including Ca, Fe, Cu, Al, Si, Mg, K, P and N. Excess of Mn reduces the uptake of certain elements and increases that of others. pH plays an important role in Mn uptake. Acidic pH causes a lack of substantial amount of nitrate as an alternative electron acceptor and leads to a high amount of Mn in leaves. High microbial activity, water logging and poorly structured soils cause severe Mn toxicity even in neutral soils. The molecular mechanism of Mn-tolerance is not yet clear. The level of tolerance is different in different species and seems to be controlled by more than one gene. Further information is required on the factors affecting the distribution, accumulation and membrane permeability of the metal in different plant parts and different species. Understanding of the genetic basis of Mn-tolerance is necessary to improve adaptation of crops against acid soils, water logging and other adverse soil conditions.  相似文献   

18.
Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation   总被引:22,自引:0,他引:22  
A relatively small group of hyperaccumulator plants is capable of sequestering heavy metals in their shoot tissues at high concentrations. In recent years, major scientific progress has been made in understanding the physiological mechanisms of metal uptake and transport in these plants. However, relatively little is known about the molecular bases of hyperaccumulation. In this paper, current progresses on understanding cellular/molecular mechanisms of metal tolerance/hyperaccumulation by plants are reviewed. The major processes involved in hyperaccumulation of trace metals from the soil to the shoots by hyperaccumulators include: (a) bioactivation of metals in the rhizosphere through root–microbe interaction; (b) enhanced uptake by metal transporters in the plasma membranes; (c) detoxification of metals by distributing to the apoplasts like binding to cell walls and chelation of metals in the cytoplasm with various ligands, such as phytochelatins, metallothioneins, metal-binding proteins; (d) sequestration of metals into the vacuole by tonoplast-located transporters. The growing application of molecular-genetic technologies led to the well understanding of mechanisms of heavy metal tolerance/accumulation in plants, and subsequently many transgenic plants with increased resistance and uptake of heavy metals were developed for the purpose of phytoremediation. Once the rate-limiting steps for uptake, translocation, and detoxification of metals in hyperaccumulating plants are identified, more informed construction of transgenic plants would result in improved applicability of the phytoremediation technology.  相似文献   

19.
Effect of Manganese Deficiency on Chloroplasts of Lemon Leaves   总被引:2,自引:0,他引:2  
Manganese deficiency in chloroplasts of Eureka lemon leaves resulted in 23% and 40% increase of chloroplast nitrogen and protein, respectively, on a chlorophyll unit basis. Acrylamide gel electrophoresis carried out on extracts of these chloroplasts disclosed also qualitative differences between the normal and deficient leaves. Calculated on chloroplast N basis there is an increase of 17% in the chloroplast protein under Mn deficiency. This increase apparently indicates a more intense protein synthesis in the Mn deficient chloroplasts. Hill activity of the –Mn leaves was about one-third of the analog control leaves. Manganese infiltration into detached but intact leaves restored the activity in the –Mn leaves up to 70% of the control. Lemon leaves affected by other macro- and micro- nutrient deficiencies did not respond to the manganese infiltration; therefore, the use of this infiltration method is suggested for the evaluation of the manganese nutrition status of citrus and probably other higher plants.  相似文献   

20.
Selenium (Se) is an essential trace element for many organisms including humans, yet toxic at higher levels. Both Se deficiency and toxicity are problems worldwide. Since plants readily accumulate and volatilize Se, they may be used both as a source of dietary Se and for removing excess Se from the environment. Plant species differ in their capacity to metabolize and accumulate Se, from non-Se accumulators (< 100 mg Se/kg DW), to Se-accumulators (100-1000 mg Se/kg DW) to Se hyperaccumulators (> 1,000 mg Se/kg DW). Here we review plant mechanisms of Se metabolism in these various plant types. We also summarize results from genetic engineering that have led to enhanced plant Se accumulation, volatilization, and/or tolerance, including field studies. Before using Se-accumulating plants at a large scale we need to evaluate the ecological implications. Research so far indicates that plant Se accumulation significantly affects the plant's ecological interactions below and above ground. Selenium canprotect plants from fungal pathogens and from a variety of invertebrate and vertebrate herbivores, due to both deterrence and toxicity. However, specialist (Se-tolerant herbivores), detritivores and endophytes appear to utilize Se hyperaccumulator plants as a resource. These findings are relevant for managing phytoremediation of Se and similar elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号