首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
In brain mitochondria, state 4 respiration supported by the NAD-linked substrates glutamate/malate in the presence of EGTA promotes a high rate of exogenous H2O2 removal. Omitting EGTA decreases the H2O2 removal rate by almost 80%. The decrease depends on the influx of contaminating Ca2+, being prevented by the Ca2+ uniporter inhibitor ruthenium red. Arsenite is also an inhibitor (maximal effect approximately 40%, IC50, 12 microm). The H2O2 removal rate (EGTA present) is decreased by 20% during state 3 respiration and by 60-70% in fully uncoupled conditions. H2O2 removal in mitochondria is largely dependent on glutathione peroxidase and glutathione reductase. Both enzyme activities, as studied in disrupted mitochondria, are inhibited by Ca2+. Glutathione reductase is decreased by 70% with an IC50 of about 0.9 microm, and glutathione peroxidase is decreased by 38% with a similar IC50. The highest Ca2+ effect with glutathione reductase is observed in the presence of low concentrations of H2O2. With succinate as substrate, the removal is 50% less than with glutamate/malate. This appears to depend on succinate-supported production of H2O2 by reverse electron flow at NADH dehydrogenase competing with exogenous H2O2 for removal. Succinate-dependent H2O2 is inhibited by rotenone, decreased DeltaPsi, as described previously, and by ruthenium red and glutamate/malate. These agents also increase the measured rate of exogenous H2O2 removal with succinate. Succinate-dependent H2O2 generation is also inhibited by contaminating Ca2+. Therefore, Ca2+ acts as an inhibitor of both H2O2 removal and the succinate-supported H2O2 production. It is concluded that mitochondria function as intracellular Ca2+-modulated peroxide sinks.  相似文献   

2.
Inhibitors of Complex I of the mitochondrial respiratory chain, such as rotenone, promote Parkinson disease-like symptoms and signs of oxidative stress. Dopamine (DA) oxidation products may be implicated in such a process. We show here that the o-quinone dopaminochrome (DACHR), a relatively stable DA oxidation product, promotes concentration (0.1-0.2 mum)- and respiration-dependent generation of H(2)O(2) at Complex I in brain mitochondria, with further stimulation by low concentrations of rotenone (5-30 nm). The rotenone effect required that contaminating Ca(2+) (8-10 mum) was not removed. DACHR apparently extracts an electron from the constitutively autoxidizable site in Complex I, producing a semiquinone, which then transfers an electron to O(2), generating O(2)(.) and then H(2)O(2). Mitochondrial removal of H(2)O(2) monoamine, formed by either oxidase activity or DACHR, was performed largely by glutathione peroxidase and glutathione reductase, which were negatively regulated by low intramitochondrial Ca(2+) levels. Thus, the H(2)O(2) formed accumulated in the medium if contaminating Ca(2+) was present; in the absence of Ca(2+), H(2)O(2) was completely removed if it originated from monoamine oxidase, but was less completely removed if it originated from DACHR. We propose that the primary action of rotenone is to promote extracellular O(2)(.) release via activation of NADPH oxidase in the microglia. In turn, O(2)(.) oxidizes DA to DACHR extracellularly. (The reaction is favored by the lack of GSH, which would otherwise preferably produce GSH adducts of dopaminoquinone.) Once formed, DACHR (which is resistant to GSH) enters neurons to activate the rotenone-stimulated redox cycle described.  相似文献   

3.
Abstract: Homogenates of perfused rat brain generated oxidized glutathione from reduced glutathione during incubation with dopamine or serotonin. This activity was blocked by pargyline. a monoamine oxidase inhibitor, or by catalase, a scavenger of hydrogen peroxide. These results demonstrate formation of hydrogen peroxide by monoamine oxidase and the coupling of the peroxide to glutathione peroxidase activity. Oxidized glutathione was measured fluorometrically via the oxidation of NADPH by glutathione reductase. In the absence of added dopamine or serotonin, a much smaller amount of reduced glutathione was oxidized: this activity was blocked by catalase, but not by pargyline. Therefore, endogenous production of hydrogen peroxide, not linked to monoamine oxidase activity, was present. These results indicate that glutathione peroxidase (linked to hexose monophosphate shunt activity) can function to eliminate hydrogen peroxide generated by monoamine oxidase and other endogenous sources in aminergic neurons.  相似文献   

4.
Hepatocyte cytotoxicity caused by substituted benzoquinones was associated with increased cytosolic Ca2+ concentration. p-Benzoquinone-induced hepatotoxicity was enhanced when the hepatocytes were loaded with Ca2+ by preincubation with ATP. A similar order of potency of the substituted benzoquinones in releasing Ca2+ from isolated mitochondria and inducing hepatocyte cytotoxicity was found; in decreasing order, this was 2-Br-, unsubstituted-, 2-CH3-, 2,6-(CH3O)2-, 2,6-(CH3)2-, 2,5-(CH3)2-, 2,3,5-(CH3)3-, and 2,3,5,6-(CH3)4-benzoquinones (duroquinone). The cellular products of quinone metabolism, hydroquinones and glutathione conjugates, did not cause mitochondrial Ca2+ release. Benzoquinone-induced mitochondrial Ca2+ release was preceded by GSH conjugate formation and NAD(P)H oxidation but followed by mitochondrial swelling. With duroquinone, a slow GSH and NADPH oxidation preceded Ca2+ release, but GSH oxidation did not occur with Se-deficient mitochondria lacking glutathione peroxidase activity. Cyanide-insensitive respiration was also observed with duroquinone but not with benzoquinone, suggesting that duroquinone undergoes redox cycling. GSH was depleted by both arylation and oxidation with 2,6-(CH3O)2-, 2,6-(CH3)2-, 2,5(CH3)2-, and 2,3,5-(CH3)3-benzoquinones. Benzoquinone concentrations that totally depleted GSH did not cause Ca2+ release until intramitochondrial NAD(P)H was oxidized. Ca2+ release was also prevented when NAD(P)H generation was stimulated by the presence of isocitrate or 3-hydroxybutyrate. This suggests that mitochondrial Ca2+ release is associated with NAD(P)H oxidation catalyzed by NADH dehydrogenase with benzoquinone or by the glutathione peroxidase-glutathione reductase system with duroquinone.  相似文献   

5.
The role of glutathione in the retention of Ca2+ by liver mitochondria   总被引:2,自引:0,他引:2  
Concentrations of rhein and nitrofurantoin in the micromolar range induce Ca2+ release and the development of increased inner membrane permeability in liver mitochondria. Both compounds inhibit the mitochondrial glutathione reductase causing a depletion of GSH and an accumulation of GSSG in energized mitochondria. Under these conditions, the compounds also alter the oxidation state of pyridine nucleotides, NADH becoming oxidized while NADPH remains reduced. Using rhein or nitrofurantoin, together with t-butyl-hydroperoxide and beta-hydroxybutyrate, it is possible to selectively alter the NAD/NADH, the NADP/NADPH, and the GSSG/GSH ratios and to determine the effect of these different states on the ability of Ca2+ to produce a permeable inner membrane. No correlation between pyridine nucleotide ratios and sensitivity to Ca2+ was observed. Mitochondria are stable to Ca2+ when the GSH content is high, but become permeable when Ca2+ is present and GSH is converted to GSSG. It is proposed that the GSSG/GSH ratio, by controlling the reduction state of critical sulfhydryl groups, regulates lysophospholipid acyltransferase activity and, therefore, the ability of mitochondria to remain impermeable upon activation of the intramitochondrial Ca2+ requiring phospholipase A2.  相似文献   

6.
We have previously proposed that hypercholesterolemic LDL receptor knockout (k/o) mice mitochondria possess a lower antioxidant capacity due to a large consumption of reducing equivalents from NADPH to sustain high rates of lipogenesis. In this work, we tested the hypothesis that this k/o mice mitochondrial oxidative stress results from the depletion of NADPH-linked substrates. In addition, the oxidative stress was further characterized by showing a lower mitochondrial GSH/GSSG ratio and a higher liver content of protein carbonyls as compared to controls. The activity of the antioxidant enzyme system glutathione reductase/peroxidase did not differ in k/o and control mitochondria. The faster spontaneous oxidation of endogenous NADPH in the k/o mitochondria was prevented by the addition of exogenous catalase, indicating that this oxidation is mediated by mitochondrially generated H(2)O(2). The higher rate of H(2)O(2) production was also prevented by the addition of exogenous isocitrate that maintains NADP fully reduced. The hypothesis that high rates of lipogenesis in the k/o cells decrease mitochondrial NADPH/NADP(+) ratio due to consumption of NADPH-linked substrates was supported by two findings: (i) oxygen consumption supported by endogenous NAD(P)H-linked substrates was slower in k/o than in control mitochondria, but was similar in the presence of exogenous isocitrate; (ii) in vivo treatment of k/o mice with sodium citrate/citric acid drinking solution for 2 weeks partially restored both the rate of oxygen consumption supported by NAD(P)H-linked substrates and the mitochondrial capacity to sustain reduced NADPH. In conclusion, the data demonstrate that the mitochondrial oxidative stress in hypercholesterolemic LDL receptor knockout mice is the result of a low content of mitochondrial NADPH-linked substrates in the intact animal that can be, at least in part, replenished by oral administration of citrate.  相似文献   

7.
Abnormal accumulation of Ca2+ and exposure to pro-apoptotic proteins, such as Bax, is believed to stimulate mitochondrial generation of reactive oxygen species (ROS) and contribute to neural cell death during acute ischemic and traumatic brain injury, and in neurodegenerative diseases, e.g. Parkinson's disease. However, the mechanism by which Ca2+ or apoptotic proteins stimulate mitochondrial ROS production is unclear. We used a sensitive fluorescent probe to compare the effects of Ca2+ on H2O2 emission by isolated rat brain mitochondria in the presence of physiological concentrations of ATP and Mg2+ and different respiratory substrates. In the absence of respiratory chain inhibitors, Ca2+ suppressed H2O2 generation and reduced the membrane potential of mitochondria oxidizing succinate, or glutamate plus malate. In the presence of the respiratory chain Complex I inhibitor rotenone, accumulation of Ca2+ stimulated H2O2 production by mitochondria oxidizing succinate, and this stimulation was associated with release of mitochondrial cytochrome c. In the presence of glutamate plus malate, or succinate, cytochrome c release and H2O2 formation were stimulated by human recombinant full-length Bax in the presence of a BH3 cell death domain peptide. These results indicate that in the presence of ATP and Mg2+, Ca2+ accumulation either inhibits or stimulates mitochondrial H2O2 production, depending on the respiratory substrate and the effect of Ca2+ on the mitochondrial membrane potential. Bax plus a BH3 domain peptide stimulate H2O2 production by brain mitochondria due to release of cytochrome c and this stimulation is insensitive to changes in membrane potential.  相似文献   

8.
Rat astrocytes accumulate extensive DNA single-strand breakage in response to agents promoting activation of NADPH oxidase. Proinflammatory stimuli, as bacterial lipopolysaccharide associated with interferon-gamma, caused a rapid/robust burst of superoxide radicals, sensitive to NADPH oxidase inhibition, followed by dismutation to H2O2, the species resulting in DNA damage via a Fenton-type reaction. There was no contribution of superoxide radical/H2O2 of mitochondrial origin and there was no evidence for the formation/involvement of peroxynitrite. On the other hand, astrocytes were virtually invulnerable to the DNA-damaging effects of exogenous peroxynitrite, an agent causing DNA strand scission in other cell types, via the Ca2+-dependent mitochondrial formation of superoxide radical/H2O2. Resistance was not dependent on scavenging of peroxynitrite but, rather, on insufficient mitochondrial Ca2+ accumulation. Hence, different manipulations resulting in an increase of the mitochondrial Ca2+ pool were invariably associated with the formation of DNA-damaging levels of H2O2. In conclusion, it appears that the strategy adopted by astrocytes to avoid inflammation-dependent genotoxic events, in particular those mediated by peroxynitrite, is to prevent mitochondrial Ca2+ accumulation, critical for the formation of secondary species largely responsible for DNA damage induced by peroxynitrite.  相似文献   

9.
Adrenal cortex mitochondria prepared by a standard method do not exhibit malic enzyme activity. Addition of physiological concentrations of Ca2+ and Mg2+ enables these mitochondria to reduce added NADP+ by malate to form free NADPH. Half-maximum activation of the mitochondrial malic enzyme requires 0.3 mM Ca2+ and 1 mM Mg2+. Solubilized mitochondrial malic enzymes is independent of Ca2+ and has a K M of 0.2 mM for Mg2+. The Ca2+ effect is dependent on an initial period of active Ca2+ uptake which also causes other changes in respiratory properties similar to those observed with mitochondria from other tissues. After Ca2+ accumulation has taken place, free Ca2+, but not additional accumulation, is still required for malic enzyme activity. The requirement for Mg2+ can be met by Mn2+ (1 mM). This concentration of Mn2+ alone yielded only a slight activation of mitochondrial malic enzyme while higher concentrations of Mn2+ alone gave good activation of the mitochondrial malic enzy.e The NADPH generated by the Ca2+-Mg2+ activated malic enzyme effectively supports the 11beta-hydroxylation of deoxycorticosterone, whereas in the presence of malate, or malate plus Mg2+ but absence of Ca2+, the energy linked transhydrogenase supplies all the required NADPH. The activated malic enzyme appears to be more efficient than transhydrogenase in generating NADPH to support 11beta-hydroxylation. Cyanide and azide have been found to inhibit solubilized mitochondrial malic enzyme.  相似文献   

10.
Mitochondrial permeability transition is commonly characterized as a Ca2+ -dependent non-specific increase in inner membrane permeability that results in swelling of mitochondria and their de-energization. In the present study, the effect of different inhibitors of phospholipase A2--p-bromophenacyl bromide, dibucaine, and aristolochic acid--on hydroperoxide-induced permeability transitions in rat liver mitochondria was tested. p-Bromophenacyl bromide completely prevented the hydroperoxide-induced mitochondrial permeability transition while the effects of dibucaine or aristolochic acid were negligible. Organic hydroperoxides added to mitochondria undergo reduction to corresponding alcohols by mitochondrial glutathione peroxidase. This reduction occurs at the expense of GSH which, in turn, can be reduced by glutathione reductase via oxidation of mitochondrial pyridine nucleotides. The latter is considered a prerequisite step for mitochondrial permeability transition. Among all the inhibitors tested, only p-bromophenacyl bromide completely prevented hydroperoxide-induced oxidation of mitochondrial pyridine nucleotides. Interestingly, p-bromophenacyl bromide had no affect on mitochondrial glutathione peroxidase, but reacted with mitochondrial glutathione that prevented pyridine nucleotides from being oxidized. Our data suggest that p-bromophenacyl bromide prevents hydroperoxide-induced deterioration of mitochondria via interaction with glutathione rather than through inhibition of phospholipase A2.  相似文献   

11.
Respiring heart mitochondria exchange matrix 42K+ with extramitochondrial K+ at a rapid rate in the presence of Pi (Chávez, E., Jung, D. W., and Brierley, G. P. (1977) Arch. Biochem. Biophys. 183, 460-470, 1977). This exchange reaction is strongly inhibited by uncouplers. However, under two rather similar sets of conditions, the addition of an uncoupler results in a rapid, transient increase in the exchange of matrix 42K+ with external K+ when the mitochondria are suspended in KCl or, alternatively, in a net loss of matrix 42K+ from mitochondria suspended in K+-free media. These conditions are: (a) the addition of an uncoupler to respiring mitochondria after the accumulation of a small amount of phosphate salt, and (b) the presence of a Ca2+-chelator or ruthenium red with uncoupler. Loss of 42K+ under these conditions occurs with all substrates tested, is completely blocked by rotenone, and is accompanied by an almost complete oxidation of both NADH and NADPH. In the presence of rotenone and acetoacetate, only NADH is oxidized and 42K+ efflux does not occur. It is concluded that simply dissipating the mitochondrial protonmotive force by addition of an uncoupler is not sufficient to induce release of mitochondrial K+. Uncoupler-induced oxidation of mitochondrial NADPH, in conjunction with elevated internal Pi, opens a rather nonspecific pathway for K+ loss which can be inhibited by ADP and enhanced by Ca2+. The more specific loss of K+ which occurs in the absence of elevated internal Pi when uncoupler and EGTA or ruthenium red are present suggests that K+ efflux is related to the Ca2+-uniporter. Loss of K+ by either of these pathways can be differentiated from efflux of K+ on the endogenous K+/H+ exchanger which functions without dissipation of the mitochondrial membrane potential.  相似文献   

12.
A NADPH cytochrome c oxidoreductase purified from membranes of rabbit peritoneal neutrophil was shown to behave as the NADPH dehydrogenase component of the O2- generating oxidase complex. A photoactivable derivative of NADP+, azido nitrophenyl-gamma-aminobutyryl NADP+ (NAP4-NADP+), was synthesized in its labeled [3H] form and used to photolabel the NADPH cytochrome c reductase at different stages of the purification procedure. Control assays performed in dim light indicated that the reduced form of NADP4-NADP+ generated by reduction with glucose-6-phosphate and glucose-6-phosphate dehydrogenase was oxidized at virtually the same rate as NADPH. Upon photoirradiation of the purified reductase in the presence of [3H]NAP4-NADP+ and subsequent separation of the photolabeled species by sodium dodecyl sulfate polyacrylamide gel electrophoresis, radioactivity was found to be present predominantly in a protein band with a molecular mass of 77-kDa and accessorily in bands of 67-kDa and 57-kDa. Evidence is provided that the 67-kDa and 57-kDa proteins arose from the 77-kDa protein by proteolysis. Despite removal of part of the sequence, the proteolyzed proteins were still active in catalyzing electron transport from NADPH to cytochrome c and in binding the photoactivable derivative of NADP+.  相似文献   

13.
Abstract: Catecholamines added in vitro in rat brain synaptosomes activate the decarboxylation of glucose radioactively labelled on carbon 1, suggesting an effective activation of the pentose phosphate pathway. Stimulation also occurred with phenazine methosulphate, reduced glutathione and hydrogen peroxide. The activation of the pentose phosphate pathway by 5-hydroxytryptamine, noradrenaline and dopamine is ascribed to the activation of monoamine oxidase, producing both the respective biogenic aldehyde and hydrogen peroxide. Evidence is presented that the further metabolism of the aldehyde by aldehyde reductase and the removal of hydrogen peroxide by glutathione peroxidase both release the limitation of N ADP+ availability for the pentose phosphate pathway by leading to the oxidation of NADPH. The relevance of the maintenance of reduced NADP+ on brain is discussed in relation to the metabolism of glutathione and to lipid peroxidation.  相似文献   

14.
The presence of the enzymes of the ascorbate-glutathione cycle was investigated in mitochondria and peroxisomes purified from pea (Pisum sativum L.) leaves. All four enzymes, ascorbate peroxidase (APX; EC 1.11.1.11), monodehydroascorbate reductase (EC 1.6.5.4), dehydroascorbate reductase (EC 1.8.5.1), and glutathione reductase (EC 1.6.4.2), were present in mitochondria and peroxisomes, as well as in the antioxidants ascorbate and glutathione. The activity of the ascorbate-glutathione cycle enzymes was higher in mitochondria than in peroxisomes, except for APX, which was more active in peroxisomes than in mitochondria. Intact mitochondria and peroxisomes had no latent APX activity, and this remained in the membrane fraction after solubilization assays with 0.2 M KCl. Monodehydroascorbate reductase was highly latent in intact mitochondria and peroxisomes and was membrane-bound, suggesting that the electron acceptor and donor sites of this redox protein are not on the external side of the mitochondrial and peroxisomal membranes. Dehydroascorbate reductase was found mainly in the soluble peroxisomal and mitochondrial fractions. Glutathione reductase had a high latency in mitochondria and peroxisomes and was present in the soluble fractions of both organelles. In intact peroxisomes and mitochondria, the presence of reduced ascorbate and glutathione and the oxidized forms of ascorbate and glutathione were demonstrated by high-performance liquid chromatography analysis. The ascorbate-glutathione cycle of mitochondria and peroxisomes could represent an important antioxidant protection system against H2O2 generated in both plant organelles.  相似文献   

15.
Superoxide generation, assessed as the rate of acetylated cytochrome c reduction inhibited by superoxide dismutase, by purified NADPH cytochrome P-450 reductase or intact rat liver microsomes was found to account for only a small fraction of their respective NADPH oxidase activities. DTPA-Fe3+ and EDTA-FE3+ greatly stimulated NADPH oxidation, acetylated cytochrome c reduction, and O(2) production by the reductase and intact microsomes. In contrast, all ferric chelates tested caused modest inhibition of acetylated cytochrome c reduction and O(2) generation by xanthine oxidase. Although both EDTA-Fe3+ and DTPA-Fe3+ were directly reduced by the reductase under anaerobic conditions, ADP-Fe3+ was not reduced by the reductase under aerobic or anaerobic conditions. Desferrioxamine-Fe3+ was unique among the chelates tested in that it was a relatively inert iron chelate in these assays, having only minor effects on NADPH oxidation and/or O(2) generation by the purified reductase, intact microsomes, or xanthine oxidase. Desferrioxamine inhibited microsomal lipid peroxidation promoted by ADP-Fe3+ in a concentration-dependent fashion, with complete inhibition occurring at a concentration equal to that of exogenously added ferric iron. The participation of O(2) generated by the reductase in NADPH-dependent lipid peroxidation was also investigated and compared with results obtained with a xanthine oxidase-dependent lipid peroxidation system. NADPH-dependent peroxidation of either phospholipid liposomes or rat liver microsomes in the presence of ADP-Fe3+ was demonstrated to be independent of O(2) generation by the reductase.  相似文献   

16.
Production of superoxide (O(2)(·-)) by NADPH oxidases contributes to the development of hypertension and atherosclerosis. Factors responsible for activation of NADPH oxidases are not well understood; interestingly, cardiovascular disease is associated with both altered NADPH oxidase activity and age-associated mitochondrial dysfunction. We hypothesized that mitochondrial dysfunction may contribute to activation of NADPH oxidase. The effect of mitochondrial inhibitors on phagocytic NADPH oxidase in human lymphoblasts and whole blood was measured at the basal state and upon PKC-dependent stimulation with PMA using extracellular 1-hydroxy-2,2,6,6-tetramethylpiperidin-4-yl-trimethylammonium or mitochondria-targeted 1-hydroxy-4-[2-triphenylphosphonio)-acetamido]-2,2,6,6-tetramethylpiperidine spin probes and electron spin resonance (ESR). Intracellular cytosolic calcium [Ca(2+)](i) was measured spectrofluorometrically using fura-2 AM. Incubation of lymphoblasts with the mitochondrial inhibitors rotenone, antimycin A, CCCP, or ruthenium red (an inhibitor of mitochondrial Ca(2+) uniporter) did not significantly change basal activity of NADPH oxidase. In contrast, preincubation with the mitochondrial inhibitors prior to PMA stimulation of lymphoblasts resulted in two- to three-fold increase of NADPH oxidase activity compared with stimulation with PMA alone. Most notably, the intracellular Ca(2+)-chelating agent BAPTA-AM abolished the effect of mitochondrial inhibitors on NADPH oxidase activity. Cytosolic Ca(2+) measurements with fura-2 AM showed that the mitochondrial inhibitors increased [Ca(2+)](i), while BAPTA-AM abolished the increase in [Ca(2+)](i). Furthermore, depletion of cellular Ca(2+) with thapsigargin attenuated CCCP- and antimycin A-mediated activation of NADPH oxidase in the presence of PMA by 42% and 31%, correspondingly. Our data suggest that mitochondria regulate PKC-dependent activation of phagocytic NADPH oxidase. In summary, increased mitochondrial O(2)(·-) and impaired buffering of cytosolic Ca(2+) by dysfunctional mitochondria result in enhanced NADPH oxidase activity, which may contribute to the development of cardiovascular diseases.  相似文献   

17.
Simultaneous measurements of oxygen consumption and transmembrane transport of Ca2+, H+, and phosphate show that the efflux of Ca2+ from respiring tightly coupled rat liver mitochondria takes place by an electroneutral Ca2+/2H+ antiport process that is ruthenium red-insensitive and that is regulated by the oxidation-reduction state of the mitochondrial pyridine nucleotides. When mitochondrial pyridine nucleotides are kept in a reduced steady state, the efflux of Ca2+ is inhibited; when they are in an oxidized state, Ca2+ efflux is activated. These processes were demonstrated by allowing phosphate-depleted mitochondria respiring on succinate in the presence of rotenone to take up Ca2+ from the medium. Upon subsequent addition of ruthenium red to block Ca2+ transport via the electrophoretic influx pathway, and acetoacetate, to bring mitochondrial pyridine nucleotides into the oxidized state, Ca2+ efflux and H+ influx ensued. The observed H+ influx/Ca2+ efflux ratio was close to the value 2.0 predicted for the operation of an electrically neutral Ca2+/2H+ antiport process.  相似文献   

18.
We have previously demonstrated in rat liver mitochondria a hydroperoxide-induced hydrolysis of pyridine nucleotides and release of Ca2+ [L?tscher, H. R., Winterhalter, K. H., Carafoli, E. & Richter, C. (1979) Proc. Natl Acad. Sci. USA 76, 4340-4344, and L?tscher, H. R., Winterhalter, K. H., Carafoli, E. & Richter, C. (1980) J. Biol. Chem. 255, 9325-9330]. Here we investigate pyridine nucleotide hydrolysis and Ca2+ release under conditions of minimized Ca2+ cycling and with smaller Ca2+ loads. The extent of pyridine nucleotide hydrolysis, measured by pyridine-nucleotide-derived nicotinamide release from intact mitochondria, and the Ca2+ release rate show a very similar sigmoidal dependence on the mitochondrial Ca2+ load. The hydrolysis of oxidized pyridine nucleotides is limited under non-cycling conditions. Whereas pyridine nucleotide hydrolysis as measured by nicotinamide release is extensive, net loss of mitochondrial pyridine nucleotides is observed only at relatively high Ca2+ loads. Our results indicate the ability of mitochondria to resynthesize pyridine nucleotides after hydrolysis. Neither a decrease of reduced, nor an increase of oxidized, mitochondrial glutathione favour Ca2+ release. From these and previous findings it is concluded that the hydroperoxide-induced Ca2+ release is triggered by a factor which is distal to the oxidation of mitochondrial pyridine nucleotides. Ca2+ release is stimulated when the movement of protons across the inner mitochondrial membrane is facilitated, giving evidence for the operation of the hydroperoxide-induced release pathway as a Ca2+/H+ antiport.  相似文献   

19.
Alterations in the redox status of proteins have been implicated in the pathology of several neurodegenerative diseases including Alzheimer's and Parkinson's. We report that peroxynitrite and H2O2-induced disulfides in the porcine brain microtubule-associated proteins tau and microtubule-associated protein-2 are substrates for the glutaredoxin reductase system composed of glutathione reductase, human or Escherichia coli glutaredoxin, reduced glutathione, and NADPH. Oxidation and reduction of cysteines in tau and microtubule-associated protein-2 were quantitated by monitoring the incorporation of 5-iodoacetamido-fluorescein, a thiol-specific labeling reagent. Reduction of disulfide bonds in the microtubule-associated proteins by the glutaredoxin reductase system restored their ability to promote the assembly of microtubules composed of purified porcine tubulin. Thiol-disulfide exchange between oxidized glutathione and the microtubule-associated proteins was detected by monitoring protein oxidation and was quantitated by measuring reduced glutathione by HPLC.  相似文献   

20.
The effect of thioredoxin peroxidases on the protection of Ca(2+)-induced inner mitochondrial membrane permeabilization was studied in the yeast Saccharomyces cerevisiae using null mutants for these genes. Since deletion of a gene can promote several other effects besides the absence of the respective protein, characterizations of the redox state of the mutant strains were performed. Whole cellular extracts from all the mutants presented lower capacity to decompose H(2)O(2) and lower GSH/GSSG ratios, as expected for strains deficient for peroxide-removing enzymes. Interestingly, when glutathione contents in mitochondrial pools were analyzed, all mutants presented lower GSH/GSSG ratios than wild-type cells, with the exception of DeltacTPxI strain (cells in which cytosolic thioredoxin peroxidase I gene was disrupted) that presented higher GSH/GSSG ratio. Low GSH/GSSG ratios in mitochondria increased the susceptibility of yeast to damage induced by Ca(2+) as determined by membrane potential and oxygen consumption experiments. However, H(2)O(2) removal activity appears also to be important for mitochondria protection against permeabilization because exogenously added catalase strongly inhibited loss of mitochondrial potential. Moreover, exogenously added recombinant peroxiredoxins prevented inner mitochondrial membrane permeabilization. GSH/GSSG ratios decreased after Ca(2+) addition, suggesting that reactive oxygen species (ROS) probably mediate this process. Taken together our results indicate that both mitochondrial glutathione pools and peroxide-removing enzymes are key components for the protection of yeast mitochondria against Ca(2+)-induced damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号