首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
The optimal diet model entails that foragers look beyond the individual prey encounter, to at least the level of intake rate across a bout of foraging, but optimization over a longer time remains controversial. In this paper, we show how oystercatchers increase their intake over the longer term using mussel colour as a cue. Wintering oystercatchers Haematopus ostralegus feed extensively on mussels Mytilus edulis in the estuaries of southern Britain. They show a marked preference for brown-shelled mussels over the commoner black-shelled morph, and we show that this enables them to maximize their rate of energy gain over a longer period than a single foraging bout. The brown and black mussels did not differ in ventral thickness and energy content, which are the main criteria for mussel selection and most important for short-term optimization. The brown mussels contained significantly less moisture, so by selecting them, oystercatchers could pack more mussel flesh into their limited oesophageal storage capacity. This enables them to increase their overall consumption during a feeding bout and increases their long-run energy gain rate, to an extent that is large enough to be significant for survival, especially during the short exposure of the mussel beds in winter.  相似文献   

2.
Intake rate maximization alone is not always sufficient in explainingprey size selection in predators. For example, bivalve-feedingoystercatchers regularly select smaller prey than expected ifthey aimed to maximize their intake rate. It has been proposedthat to these birds large prey are "risky," in the sense thatbirds may damage their bills when feeding on large bivalves.Large bivalves yield more energy, but according to this hypothesisthis is achieved at the expense of energy yield in the longterm when (1) the risk of bill damage increases with prey sizeand (2) foraging with a damaged bill is less effective. In accordancewith this hypothesis, we show that captive oystercatchers feedingon large cockles experienced a high probability of bill tipdamage, while bill damage was absent when cockles were small.Moreover, among free-living oystercatchers the prevalence ofbill damage was correlated with mean cockle size near the capturesite, and the data on captive birds fit in this pattern. Foodintake of captive oystercatchers feeding exclusively on cockleswas reduced by 23% after bill damage, and free-living birdswith damaged bills had 14 g lower mass. Because lower body masswas associated with higher mortality probability, these resultsindicate long-term costs associated with feeding on large cockles.We conclude that the risk of bill damage can potentially explainwhy oystercatchers avoid large bivalves and that oystercatchersmay maximize long-term intake rate by selecting prey sizes thatare "suboptimal" from a short-term rate-maximizing point ofview.  相似文献   

3.
Migratory shorebirds need to replenish their energy reserves by foraging at stop-over sites en route. Adjusting their foraging behaviour to accommodate variation in local prey availability would therefore be advantageous. We test whether western sandpipers (Calidris mauri), a sexually dimorphic shorebird, adjust their foraging behaviour in response to local changes in prey availability, as inferred by changes in diurnal time and sediment temperature. Both males and females showed quantitative changes to foraging mode in relation to each of these variables. Probing, for example, which is used to exploit infaunal prey, was significantly more common at higher temperatures. The results presented here are consistent with the notion that western sandpipers can adjust their foraging behaviour in response to variation in prey availability. Further, we speculate that temperature-induced changes to prey location may contribute to the striking sexual segregation observed for this species during the non-breeding season.  相似文献   

4.
We compared prefledging growth, energy expenditure, and time budgets in the arctic-breeding red knot (Calidris canutus) to those in temperate shorebirds, to investigate how arctic chicks achieve a high growth rate despite energetic difficulties associated with precocial development in a cold climate. Growth rate of knot chicks was very high compared to other, mainly temperate, shorebirds of their size, but strongly correlated with weather-induced and seasonal variation in availability of invertebrate prey. Red knot chicks sought less parental brooding and foraged more at the same mass and temperature than chicks of three temperate shorebird species studied in The Netherlands. Fast growth and high muscular activity in the cold tundra environment led to high energy expenditure, as measured using doubly labelled water: total metabolised energy over the 18-day prefledging period was 89% above an allometric prediction, and among the highest values reported for birds. A comparative simulation model based on our observations and data for temperate shorebird chicks showed that several factors combine to enable red knots to meet these high energy requirements: (1) the greater cold-hardiness of red knot chicks increases time available for foraging; (2) their fast growth further shortens the period in which chicks depend on brooding; and (3) the 24-h daylight increases potential foraging time, though knots apparently did not make full use of this. These mechanisms buffer the loss of foraging time due to increased need for brooding at arctic temperatures, but not enough to satisfy the high energy requirements without invoking (4) a higher foraging intake rate as an explanation. Since surface-active arthropods were not more abundant in our arctic study site than in a temperate grassland, this may be due to easier detection or capture of prey in the tundra. The model also suggested that the cold-hardiness of red knot chicks is critical in allowing them sufficient feeding time during the first week of life. Chicks hatched just after the peak of prey abundance in mid-July, but their food requirements were maximal at older ages, when arthropods were already declining. Snow cover early in the season prevented a better temporal match between chick energy requirements and food availability, and this may enforce selection for rapid growth.  相似文献   

5.
By comparing the shells of those mussels Mytilus edulis that had been opened by oystercatchers Haematopus ostralegus with mussels of similar size that had not been opened, it was shown that oystercatchers that break into their prey by hammering a hole in the shell selected between prey within a size-class. Ventral hammerers selected mussels that were relatively thin on the ventral surface, were brown in colour and carried few barnacles. Dorsal hammerers selected eroded mussels with thin dorsal shells. Stabbing oystercatchers did not select for thin-shelled prey. In conjunction with the great individual variation in flesh content between mussels of the same length, prey size in this case can be only a poor predictor of prey profitability.  相似文献   

6.
Guy Beauchamp 《Oecologia》2009,161(3):651-655
Despite its fundamental relevance to many ecological processes in predator–prey relationships, the functional response, which relates predator intake rate to prey density, remains difficult to document in the field. Here, I document the functional response of semipalmated sandpipers (Calidris pusilla) foraging on a burrowing amphipod Corophium volutator during three field seasons at the peak of fall migration in the upper Bay of Fundy (New Brunswick, Canada). I gathered data during the ebbing tide when all sandpipers are highly motivated to feed after a lengthy hide-tide fast. As birds follow the receding tideline, foragers encounter prey at different densities and do not aggregate in the richest food patches. Results show that intake rate increased at a decreasing rate with Corophium density, yielding a type II functional response typical of many shorebird species. Intake rate decreased in the later stages of migration stopover at a time where preferred prey items have been shown to occur at lower densities due to prior depletion. At this period of lower prey availability, intake rate also decreased with sandpiper density providing evidence for interference at low prey density. The results illustrate the fact that the functional response may not be unique but instead vary as a function of the type of competitive relationship among foragers.  相似文献   

7.
Dense flocks of migratory shorebirds from diverse species often concentrate in the intertidal areas for stopover. Trophic structure, food partition, prey availability and selectivity, predation risk, and abiotic factors are often used to explain the differences in habitat use of coexisting shorebirds. We sampled the macrobenthos and surveyed the distribution of shorebird populations to study the effects of foraging strategies on the habitat use of shorebirds at Chongming Dongtan, an important stopover site for shorebirds on the East Asian–Australasian Flyway. Results show that the relative abundance of epifaunal macrobenthos in salt marshes was much higher than that in the bare flats, whereas the relative abundance of infaunal macrobenthos in salt marshes was much lower than that in bare flats. The relative abundance of two life forms of macrobenthos was similar in the transitional zones between the salt marshes and the bare flats. Shorebirds with different foraging strategies exhibited different habitat uses. Pause-travel shorebirds mainly utilized the salt-marsh fringes, while tactile continuous shorebirds relied heavily on the bare flats. There was no significant difference in habitat use for visual continuous shorebirds. The density of tactile continuous shorebirds was positively correlated with bivalve density, and that of visual continuous shorebirds positively with crustacean density. Meanwhile, the relative abundance of pause-travel foraging shorebirds was positively correlated with the relative abundance of epifaunal, but negatively with infaunal macrobenthos. In contrast, the relative abundance of tactile foraging shorebirds had a positive correlation with infaunal but a negative one with epifaunal life form. Therefore, foraging strategies may play important roles in shorebirds’ habitat use in intertidal areas.  相似文献   

8.
Worldwide declines in shorebird populations, driven largely by habitat loss and degradation, motivate environmental managers to preserve and restore the critical coastal habitats on which these birds depend. Effective habitat management requires an understanding of the factors that determine habitat use and value to shorebirds, extending from individuals to the entire community. While investigating the factors that influenced shorebird foraging distributions among neighboring intertidal sand flats, we built upon species-level understandings of individual-based, small-scale foraging decisions to develop more comprehensive guild- and community-level insights. We found that densities and community composition of foraging shorebirds varied substantially among elevations within some tidal flats and among five flats despite their proximity (all located within a 400-m stretch of natural, unmodified inlet shoreline). Non-dimensional multivariate analyses revealed that the changing composition of the shorebird community among flats and tidal elevations correlated significantly (ρs = 0.56) with the spatial structure of the benthic invertebrate prey community. Sediment grain-sizes affected shorebird community spatial patterns indirectly by influencing benthic macroinvertebrate community compositions. Furthermore, combining sediment and macroinvertebrate information produced a 27% increase in correlation (ρs = 0.71) with shorebird assemblage patterns over the correlation of the bird community with the macroinvertebrate community alone. Beyond its indirect effects acting through prey distributions, granulometry of the flats influenced shorebird foraging directly by modifying prey availability. Our study highlights the importance of habitat heterogeneity, showing that no single patch type was ideal for the entire shorebird community. Generally, shorebird density and diversity were greatest at lower elevations on flats when they became exposed; these areas are at risk from human intervention by inlet sand mining, construction of groins and jetties that divert sediments from flats, and installation of seawalls on inlet shorelines that induce erosion of flats.  相似文献   

9.
We used stable isotope (SI) methods in combination with pen feeding trials to determine the importance of eggs of the Atlantic horseshoe crab Limulus polyphemus to migratory fattening of red knots Calidris canutus rufa and ruddy turnstones Arenaria interpres morinella during spring stopover in Delaware Bay. By manifesting measurable fractionation (ca +3‰) and rapid turnover, blood plasma δ15 nitrogen proved a functional marker for SI diet tracking during the short 3-week stopover. Blood samples from free-ranging knots (3 data sets) and turnstones (1 data set) produced similar convergence of plasma δ15N signatures with increasing body mass that indicated highly similar diets. Asymptotes deviated slightly (0.3‰ to 0.7‰) from that of captive shorebirds fed a diet of only crab eggs during stopover, thus confirming a strong crab egg-shorebird linkage. The plasma δ15N crab-egg diet asymptote was enriched ca +4.5‰ and therefore readily discriminated from that of either blue mussels Mytilus edulis or coquina clams Donax variabilis , the most likely alternative prey of knots in Delaware Bay. Crab eggs were highly palatable to captive knots and turnstones which achieved rates of mass gain (3–11 g/d) comparable to that of free-ranging birds. Peak consumption rates during hyperphagic events were 23,940 and 19,360 eggs/bird/d, respectively. The empirical conversions of eggs consumed to body mass gained (5,017 eggs/g for knots and 4,320 eggs/g for turnstones) indicate the large quantities of crab eggs required for the maintenance of these shorebird populations during stopover.  相似文献   

10.
Optimal foraging models predict that large predators should concentrate on large prey in order to maximize their net gain of energy intake. Here, we show that the largest species of sea turtle, Dermochelys coriacea, does not strictly adhere to this general pattern. Field observations combined with a theoretical model suggest that a 300 kg leatherback turtle would meet its energetic requirements by feeding for 3-4 h a day on 4 g jellyfish, but only if prey were aggregated in high-density patches. Therefore, prey abundance rather than prey size may, in some cases, be the overriding parameter for foraging leatherbacks. This is a classic example where the presence of small prey in the diet of a large marine predator may reflect profitable foraging decisions if the relatively low energy intake per small individual prey is offset by high encounter rates and minimal capture and handling costs. This study provides, to our knowledge, the first quantitative estimates of intake rate for this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号