首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
The goal of the present study was to testthe hypothesis that local Ca2+ release events(Ca2+ sparks) deliver high local Ca2+concentration to activate nearby Ca2+-sensitiveK+ (BK) channels in the cell membrane of arterial smoothmuscle cells. Ca2+ sparks and BK channels were examined inisolated myocytes from rat cerebral arteries with laser scanningconfocal microscopy and patch-clamp techniques. BK channels had anapparent dissociation constant for Ca2+ of 19 µM and aHill coefficient of 2.9 at 40 mV. At near-physiological intracellularCa2+ concentration ([Ca2+]i; 100 nM) and membrane potential (40 mV), the open probability of a singleBK channel was low (1.2 × 106). A Ca2+spark increased BK channel activity to 18. Assuming that 1-100% of the BK channels are activated by a single Ca2+ spark, BKchannel activity increases 6 × 105-fold to 6 × 103-fold, which corresponds to ~30 µM to 4 µM sparkCa2+ concentration.1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acidacetoxymethyl ester caused the disappearance of all Ca2+sparks while leaving the transient BK currents unchanged. Our resultssupport the idea that Ca2+ spark sites are in closeproximity to the BK channels and that local[Ca2+]i reaches micromolar levels to activateBK channels.

  相似文献   

2.
The role of PKC in the regulation of store-operated Ca2+ entry (SOCE) is rather controversial. Here, we used Ca2+-imaging, biochemical, pharmacological, and molecular techniques to test if Ca2+-independent PLA2β (iPLA2β), one of the transducers of the signal from depleted stores to plasma membrane channels, may be a target for the complex regulation of SOCE by PKC and diacylglycerol (DAG) in rabbit aortic smooth muscle cells (SMCs). We found that the inhibition of PKC with chelerythrine resulted in significant inhibition of thapsigargin (TG)-induced SOCE in proliferating SMCs. Activation of PKC by the diacylglycerol analog 1-oleoyl-2-acetyl-sn-glycerol (OAG) caused a significant depletion of intracellular Ca2+ stores and triggered Ca2+ influx that was similar to TG-induced SOCE. OAG and TG both produced a PKC-dependent activation of iPLA2β and Ca2+ entry that were absent in SMCs in which iPLA2β was inhibited by a specific chiral enantiomer of bromoenol lactone (S-BEL). Moreover, we found that PKC regulates TG- and OAG-induced Ca2+ entry only in proliferating SMCs, which correlates with the expression of the specific PKC- isoform. Molecular downregulation of PKC- impaired TG- and OAG-induced Ca2+ influx in proliferating SMCs but had no effect in confluent SMCs. Our results demonstrate that DAG (or OAG) can affect SOCE via multiple mechanisms, which may involve the depletion of Ca2+ stores as well as direct PKC--dependent activation of iPLA2β, resulting in a complex regulation of SOCE in proliferating and confluent SMCs. protein kinase C-; Ca2+-independent phospholipase A2; diacylglycerol; smooth muscle cells  相似文献   

3.
To test thehypothesis that intracellular Ca2+activation of large-conductanceCa2+-activatedK+ (BK) channels involves thecytosolic form of phospholipase A2 (cPLA2), we first inhibited theexpression of cPLA2 by treating GH3 cells with antisenseoligonucleotides directed at the two possible translation start siteson cPLA2. Western blot analysis and a biochemical assay of cPLA2activity showed marked inhibition of the expression ofcPLA2 in antisense-treated cells.We then examined the effects of intracellularCa2+ concentration([Ca2+]i)on single BK channels from these cells. Open channel probability (Po) for thecells exposed to cPLA2 antisenseoligonucleotides in 0.1 µM intracellularCa2+ was significantly lower thanin untreated or sense oligonucleotide-treated cells, but the voltagesensitivity did not change (measured as the slope of thePo-voltagerelationship). In fact, a 1,000-fold increase in[Ca2+]ifrom 0.1 to 100 µM did not significantly increasePoin these cells, whereas BK channels from cells in the other treatmentgroups showed a normalPo-[Ca2+]iresponse. Finally, we examined the effect of exogenous arachidonic acidon thePoof BK channels from antisense-treated cells. Although arachidonic aciddid significantly increasePo,it did so without restoring the[Ca2+]isensitivity observed in untreated cells. We conclude that although [Ca2+]idoes impart some basal activity to BK channels inGH3 cells, the steepPo-[Ca2+]irelationship that is characteristic of these channels involves cPLA2.

  相似文献   

4.
Thecoupling mechanism between depletion of Ca2+ stores in theendoplasmic reticulum and plasma membrane store-operated ion channelsis fundamental to Ca2+ signaling in many cell types and hasyet to be completely elucidated. Using Ca2+release-activated Ca2+ (CRAC) channels in RBL-2H3 cells asa model system, we have shown that CRAC channels are maintained in theclosed state by an inhibitory factor rather than being opened by theinositol 1,4,5-trisphosphate receptor. This inhibitory role can befulfilled by the Drosophila protein INAD (inactivation-noafter potential D). The action of INAD requires Ca2+ andcan be reversed by a diffusible Ca2+ influx factor. Thusthe coupling between the depletion of Ca2+ stores and theactivation of CRAC channels may involve a mammalian homologue of INADand a low-molecular-weight, diffusible store-depletion signal.

  相似文献   

5.
Two populations,Ca2+-dependent(BKCa) andCa2+-independentK+ (BK) channels of largeconductance were identified in inside-out patches of nonlabor and laborfreshly dispersed human pregnant myometrial cells, respectively.Cell-attached recordings from nonlabor myometrial cells frequentlydisplayed BKCa channel openings characterized by a relatively low open-state probability, whereas similar recordings from labor tissue displayed either no channel openings or consistently high levels of channel activity that oftenexhibited clear, oscillatory activity. In inside-out patch recordings,Ba2+ (2-10 mM),4-aminopyridine (0.1-1 mM), andShaker B inactivating peptide("ball peptide") blocked theBKCa channel but were much lesseffective on BK channels. Application of tetraethylammonium toinside-out membrane patches reduced unitary current amplitude ofBKCa and BK channels, withdissociation constants of 46 mM and 53 µM, respectively.Tetraethylammonium applied to outside-out patches decreased the unitaryconductance of BKCa and BKchannels, with dissociation constants of 423 and 395 µM,respectively. These results demonstrate that the properties of humanmyometrial large-conductance K+channels in myocytes isolated from laboring patients are significantly different from those isolated from nonlaboring patients.

  相似文献   

6.
We previously reported that glucosamine and hyperglycemia attenuate the response of cardiomyocytes to inositol 1,4,5-trisphosphate-generating agonists such as ANG II. This appears to be related to an increase in flux through the hexosamine biosynthesis pathway (HBP) and decreased Ca2+ entry into the cells; however, a direct link between HBP and intracellular Ca2+ homeostasis has not been established. Therefore, using neonatal rat ventricular myocytes, we investigated the relationship between glucosamine treatment; the concentration of UDP-N-acetylglucosamine (UDP-GlcNAc), an end product of the HBP; and the level of protein O-linked N-acetylglucosamine (O-GlcNAc) on ANG II-mediated changes in intracellular free Ca2+ concentration ([Ca2+]i). We found that glucosamine blocked ANG II-induced [Ca2+]i increase and that this phenomenon was associated with a significant increase in UDP-GlcNAc and O-GlcNAc levels. O-(2-acetamido-2-deoxy-D-glucopyranosylidene)-amino-N-phenylcarbamate, an inhibitor of O-GlcNAcase that increased O-GlcNAc levels without changing UDP-GlcNAc concentrations, mimicked the effect of glucosamine on the ANG II-induced increase in [Ca2+]i. An inhibitor of O-GlcNAc-transferase, alloxan, prevented the glucosamine-induced increase in O-GlcNAc but not the increase in UDP-GlcNAc; however, alloxan abrogated the inhibition of the ANG II-induced increase in [Ca2+]i. These data support the notion that changes in O-GlcNAc levels mediated via increased HBP flux may be involved in the regulation of [Ca2+]i homeostasis in the heart. hypertrophy; left ventricle; calcium channels; calcium signaling  相似文献   

7.
Many neurodegenerative disorders are accompanied by chronic glial activation, which is characterized by the abundant production of proinflammatory cytokines, such as IL-1. IL-1 disrupts Ca2+ homeostasis and stimulates astrocyte reactivity. The mechanisms by which IL-1 induces Ca2+ dysregulation are not completely defined. Here, we examined how acute and chronic (24–48 h) treatment with IL-1 affect Ca2+ homeostasis in freshly dissociated and primary cultured mouse cortical astrocytes. Cytosolic free Ca2+ concentration ([Ca2+]cyt) was measured with fura-2 using digital imaging. An acute application of 10 ng/ml IL-1 induced Ca2+ mobilization from intracellular stores and activated store-operated Ca2+ entry (SOCE) and receptor-operated Ca2+ entry (ROCE) in both freshly dissociated and cultured actrocytes. Treatment of cultured astrocytes with IL-1 for 24 and 48 h elevated resting [Ca2+]cyt, decreased Ca2+ store content [associated with sarco(endo)plasmic reticulum Ca2+-ATPase 2b downregulation], and augmented ROCE. Based on evidence that receptor-operated, but not store-operated Ca2+ channels are Ba2+ permeable, Ba2+ entry was used to distinguish receptor-operated Ca2+ channels from store-operated Ca2+ channels. ROCE was activated by the diacylglycerol analog, 1-oleoyl-2-acetyl-sn-glycerol (OAG). In the presence of extracellular Ba2+, OAG-induced elevations of cytosolic Ba2+ (fura-2 340-to-380-nm ratio) were significantly larger in astrocytes treated with IL-1. These changes in IL-1-treated astrocytes correlate with augmented expression of transient receptor potential cation channel (TRPC)6 protein, which likely mediates ROCE. Knockdown of the TRPC6 gene markedly reduced ROCE. The data suggest that IL-1-induced dysregulation of Ca2+ homeostasis is the result of enhanced ROCE and TRPC6 expression. The disruption of Ca2+ homeostasis appears to be an upstream component in the cascade of IL-1-activated pathways leading to neurodegeneration. transient receptor potential cation channel proteins  相似文献   

8.
Store-operated Ca2+ entry (SOCE), which is Ca2+ entry triggered by the depletion of intracellular Ca2+ stores, has been observed in many cell types, but only recently has it been suggested to occur in cardiomyocytes. In the present study, we have demonstrated SOCE-dependent sarcoplasmic reticulum (SR) Ca2+ loading (loadSR) that was not altered by inhibition of L-type Ca2+ channels, reverse mode Na+/Ca2+ exchange (NCX), or nonselective cation channels. In contrast, lowering the extracellular [Ca2+] to 0 mM or adding either 0.5 mM Zn2+ or the putative store-operated channel (SOC) inhibitor SKF-96365 (100 µM) inhibited loadSR at rest. Interestingly, inhibition of forward mode NCX with 30 µM KB-R7943 stimulated SOCE significantly and resulted in enhanced loadSR. In addition, manipulation of the extracellular and intracellular Na+ concentrations further demonstrated the modulatory role of NCX in SOCE-mediated SR Ca2+ loading. Although there is little knowledge of SOCE in cardiomyocytes, the present results suggest that this mechanism, together with NCX, may play an important role in SR Ca2+ homeostasis. The data reported herein also imply the presence of microdomains unique to the neonatal cardiomyocyte. These findings may be of particular importance during open heart surgery in neonates, in which uncontrolled SOCE could lead to SR Ca2+ overload and arrhythmogenesis. cardiac ontogeny; cardiac excitation-contraction coupling; calcium homeostasis  相似文献   

9.
Phototropins (phot1 and phot2) are blue light (BL) receptorsthat mediate responses including phototropism, chloroplast movementand stomatal opening, and increased cytosolic Ca2+. BL absorbedby phototropins activates plasma membrane H+-ATPase in guardcells, resulting in membrane hyperpolarization, and drives K+uptake and stomatal opening. However, it is unclear whetherthe phototropin-mediated Ca2+ increase activates the H+-ATPase.Here, we determined cytosolic Ca2+ concentrations in guard cellprotoplasts (GCPs) from Arabidopsis transformed with aequorin.Cytosolic Ca2+ increased rapidly in response to BL in GCPs fromboth the wild type and phot1 phot2 double mutants, but was mostlysuppressed by an inhibitor of photosynthetic electron flow (DCMU).With depleted external K+, we observed another slower Ca2+ increase,which was phototropin- dependent. Fusicoccin, a H+-ATPase activator,mimicked the effect of BL. The slow Ca2+ increase thus appearsto result from membrane hyperpolarization. The slow Ca2+ increasewas suppressed by external K+ and was restored by blockers ofinward-rectifying K+ channels, CsCl and tetraethylammonium,suggesting the preferential uptake of K+ over Ca2+. Such efficientK+ uptake in response to BL was not found in mesophyll cells.Both the fast and the slow Ca2+ increases were inhibited byCa2+ channel blockers (CoCl2 and LaCl3) and a chelating agent(EGTA). These results indicate that the phototropin-mediatedCa2+ increase was not observed prior to H+-ATPase activationin guard cells and that Ca2+ entered guard cells via Ca2+ channelsthrough photosynthesis and phototropin-mediated membrane hyperpolarization.  相似文献   

10.
Stimulation of -adrenoceptors contributes to the relaxation of urinary bladder smooth muscle (UBSM) through activation of large-conductance Ca2+-activated K+ (BK) channels. We examined the mechanisms by which -adrenoceptor stimulation leads to an elevation of the activity of BK channels in UBSM. Depolarization from –70 to +10 mV evokes an inward L-type dihydropyridine-sensitive voltage-dependent Ca2+ channel (VDCC) current, followed by outward steady-state and transient BK current. In the presence of ryanodine, which blocks the transient BK currents, isoproterenol, a nonselective -adrenoceptor agonist, increased the VDCC current by 25% and the steady-state BK current by 30%. In the presence of the BK channel inhibitor iberiotoxin, isoproterenol did not cause activation of the remaining steady-state K+ current component. Decreasing Ca2+ influx through VDCC by nifedipine or depolarization to +80 mV suppressed the isoproterenol-induced activation of the steady-state BK current. Unlike forskolin, isoproterenol did not change significantly the open probability of single BK channels in the absence of Ca2+ sparks and with VDCC inhibited by nifedipine. Isoproterenol elevated Ca2+ spark (local intracellular Ca2+ release through ryanodine receptors of the sarcoplasmic reticulum) frequency and associated transient BK currents by 1.4-fold. The data support the concept that in UBSM -adrenoceptor stimulation activates BK channels by elevating Ca2+ influx through VDCC and by increasing Ca2+ sparks, but not through a Ca2+-independent mechanism. This study reveals key regulatory molecular and cellular mechanisms of -adrenergic regulation of BK channels in UBSM that could provide new targets for drugs in the treatment of bladder dysfunction. Ca2+ sparks; voltage-dependent Ca2+ channel; ryanodine receptor  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号